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Abstract: The main strategy of the European Commission in the field of the building industry
assumes a reduction of greenhouse gas emissions by up to 20% by 2020 and by up to 80% by 2050.
In order to meet these conditions, it is necessary to develop not only efficient thermal insulation
materials, but also more environmentally friendly ones. This paper describes an experiment in
which two types of bio-polyols were obtained using transesterification of used cooking oil with
triethanolamine (UCO_TEA) and diethylene glycol (UCO_DEG). The bio-polyols were next used to
prepare low-density rigid polyurethane (PUR) foams. It was found that the bio-polyols increased the
reactivity of the PUR systems, regardless of their chemical structures. The reactivity of the system
modified with 60% of the diethylene glycol-based bio-polyol was higher than in the case of the
reference system. The bio-foams exhibited apparent densities of 41–45 kg/m3, homogeneous cellular
structures and advantageous values of the coefficient of thermal conductivity. It was observed that
the higher functionality of bio-polyol UCO_TEA compared with UCO_DEG had a beneficial effect on
the mechanical and thermal properties of the bio-foams. The most promising results were obtained in
the case of the foams modified in 60% with the bio-polyol based on triethanoloamine. In conclusion,
this approach, utilizing used cooking oil in the synthesis of high-value thermal insulating materials,
provides a sustainable municipal waste recycling solution.

Keywords: polyurethane bio-foams; used cooking oil-based polyol; low-density materials

1. Introduction

Rigid polyurethane (PUR) foams with closed cell structures are used in various branches of
industry [1,2]. Most of the industrial halls made of sandwich panels have polyurethane foams inside.
Rigid polyurethane foams also insulate refrigerators and pipelines, fill bumpers in cars and are used in
aircraft insulation. PUR foams are also used to isolate hives. Such a broad area of applications causes
that activities of researchers in the field of the polyurethane technology are focused on looking for new
renewable sources of raw materials for their preparation.

Nowadays, the polyurethane industry is dependent on petroleum because a majority of the
components used in their preparation are petroleum-based. In order to reduce the consumption of
petrochemical components in the synthesis of polyurethanes, both plant and waste fillers are also
introduced. The literature describes the influence of such waste as rapeseed cake [3], basalt powder [4],
thermoset polyester-glass fiber composite [5], eggshells [6], wheat straw lignin [7], brewers’ spent
grain and ground tire rubber [8], buffing dust generated in leather industry [9] on the properties of
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polyurethane foams. Most results confirm that waste fillers can be successfully used as low-cost and
environmentally friendly components for PUR foam modification.

Polyurethanes can be modified by replacing, completely or partially, polyols, which are one of
two main components in their synthesis. Bio-polyols are obtained both from vegetable oils (rapeseed,
palm, soybean) and from used cooking oils as waste materials [10]. Application of rapeseed oil in
polyol synthesis, compared to petrochemical polyols, has a significant impact on the reduction of
non-renewable energy use, lower greenhouse gas emissions and water consumption [11]. It can be
expected that utilization of used vegetable oil will have an even better effect on the environment in
terms of waste management. This idea is in line with new circular economy-related trends to find
alternative components for the polymer synthesis based on waste [12]. Zhang et al. [13] prepared four
sets of bio-based foams using bio-polyol based on agricultural wastes (oilseed rape straw, rice straw,
wheat straw and corn stover). They concluded that the bio-foams with an appropriate NCO/OH group
ratio exhibited excellent morphological, physical and mechanical properties, which are comparable
with or even better than those of petroleum polyol-based PU foams.

Borowicz et al. carried out glycerolysis of waste poly(lactic acid) in order to obtain oligomeric
polyhydric alcohols. Authors concluded that the chemical structure and other physicochemical
properties of the final polyols indicated that they could be an alternative to petrochemical polyols [14].
Modification of lignin, a by-product in the pulp and paper industry, has also been described in
several studies concerning the synthesis of polyols and their use in polyurethane formulations [15,16].
Hejna et al. obtained bio-polyol via crude glycerol polymerization and further condensation of the
resulting polyglycerol with castor oil [17]. In previous works of the authors, it was reported that
used cooking oil can be a source of raw materials for bio-polyol synthesis. Ten different samples of
used cooking oil were collected from local restaurants and their properties were evaluated. It was
concluded that the properties of the bio-components based on used cooking oils were comparable to
the properties of the epoxidized oil and polyols obtained from the fresh rapeseed oil that was used as a
reference sample [12]. In the literature, there are no reports concerning the influence of bio-polyols
obtained through transesterification of used cooking oil with triethanolamine and diethylene glycol on
the reactivity of PUR systems and the properties of bio-foams.

In this study, two types of bio-polyols synthesized by transesterification of used cooking oil
with diethylene glycol and triethanolamine were used to prepare bio-based PUR foams with different
contents of the bio-components. To obtain PUR foams with excellent properties, detailed analyses
were conducted of the foaming process, density, compression strength and coefficient of thermal
conductivity. Scanning electron microscope and thermogravimetric analyses were also carried
out. The bio-based foams were compared with a petroleum polyol-based foam to confirm their
substitutability. The development of an innovative material based on modified municipal waste is a
significant step towards implementation of circular economy in the polyurethane industry.

2. Materials and Methods

Rigid PUR foams were prepared using polyol Rokopol RF551 (oxypropylenated sorbitol, PCC
Rokita, Brzeg Dolny, Poland), which was partially replaced by bio-polyols based on waste oil (UCO_TEA
or UCO_DEG). Bio-polyols were synthesized using the transesterification method of waste oil with
triethanolamine (UCO_TEA) and diethylene glycol (UCO_DEG). The molar ratio of the reagents was
1:3 (waste oil:transesteryfication agent). The reaction was conducted at 175 ◦C and the content of the
catalyst (zinc acetate) was 0.3 wt.%. Characteristics of the bio-polyols and Rokopol RF551 are shown in
Table 1.
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Table 1. Characteristics of polyols.

Properties UCO_TEA UCO_DEG Rokopol RF551

Synthesis method
Transesterification of

waste oil with
triethanoloamine

Transesterification of
waste oil with glycol

diethylene
Oxyalkylation of sorbitol

Hydroxyl value,
mgKOH/g 348 277 420

Acid value, mgKOH/g 2.31 1.35 0.1

Water content, % mas 0.05 0.13 0.1

Molecular weight, g/mol 522 492 ~600

Viscosity, mPa·s 182 56 3000–5000

Functionality ~2.2 ~1.9 ~4.5

Polymeric diphenylmethane-4,4′-diisocyanate (PMDI) (Ongronat 2100, Borschodchem, Berente,
Hungary) with a 31% content of NCO was used as an isocyanate component. An NCO index of 110
was applied in all foams. An amine catalyst (Polycat® 9, Evonik Nutrition & Care GmbH, Essen,
Germany) and silicone surfactant (Niax Silicone L-6900, Momentive Performance Materials, Wilton,
CT, USA) were used as additives. The components (except PMDI) were mixed for 30 s and then
the right PMDI amount was added and mixed for 10 s. The foams were prepared in open molds.
The rigid PUR formulations are given in Table 2. All foams were conditioned at room temperature
for 24 h. The compositions had 20%, 40%, 60% and 80% of bio-polyol. The materials obtained with
a 100% addition of bio-polyol were characterized by shrinkage (Figure 1), and, therefore, could not
be subjected to further analysis of physico-mechanical properties. A reference material based on the
petrochemical polyol Rokopol RF551 was also obtained.

Table 2. Formulations of foam materials obtained with different amounts of the bio-polyols.

Foam Symbol
Component (g)

Petrochemical Polyol Bio-Polyol Catalyst Silicone Surfactant Water PMDI

PU_REF 100 0 1.50 1.50 3.00 165.8

PU_UCO_TEA_20 80 20 1.50 1.50 3.00 160.6

PU_UCO_TEA_40 60 40 1.50 1.50 3.00 155.5

PU_UCO_TEA_60 40 60 1.50 1.50 3.00 150.3

PU_UCO_TEA_80 20 80 1.50 1.50 3.00 145.2

PU_UCO_DEG_20 80 20 1.50 1.50 3.00 155.8

PU_UCO_DEG_40 60 40 1.50 1.50 3.00 145.8

PU_UCO_DEG_60 40 60 1.50 1.50 3.00 135.9

PU_UCO_DEG_80 20 80 1.50 1.50 3.00 125.9
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The foaming process was analyzed using a FOAMAT device (Messtechnik, Freiburg im Breisgau,
Germany) that allows determination of e.g., the reaction temperature and dielectric polarization during
a foaming process. The apparent density (kg/m3) was determined according to ISO 845. The closed-cell
content (%) was determined according to ISO 4590.

The foam cell morphology was analyzed using a Hitachi TM3000 scanning electron microscope
(Tokyo, Japan) with an accelerating voltage of 5 keV using orientations parallel and perpendicular to
the foam growth direction. Prior to the analysis the samples were dusted with gold using a Polaron
SC7640 sputter coater for 100 s at 10 mA. The equivalent pore diameter and anisotropy coefficient were
determined based on 200 pore dimensions for each material, using SEM images of the samples analyzed
in the cross-sections parallel to foam growth direction. The analysis was done using ImageJ software.

The coefficient of thermal conductivity (mW/m·K) was determined using a Laser Comp heat flow
instrument Fox 200 (New Castle, DE, USA). The measurements were taken at an average temperature
of 10 ◦C. A compression test was carried out according to ISO844. The analysis was done in a parallel
and perpendicular direction to the foam rise.

Infrared spectra of the foams were recorded using a Nicolet 6700 (Thermo Electron Corporation,
Madison, WI, USA) FTIR spectrophotometer. Each sample was scanned 64 times in 4000–400 cm−1

range of wavenumbers. Data processing was performed using Omnic Spectra 8.2.0 software developed
by Thermo.

In order to determine the course of the thermal degradation of the foams, a thermogravimetric
analysis was conducted using a TA Instruments Q500 (New Castle, Delaware, DE, USA). Samples with
a weight of 10± 0.2 mg were placed on platinum pans and heated in a nitrogen atmosphere at 10 ◦C/min
in a temperature range of 25–1000 ◦C. Data analysis was done with Universal Analysis 2000 software,
version 4.7 A, by TA Instruments.

The phase transition temperatures and thermal effects were determined using a differential
scanning calorimeter Q1000 (TA Instruments). The measurements were taken in a neutral gas
atmosphere using hermetic aluminum cups. The samples (5 ± 0.2 mg) were heated at 10 ◦C/min in
the temperature range from −90 to 200 ◦C. Data analysis was performed using Universal Analysis
2000 software, version 4.7 A, by TA Instruments.

3. Results

The investigation was carried out to determine the influence of different contents of the bio-polyols
in the PUR formulation on the foaming process, mechanical properties and structure of rigid foams.
Changes in temperature recorded by Foamat are shown in Figures 2a and 3a. The reactivity of a PUR
system can be determined by measuring the dielectric polarization, which decreases as an effect of the
reactions progress. Figures 2b and 3b show the dielectric polarization as a function of the reaction time
for all the samples prepared with UCO_TEA and UCO_DEG, respectively.
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Figure 2. Foams core temperature profiles (a) and dielectric polarization changes in time (b) during
foaming process of PUR system based on UCO_TEA.
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Figure 3. Foams core temperature profiles (a) and dielectric polarization changes in time (b) during
foaming process of PUR system based on UCO_DEG.

As can be seen in Figures 2a and 3a, the bio-based polyurethanes modified with the bio-polyol are
characterized by the fastest increase of temperature indicating a greater reaction heat release and a
higher extent of the isocyanate–polyol reaction. The higher the content of the bio-polyols in the polyol
premix, the faster the temperature increase in the foam core. This effect is similar for the systems
based on UCO_DEG as well as UCO_TEA. However, in the case of the systems based on UCO_DEG,
the maximum temperature is lower than in the systems modified with the bio-polyol UCO_TEA.
Such an effect is favorable in order to avoid scorch while seasoning foam blocks. Based on the faster
increase of the dielectric polarization, it was concluded that the PUR systems modified with bio-polyol
UCO_TEA were characterized by higher reactivity than the reference system [18]. A replacement of
petrochemical polyol with UCO_DEG of up to 60% mas. also caused an increase in the PUR system
reactivity. The higher reactivity can be associated with lower viscosity of the bio-polyols and better
accessibility to functional groups. Additionally, the bio-polyol UCO_TEA has a catalytic effect on the
polyurethane forming reaction due to triethanolamine, which is used in the synthesis of this bio-polyol.
Therefore, the more UCO_TEA used, the faster the reaction of forming polyurethane bonds and the
faster the temperature increase in this system. In the case of the use of UCO_DEG, it was observed
that the dielectric polarization for the systems containing 20%, 40% and 60% of that bio-polyol was
similar to that of the reference system. However, the addition of 80% and 100% of this bio-polyol
caused that the dielectric polarization curve approached zero slower, which means that the reaction
of polyurethane formation in these systems was progressing slower. DEG does not have catalyzing
properties as it is in the case of TEA. Additionally, UCO_DEG has three times lower functionality in
relation to petrochemical polyol, which also could have affected the process.

The FTIR spectra indicate the presence of groups characteristic for polyurethanes, which confirms
the correct course of the reactions. Example FTIR spectra are shown in Figure 4.

The presence of the -N–H groups is indicated by the band at the 3400–3200 cm−1 wavenumber
range (N–H stretching vibrations, symmetric and asymmetric) and the signal with a maximum at
1512–1511 cm−1 (N–H deformation vibrations). The bands with maxima at 2922–2917 cm−1 and
2853–2851 cm−1 correspond to the asymmetric and symmetric stretching vibrations of the C–H bonds
in the -CH3 and -CH2- groups. An analysis of the reference material revealed an additional signal
at 2971 cm−1, originating from the asymmetrical stretching vibrations of the C–H bonds, which is
associated with the chemical structure of polyol Rokopol RF551. A low-intensity peak at 2277–2274 cm−1

corresponding to unreacted isocyanate moieties was also observed, which is a consequence of an
isocyanate index of more than 100. The signals with a maxima at 1713–1709 cm−1 indicate the presence
of the C=O carbonyl bonds in urethane groups, while the signal at 1595 cm−1 represents the aromatic
rings in the material. The signals at 1411 cm−1 indicate the presence of the isocyanate trimerization
products. The presence of isocyanurate rings in the foam is also evidenced by vibration bands of the
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–NH- and C=O groups at 780 and 525 cm−1, respectively. The signals with maxima at 1218–1214 cm−1

correspond to the C-N groups stretching vibrations. The multiplet bands in the range of 1250–1000 cm−1

are assigned to the C–O bonds in flexible segments. The signals at 2275–2277 cm−1 correspond to the
N=C=O groups. In Figure 4, it may be noticed that the higher the content of the bio-polyol, the lower
the intensity of the signal is. This effect can be associated with higher reactivity of the bio-polyols,
which is confirmed by the changes of dielectric polarization (Figure 2b).Polymers 2020, 12, x FOR PEER REVIEW 6 of 14 
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Cellular structure has a significant influence on the physical and mechanical properties of porous
materials and thus is one of their most important properties [3]. The cell structure parameters such
as cell size and cell type (closed or open) depend on the foaming process. SEM microphotographs,
the equivalent diameter and anisotropy index of the reference foam and the foams modified with two
types of bio-polyols are shown in Figure 5 and Table 3.
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Table 3. Characteristic properties of cellular structure of PUR foams.

Symbol Equivalent Diameter, µm Anisotropy Index

PU_REF 265 ± 133 1.41 ± 0.23

PU_UCO_TEA_20 256 ± 103 1.34 ± 0.19

PU_UCO_TEA_40 274 ± 75 1.39 ± 0.18

PU_UCO_TEA_60 301 ± 54 1.24 ± 0.13

PU_UCO_TEA_80 300 ± 63 1.26 ± 0.16

PU_UCO_DEG_20 265 ± 85 1.27 ± 0.15

PU_UCO_DEG_40 266 ± 66 1.36 ± 0.19

PU_UCO_DEG_60 290 ± 93 1.38 ± 0.20

PU_UCO_DEG_80 299 ± 109 1.31 ± 0.18

The use of the bio-polyols resulted in the formation of a foam structure with a more regular pore
distribution compared to the reference material. Moreover, the introduction of the bio-polyols into the
composition yielded foams with a lower pore anisotropy index. The pore size distribution curves for the
PU_REF, PU_UCO_DEG_20 and PU_UCO_DEG_40 materials are similar, but the standard deviation
of the average diameter equivalent for the reference foam is higher due to the presence of large pores
with sizes > 600 µm. Increasing the UCO_DEG polyol content further led to an increase in the average
pore diameter and an increase in the pore size range. The pore size of the foams made using UCO_TEA
increased after the introduction of 40%–80% of the bio-polyol. The cell structure of the materials
made using UCO_TEA was more regular compared to the foams obtained using UCO_DEG, which
is indicated by the lower value of the standard deviation of the equivalent diameter for PU_60_TEA
and PU_80_TEA foams compared to the PU_60_DEG and PU_80_DEG foams. The foams with a high
proportion of the bio-polyol from the TEA series (60%–80%) have a lower anisotropy index compared
to the DEG series. The lower anisotropy index and more regular structure of the foams based on the
bio-polyol UCO_TEA can be associated with the higher reactivity of the foams modified with 60%
and 80% of this bio-polyol. Such a structure had a beneficial effect on the thermal conductivity and
mechanical properties of the foams based on the bio-polyol UCO_TEA (Table 4 and Figure 6).

Table 4. Apparent density, heat conduction coefficient and closed cell content of foam materials
containing different amounts of UCO_TEA and UCO_DEG.

Symbol Apparent Density,
kg/m3

Thermal Conductivity,
mW/m·K Closed Cell Content, %

PU_REF 48.4 ± 1.4 25.88 ± 0.62 80.0 ± 1.9

PU_UCO_TEA_20 45.3 ± 0.5 25.49 ± 0.64 81.0 ± 0.1

PU_UCO_TEA_40 43.9 ± 1.0 26.16 ± 0.29 80.3 ± 1.5

PU_UCO_TEA_60 41.2 ± 0.1 25.72 ± 0.77 82.3 ± 1.6

PU_UCO_TEA_80 41.1 ± 0.0 27.40 ± 0.21 83.7 ± 3.0

PU_UCO_DEG_20 43.6 ± 0.6 24.69 ± 0.50 86.1 ± 0.1

PU_UCO_DEG_40 41.7 ± 1.9 28.92 ± 0.87 78.2 ± 0.6

PU_UCO_DEG_60 40.0 ± 0.2 34.03 ± 0.65 26.9 ± 8.8

PU_UCO_DEG_80 41.5 ± 0.0 28.28 ± 0.80 78.0 ± 1.4
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Figure 6. Pore size distribution for PU_REF and foams modified with polyols UCO_TEA (a) and
UCO_DEG (b).

The foam materials were subjected to an analysis of physico-mechanical properties, i.e., apparent
density, thermal conductivity, closed cell content, compressive strength at 10% deformation in a
perpendicular and parallel directions to the direction of foam growth. The results are presented in
Table 4 and Figure 6.

The foam materials obtained with the use of UCO_TEA and UCO_DEG were characterized by
a lower apparent density in relation to the reference material. In addition, it was observed that for
most materials the higher the content of the bio-polyol used in the formulation, the lower the apparent
density. This is due to lower viscosity of the bio-polyols which facilitated the growth of the foam
material and greater system reactivity, especially in the case of UCO_TEA modified foams. In most
of the materials obtained, the thermal conductivity was comparable or slightly higher than in the
case of the reference material. Generally, the thermal conductivity of PUR foams is dependent on
the thermal conductivity of the solid phase, gas enclosed in cells as well as convective and radiative
components [19]. The foams prepared in this work had a low apparent density, in which the solid
polymer phase constituted only ca. 3% of the foam, and, therefore, its contribution to the overall foam
conductivity can be neglected. The value of the thermal conductivity is greatly influenced by the closed
cell content and cell size of foams. In the case of PU_UCO_DEG_60 foam, the cells were partially
open, which resulted in an increase in the heat transfer coefficient leading to thermal conductivity
value about 34 mW/m·K. Such an effect may be related to insufficient miscibility of the polyols. In the
systems containing 40% and 60% of the bio-polyol, the bio-polyol does not dominate, hence the lower
miscibility. However, in the case of the PU_UCO_DEG_40 system, this effect does not occur, which may
be related to much higher functionality of the petrochemical polyol and a higher tendency of the
system for crosslinking.

The compressive strength of porous polyurethanes depends on foam morphologies (cell size
and content of closed cells), foam density and polyol functionality [19]. A high value of compressive
strength at a low apparent density of foams results from a small cell size and high functionality. In this
experiment, bio-polyols UCO_DEG and UCO_TEA were characterized by much lower functionality
than Rokopol RF551, and an analysis of the compressive strength changes in relation to the bio-polyol
content was necessary.

The analysis of the compressive strength of the foam materials was carried out in a perpendicular
and parallel direction to the direction of growth. The results are shown in Figure 7. It was observed
that in all the materials the compressive strength in the parallel direction was greater than in the
perpendicular direction. It is related to the shape of the cells that were formed [9]. Cells were usually
elongated in the growth direction of a material, which promotes a higher value of the compressive
strength. It was also observed that the compressive strength decreased with an increasing bio-polyol
content in the perpendicular and parallel direction to the foam growth direction for both the bio-polyols
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used. The foams containing 20% and 40% of UCO_TEA had a strength similar to the reference material,
when it was measured in the direction parallel to the direction of foam growth. As the bio-polyol
content increased over 40%, the compressive strength of the modified foams decreased for both the
UCO_TEA and UCO_DEG bio-polyols.
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Figure 7. Compressive strength parallel (pa) and perpendicular (pe) to direction of foam rise of rigid
PUR materials containing UCO_TEA and UCO_DEG bio-polyols.

That was a result of the PUR matrix plasticizing by the dangling chains of fatty acids of the
bio-polyols [19]. However, the mechanical strength was at an appropriate level to ensure the
dimensional stability of the foams. The higher compressive strength of the foams modified with
UCO_TEA is an effect of the higher functionality of this bio-polyol (Table 1).

Based on the TG and DTG curves, the following parameters were determined:, temperatures
at 5%, 10%, 50% and 70% weight loss of the materials (T5%, T10%, T50%, T75%), temperatures at the
maximum degradation rates (Tmax) and the corresponding degradation rates (Vmax) in subsequent
thermal decomposition stages (Table 5, Figures 8 and 9).

Table 5. Results of thermogravimetric analysis.

Symbol T5%, ◦C T10%, ◦C T50%, ◦C T75%,
◦C Tmax1,

◦C
(Vmax1, %/◦C)

Tmax2 (Vmax2),
◦C

Tmax3 (Vmax3),
◦C R600, %

PU_REF 268 285 337 390 - 333 (1.049) 475 (0.096) 10.3

PU_UCO_TEA_20 256 274 341 435 - 329 (0.834) 464 (0.159) 12.1

PU_UCO_TEA_40 247 268 359 454 263 (0.255) 332 (0.581) 454 (0.242) 12.4

PU_UCO_TEA_60 241 263 382 456 261 (0.256)
316 (0.372), 341 (0.381), 397 (0.341),
424 (0.361), 441 (0.333), 454 (0.308),

469 (0.304)
11.1

PU_UCO_TEA_80 239 259 397 457 266 (0.289) 288 (0.290), 351 (0.293), 412 (0.469),
430 (0.409), 446 (0.387), 461 (0.378) 9.7

PU_UCO_DEG_20 258 273 336 404 290 (0.546) 333 (0.931) 467 (0.119) 12.1

PU_UCO_DEG_40 255 270 335 424 287 (0.617) 332 (0.769) 464 (0.142) 11.9

PU_UCO_DEG_60 252 265 334 437 285 (0.664) 328 (0.652) 457 (0.157) 12.3

PU_UCO_DEG_80 250 263 327 437 283 (0.808) 322 (0.477) 468 (0.177) 11.5
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The results of the analysis indicate that the introduction of the bio-polyols from used cooking oils
caused a decrease in the temperature at the beginning of the foam thermal degradation (T5%) compared
to the reference material. The foams based on the UCO_TEA polyol exhibited a significantly higher
temperature reduction in comparison with the foams based on the UCO_DEG bio-polyol. Based on the
DTG curves, it was found that the thermal degradation of the reference material occurred in two stages
in the range of 200–420 and 420–550 ◦C. The first stage (Tmax2, Vmax2) is associated with the degradation
of the mixture of flexible and rigid segments, and the second stage (Tmax3, Vmax3) is associated with
thermolysis of organic residues [20,21]. The use of the UCO_DEG and UCO_TEA bio-polyols for the
production of foams led to changes in the foam structure and, consequently, in the course of the DTG
curve. The introduction of UCO_DEG in the amount of 20%–80% and UCO_TEA in the amount of
40%–80% resulted in the observation of an additional stage in the thermal decomposition pathway
corresponding to the degradation of rigid segments (Tmax1, Vmax1). The content of the bio-polyols
was correlated with the rate of foam degradation at this stage (Vmax1), consequently decreasing the
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temperature of 10% weight loss of the material. The changes may be related to the increased degree of
phase separation in the foams containing the bio-polyols. The use of high contents of the UCO_TEA
polyol drastically changed the course of the foam thermal degradation pathway from a well-resolved
3-stage case to a complex process involving a multitude of overlapping steps spanning in the range
of 280–500 ◦C. The results of the analysis indicate a higher thermal stability of the segments formed
from the UCO_TEA bio-polyol, which is confirmed by an increase of the 50% and 75% mass loss
temperature and an increase of the Vmax value of the last degradation stage. The foams prepared
from the UCO_DEG bio-polyol degraded in 50% at comparable temperature values to the reference
material and exhibited a slowdown in the further degradation stage, which is indicated by an increase
in the 75% mass loss temperature of the material and an increase in the Vmax3 value. The percentage of
combustion residue at 600 ◦C (R600) slightly increases after the introduction of the bio-polyols.

The DSC thermograms (Figure 10) display endothermic peaks in the range of −20–170 ◦C
corresponding to the order-disorder transformation in polyurethane foams. The replacement of the
petrochemical polyol with either bio-polyol in the foam resulted in a decrease of the enthalpy of this
transformation (∆H). The thermal effect of this transformation is higher for the TEA series than for the
DEG series (Table 6).
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Figure 10. DSC thermograms of materials.

Table 6. Results of DSC analysis.

Symbol ∆H, J/g T, ◦C

PU_REF 50.3 87.9

PU_20_DEG 27.0 88.3

PU_40_DEG 17.0 77.1

PU_60_DEG 16.9 73.0

PU_80_DEG 11.0 71.1

PU_20_TEA 29.7 83.2

PU_40_TEA 30.3 80.9

PU_60_TEA 24.9 80.5

PU_80_TEA 27.1 75.7

The results of the extreme phase transition temperature (T) indicate that it decreases as the
content of the bio-polyol increases. The cause is the plasticizing effect of the unsaturated fatty acid
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hydrocarbon chains found in natural oil. Example DSC thermograms for PU_REF, PU_UCO_DEG_80
and PU_UCO_TEA_80 materials are shown in the Figure 10.

4. Conclusions

Used cooking oil was converted into two bio-polyols using the transesterification method. Two
different transesterification agents were used in the reactions—triethanolamine and diethylene glycol.
The bio-polyol based on triethanolamine was characterized by higher reactivity than the one based on
diethylene glycol. It was observed that the PUR systems modified by up to 60% with the bio-polyol
based on diethylene glycol had higher reactivity than the reference system. Such an effect has not been
described in the literature so far. This polyol property allows for decreasing the content of catalysts in a
PUR system. The bio-foams modified with the triethanoloamine-based bio-polyol were characterized
by a higher compressive strength parallel to the foam rise direction regardless of the bio-polyol content
due to higher functionality of this bio-component comparing to the diethylene glycol based bio-polyol.
The most promising results were obtained in the case of the foams modified in 60% with the bio-polyol
based on triethanoloamine. The use of waste oil as a renewable resource for the synthesis of bio-polyols
as well as the possibility to apply lower catalyst contents allows for implementing selected rules of
green chemistry and a circular economy in the synthesis of polyurethane foams.
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