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Abstract

The connections between the error function used in multilinear regression and the expected,

or assumed, properties of the data are investigated. It is shown that two of the most basic

properties often required in data analysis, scale and rotational invariance, are incompatible.

With this, it is established that multilinear regression using an error function derived from a

geometric mean is both scale and reflectively invariant. The resulting error function is also

shown to have the property that its minimizer, under certain conditions, is well approximated

using the centroid of the error simplex. It is then applied to several multidimensional real

world data sets, and compared to other regression methods.

Introduction

The problem considered here concerns the modeling assumptions made in multilinear regres-

sion, and their role in determining the error function. To provide a simple example, a principal

component analysis (PCA) is used to find low dimensional subspace approximations of a data

set. It has the property that if the data set is rotated, and a PCA is used, the rotated versions of

the same low dimensional subspace approximations are obtained. This means that a PCA is

rotationally invariant. This is one of the reasons that it is often used in face recognition [1, 2],

visual tracking [3], and other pattern recognition problems.

In contrast, linear least squares is not rotationally invariant. However, unlike a PCA, it is

scale invariant. What this means is that if you scale the variables in the data set, the resulting

minimizer is the scaled version of what is obtained for the unscaled case (this is explained

more precisely in the next section). Scale invariance is important, for example, if you want

your minimizer to be independent of what units are used (e.g., inches versus centimeters). The

fact that a PCA is scale dependent, and that it is possible to be fairly sensitive to the scaling, is

well-known [4, 5].

A third type of invariance, which will play a central role in this paper, concerns the order

the variables are listed or labeled. Specifically, if the minimizer is unaffected by the reordering

of the variables, the result is said to be reflectively invariant. A simple example of where this is

important is edge detection, where the minimizer should be unaffected by which axis is labeled

x, y or z. It is not hard to show that a PCA is reflectively invariant, but that linear least squares
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is not. It needs to be pointed out that there are different forms of reflective invariance depend-

ing on the hyperplane used for the reflection. As an example, in computer vision it is desirable

to be able to recognize an object regardless of whether you are looking at it, or at its horizontal

reflection as seen when looking in a mirror [6]. In this case the reflection is through the vertical

plane. There is also some variation in how to refer to reflective invariance as used here. As a

case in point, it has been referred to as neutral data fitting because, for this form of invariance,

the variables must be treated symmetrically [7, 8].

Obtaining a regression result with particular invariance properties has been considered ear-

lier, although often framed in somewhat different language. One of the earliest studies con-

cerned reflective invariance for a bivariate problem using area as a measure of error [9]. This is

the EA example illustrated in Fig 1. This was the impetus for Samuelson [10] to propose certain

invariant properties one might expect, or require, of the error function. Since then numerous

attempts have been made to find error functions that have one or more of these properties. An

example of a straightforward approach for two variable linear regression is to concentrate on

the slope of the regression line. It has been proposed that, after determining the lines for verti-

cal and horizontal least squares, Ey and Ex in Fig 1, to simply use the line whose slope is deter-

mined using an averaging method involving the two slopes. A review and comparison of these,

and similar methods, can be found in [11, 12].

A more fundamental approach is to concentrate on the error function. One possibility is

to use true distance, ED in Fig 1, and this is easily generalized to multilinear regression (a

PCA is an example). Another possibility is to use area, EA in Fig 1, which is what Woolley

used, and this gives rise to what is called least product regression, or least area regression.

Work has been done on how to generalize Woolley’s idea, and use symmetry methods to

obtain invariant error functions in two and three dimensions [7, 8]. However, this is not eas-

ily generalized to multilinear regression. An alternative, which is most relevant to the present

study, is to use the geometric mean for each data point and then find the least squares value

for this function [13]. This differs from the geometric mean considered here, which involves

Fig 1. Error functions for bivariate regression. Shown are: Ey ¼
P

d2
i , ED ¼

P
D2

i , Ex ¼
P

h2
i , and EA ¼

1

2

P
dihi.

https://doi.org/10.1371/journal.pone.0208793.g001
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the geometric mean of the ordinary least squares error functions. The exception to this state-

ment occurs when a hyperplane approximation is used, in which case the two formulations

are equivalent. In the current study a hyperplane approximation is considered, but so are the

other lower dimensional approximations that are possible (similar to what is done using a

PCA).

In the next section it is shown that scale and rotational invariance are incompatible. This is

done, for the case of two variables, by first characterizing mathematically what is needed to

obtain particular invariant properties, and then to use similarity methods to demonstrate the

incompatibility. In addition, in this two-dimensional setting, an error function that has several

important invariance properties is formulated and discussed. In the subsequent two sections,

the extension of this function to multilinear linear regression problems is considered, which

includes showing that the minimizer is well-approximated using the centroid of an error sim-

plex. With this, the error function is used to analyze real world data sets and compared to

other regression methods.

Two variables

To begin, we start with the case of two variables. Assume that the data are (x1, y1), (x2, y2), � � �,

(xn, yn), and they are centered. This means that ∑xi = ∑yi = 0. It is assumed in what follows that

the data vectors x = (x1, x2, � � �, xn)T and y = (y1, y2, � � �, yn)T are not orthogonal.

For the model function y = αx, there are numerous ways to measure the error and four pos-

sibilities are shown in Fig 1. For a PCA the true distance is used, and this leads to the error

function

EDðaÞ ¼
Xn

i¼1

D2

i

¼
1

1þ a2

Xn

i¼1

ðaxi � yiÞ
2

¼
1

1þ a2
ða2x � x � 2ax � y þ y � yÞ:

Because of the denominator, for this expression to be defined, αmust be dimensionless.

What this means is that, when x and y have different dimensions, it is first necessary to nondi-

mensionalize the variables before writing down the formula for the error function. So, suppose

the data are scaled as Xi = xi/Sx and Yi = yi/Sy, where Sx and Sy are positive. The model function

is now Y ¼ �aX, and the corresponding error function is

1

1þ �a2

Xn

i¼1

ð�aXi � YiÞ
2
:

Minimizing this, and then transforming back to dimensional variables, one finds that

a ¼ �a
Sy
Sx
; ð1Þ

where

�a ¼
1

2
� l�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2
þ 4

p� �
; ð2Þ
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for

l ¼
X � X � Y � Y

X � Y
: ð3Þ

In the above expression, the + is used if X � Y > 0 and the − is used if X � Y < 0. What is evi-

dent from this calculation is that α depends on Sx and Sy. Typical choices for these scaling fac-

tors include Sx = ||x||1, Sx ¼ jjxjj2=
ffiffiffi
n
p

, and Sx = ||x||1/n (with similar expressions for Sy).
Depending on the scatter in the data, the values of these quantities can be significantly differ-

ent and this can result in rather dramatic differences in the corresponding value of α.

Scale invariance

There is a simple test for scale invariance that comes from the above analysis. To derive it, in

the original x, y-coordinates and using the model equation y = αx, whatever regression proce-

dure is used will result in the slope α depending on the data. This is written as α = α(x, y).

Using the scaling X = x/Sx and Y = y/Sy, the model equation becomes Y ¼ �aX, where

�a ¼ aSx=Sy. Now, scale invariance requires that �a ¼ aðX;YÞ. Combining these two results, the

requirement for scale invariance is that

aðx; yÞ ¼
Sx
Sy
aðx=Sx; y=SyÞ; ð4Þ

for any positive values of Sx and Sy. Using the infinitesimal generators Sx = 1 + ε and Sy = 1 + δ,

then the above equation takes the form [14]

aðx; yÞ ¼
1þ ε
1þ d

aðx=ð1 þ εÞ; y=ð1þ dÞÞ

¼ aðx; yÞ þ ε½aðx; yÞ � rxaðx; yÞ� � d½aðx; yÞ þ ryaðx; yÞ� þ � � � ;

whererx is the gradient in the x variables (and similarly forry). The O(ε) and O(δ) require-

ments are that

x � rxaðx; yÞ ¼ � aðx; yÞ; and y � ryaðx; yÞ ¼ aðx; yÞ:

These are easily solved using the n-dimensional version of spherical coordinates. Specifi-

cally, letting

x ¼ rXð�1; �2; � � � ; �n� 1Þ;

where r = ||x||2 and the ϕi’s are the angular coordinates, then x � rx α = −α reduces to r@r α =

−α. The general solution of this is α = c/r, where c can depend on the ϕi’s. Doing something

similar for y, the conclusion is that, to be scale invariant, the minimizer must depend on the

data as

a ¼
jjyjj

2

jjxjj
2

F; ð5Þ

where F can depend on the values of the angular coordinates for x and y.

Invariance properties for the error function used for multilinear regression
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Rotational invariance

To determine the requirement for rotational invariance, assuming the angle of rotation is θ,

then

x0

y0

 !

¼
cosy sin y

� sin y cosy

 ! x

y

 !

:

The model function now has the form y0 = α0 x0, and invariance requires that

a0 ¼
a cosy � siny
a sin yþ cosy

:

Writing the minimizer of the error function as α = f(x, y), then α0 = f(x0, y0) results in the

requirement that

f ðx; yÞ cosy � siny
f ðx; yÞ sinyþ cosy

¼ f ðx cosyþ y sin y; � x sin yþ y cosyÞ:

Using the infinitesimal generator θ = ε, then the O(ε) requirement is

y � rx f � x � ry f þ f 2 þ 1 ¼ 0; ð6Þ

where f = f(x, y). As it should, the solution in Eqs (2) and (3) satisfies this nonlinear partial dif-

ferential equation. What does not satisfy the equation is Eq (5). It is easiest to illustrate this

assuming there are only two data points. In this case, the 2-dimensional spherical coordinates

used in Eq (5) can be written as x1 = r cos k, x2 = r sin k, y1 = R cos K, and y2 = R sin K. Substi-

tuting Eq (5) into Eq (6), and reducing gives

R2

r2
þ 1

� �

cos ðk � KÞF þ sin ðk � KÞ
R2

r2
@kF þ @KF

� �

¼ 1þ
R2

r2
F2:

Given that F is independent of r and R, the above equation leads to the following two equa-

tions

cos ðk � KÞF þ sin ðk � KÞ@kF ¼ F2;

and

cos ðk � KÞF þ sin ðk � KÞ@KF ¼ 1:

These equations are solvable by introducing the change of variables s = k − K, t = k + K, and

from this one finds that it is not possible to find a function F that satisfies both equations. In

other words, there is no function which satisfies both Eqs (5) and (6).

Scale and reflectively invariant error function

The conclusion from the above analysis is that it is not possible for the minimizer to be both

scale and rotationally invariant. It is known that there are rotation and reflectively invariant

error functions, and an example is one that uses true distance (ED in Fig 1). So, the question

considered here is whether there are error functions which satisfy all of the stated conditions

except for rotational invariance.

Invariance properties for the error function used for multilinear regression
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It is relatively easy to find scale invariant error functions. For example, using the usual (ver-

tical) least squares error

EyðaÞ ¼
Xn

i¼1

ðaxi � yiÞ
2
¼ a2x � x � 2ax � y þ y � y; ð7Þ

the minimum occurs when α = x � y/x � x. Similarly, using the (horizontal) least squares error

ExðaÞ ¼
Xn

i¼1

ðxi � yi=aÞ
2
¼ x � x � 2x � y=aþ y � y=a2; ð8Þ

the minimum occurs when α = y � y/x � y. Both of these are scale invariant. What Ex and Ey are

not, however, are reflectively invariant. To be reflectively invariant it is required that irrespec-

tive of which variables are considered independent or dependent, that an equivalent result is

obtained. This means that the minimizer of Ex is the same as the one obtained for Ey. Mathe-

matically, the requirement is that

aðy; xÞ ¼
1

aðx; yÞ
: ð9Þ

The error function to be considered here is based on the geometric mean of the ordinary

least squares error functions. In the case of two variables, the error function is

EðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ExðaÞEyðaÞ

q
; ð10Þ

where Ex and Ey are given in Eqs (7) and (8), respectively. Minimizing this one finds that

aðx; yÞ ¼ �
ffiffiffiffiffiffiffiffiffi
y � y
x � x

r

; ð11Þ

where the + is used if x � y> 0 and the − is used if x � y < 0. This satisfies the change of vari-

ables condition Eq (4), and this guarantees α is scale invariant. It is also reflectively invariant

because it satisfies Eq (9). Another way to conclude that it is reflectively invariant is to note

that the error function Eq (10) is a symmetric function of Ex and Ey.
The minimizer in Eq (11) is well-known and can be obtained in a number of ways. This

includes using geometric mean regression [9], using the geometric means of the minimizers

for Eqs (7) and (8), and by using simple symmetry arguments [10]. What is not known is a

way to generalize it to multilinear regression to obtain scale and reflectively invariant low

dimensional approximations of data. What is presented below is one way this might be

possible.

For ordinary least squares, one of the standard measures on how well the linear model fits

the data is the coefficient of determination R2. For the multidimensional generalizations of Eq

(10) considered later, a natural measure of fit involves the centroid of the error simplex. To

explain what this is for this two dimensional problem, and connect it with R, let αx and αy be

the minimizers of Ex and Ey, respectively. The centroid in this case is αc = (αx + αy)/2. The

error measure to be introduced concerns how α, the minimizer of E, differs from the centroid,

relative to the width of the simplex. The resulting formula is

CF ¼
a � ac
ay � ax

�
�
�
�
�

�
�
�
�
�
:

Invariance properties for the error function used for multilinear regression
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Now, using the law of cosines x � y = ||x||2 � ||y||2cos θ, where θ is the angle between x and y,

then αx = α/cos θ and αy = α cos θ. Moreover, R2 = cos2 θ, which gives a (signed) value of R =

cos θ. Combining these formulas, the result is

CF ¼
1

2
�
1 � jRj
1þ jRj

:

Consequently, the better the fit (the closer R2 is to one), the closer the minimizer of E is to

the centroid of the error simplex formed from the minimizers of Ex and Ey.

Multilinear regression: Single component approximation

It is now assumed that there are m variables, so p = (p1, p2, � � �, pm)T. The centered data vectors

for each variable are p1 = (p11, p12, � � �, p1n)T, p2 = (p21, p22, � � �, p2n)T, � � �, pm = (pm1, pm2, � � �,

pmn)T. It is assumed that no two of these vectors are orthogonal.

One of the central components of a PCA is the ability to find low dimensional approxima-

tions of the form p = α1v1 + � � � + αkvk, where 1� k<m. The question is whether something

similar can be done for a scale and reflectively invariant approximation. One possibility, which

is pursued here, is to use the geometric mean of the ordinary least squares functions.

We begin with a one dimensional subspace, which means that p = αv. In what follows this

is rewritten as p2 = α2p1, p3 = α3p1, � � �, pm = αmp1. The corresponding individual error func-

tions are then

E1 ¼
Xn

i¼1

½ðp1i � p2i=a2Þ
2
þ ðp1i � p3i=a3Þ

2
þ � � � þ ðp1i � pmi=amÞ

2
�;

E2 ¼
Xn

i¼1

½ðp2i � a2p1iÞ
2
þ ðp2i � a2p3i=a3Þ

2
þ � � � þ ðp2i � a2pmi=amÞ

2
�;

..

.
¼ ..

.

Em ¼
Xn

i¼1

½ðpmi � amp1iÞ
2
þ ðpmi � amp2i=a2Þ

2
þ � � � þ ðpmi � ampm� 1;i=am� 1Þ

2
�:

Letting α1 = 1, the general form of the above can be written as

Ej ¼
Xn

i¼1

½ðpji � ajp1i=a1Þ
2
þ ðpji � ajp2i=a2Þ

2
þ � � � þ ðpji � ajpmi=amÞ

2
�

¼ pj � pj � 2ajpj � p1 þ a
2
j p1 � p1=a

2
1
þ � � �

þ pj � pj � 2ajpj � pm þ a
2
j pm � pm=a

2
m:

ð12Þ

After factoring, this can be written in the more compact form

Ej ¼
Xm

k¼1

pj �
aj

ak
pk

� �

� pj �
aj

ak
pk

� �

: ð13Þ

It is worth pointing out that if one of the Ej’s is zero, then they are all zero.

The resulting error function, which comes from the geometric mean of the Ej’s, is E = (E1

E2� � �Em)1/m. As stated earlier, this is reflectively invariant because of the symmetric depen-

dence of E on the individual error functions.

To make the connection between the minimizer of E and the error centroid, the minimizer

for each Ej is needed. Finding them is straightforward. Namely, setting the first partials of Ej to

Invariance properties for the error function used for multilinear regression
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zero, one finds that

aj ¼
pj � p1

p1 � p1

; ð14Þ

and, for i 6¼ j,

ai ¼
pi � pi

pj � pi
aj: ð15Þ

Note that these use the stated assumption that the data vectors are not orthogonal. Also, the

above expressions hold in the case of when j = 1 because α1 = 1.

Assume now that the data are close to linear, which means that pi = αi0p10 + εpi1, for i = 1,

2, � � �, m. Given a value for j in Eq (13), the corresponding asymptotic expansions of its mini-

mizing coefficients, for small ε, have the form

ai � ai0 þ εai1 þ ε
2ai2 þ � � � ; for i ¼ 1; 2; � � � ;m:

Note that in the case i = 1, the coefficients are α10 = 1 and α11 = α12 = 0. The αi0’s are

assumed to be known, and the other coefficients are determined by minimizing the error. In

preparation for this, note that

pj �
aj

ak
pk � ai0p10 þ εpi1 �

ai0 þ εai1
ak0 þ εak1

ak0p10 þ εpk1ð Þ

� εaj0ðqj � qkÞ;

where (i = j, k)

qi ¼
1

ai0
pi1 � ai1p10ð Þ:

From Eq (13) it follows that

Ej �
1

a2
j0

ε2
Xm

k¼1

ðqj � qkÞ � ðqj � qkÞ:

Minimizing this determines the αi1’s, and this yields

ai � ai0 þ ε
p10 � ðpi1 � ai0p11Þ

p10 � p10

; for i ¼ 2; 3; � � �m: ð16Þ

What is significant about this is that the first two terms in the expansions for the αi’s do not

depend on j. In other words, to O(ε), the Ej’s have the same minimizer. Because of this, it

immediately follows that through terms of order ε, the minimizer of the error function E
equals the centroid formed from the minimizers of the Ej’s. Expressed mathematically, if α is

the minimizer of E, and αj the minimizer of Ej, then

α ¼
1

m

Xm

j¼1

αj þ Oðε2Þ: ð17Þ

It also follows from this analysis that, for small ε, the error function E is strictly convex in

the neighborhood of the minimum.

Invariance properties for the error function used for multilinear regression
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Example in R3

As an example, in R3, for the line with α2 = 3 and α3 = 5, 40 randomized points within a dis-

tance of 0.2 of the line are used for the data (see Fig 2). For notational simplicity, let p1 = x,

p2 = y, p3 = z, α2 = α, and α3 = β. The location of the minimizer of E was found using

MATLAB’s fminsearch command, and the location is shown in Fig 3. Also shown are the loca-

tions of the minimizers for Ex, Ey, and Ez, determined by Eqs (14) and (15), as well as the asso-

ciated triangular region formed by these three points. For comparison, the location of the

solution as determined using an unscaled PCA is shown. An important observation coming

from this figure is that the minimizer for the scale (and reflectively) invariant error function

E = (ExEyEz)1/3 is located near the centroid of the triangle. This is expected because of Eq (17).

It is worth having a way to characterize how close the minimizer and centroid are, to pro-

vide a measure for the goodness of fit. One possibility is to use the maximum distance relative

to the width of the simplex, as given by the formula

CF ¼ max
ja � acj

wa

;
jb � bcj

wb

( )

; ð18Þ

where (αc, βc) is the centroid, wα = max{αx, αy, αz} − min{αx, αy, αz}, wβ = max{βx, βy, βz} − min

{βx, βy, βz}. In these expressions, (αx, βx), (αy, βy), and (αz, βz) are the minimizers of Ex, Ey, and

Fig 2. Data used for line fitting example inR3
. The red line is the linear fit determined by minimizing E = (ExEyEz)1/3.

https://doi.org/10.1371/journal.pone.0208793.g002
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Ez, respectively, and they determine the error simplex in Fig 3. For the solution shown in Fig 3,

CF� 0.01.

Finally, in finding the minimizer the question of whether or not the error function is

convex arises. To verify this, its contour and surface plot are shown in Fig 4. Note that,

because of the assumed form of the model function in this example, the error functions

Ex, Ey, and Ez, and E are undefined when either α or β are zero. The statement that E is

convex refers to its dependence on α and β in the quadrant in which the minimizers are

located.

Multilinear regression: (m − 1)-component approximation

The assumptions on the data are the same as for the one-dimensional approximation consid-

ered above. As for the model function, it is a hyperplane that is written as pm = α1p1 + α2

p2+ � � �+ αm−1 pm−1. The associated individual error functions are

Ej ¼
1

a2
j

Xn

i¼1

ðpmi � a1p1i � a2p2i � � � � � am� 1pm� 1;iÞ
2
; for j ¼ 1; 2; � � � ;m; ð19Þ

Fig 3. Location of minimizer for the error function E = (ExEyEz)1/3, as well as the location determined using an unscaled PCA.

Vertices of the triangle (simplex) are the locations of the minimizers of Ex, Ey, and Ez.

https://doi.org/10.1371/journal.pone.0208793.g003
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where αm = 1. With this, the composite error function is

Eða1; a2; � � � ; am� 1Þ ¼ ðE1E2 � � �EmÞ
1=m

¼
1

ða1a2 � � � am� 1Þ
2=m

Xn

i¼1

ðpmi � a1p1i � a2p2i � � � � � am� 1pm� 1;iÞ
2
:

ð20Þ

Letting α = (α1, α2, � � �, αm−1, −1)T and P = (p1 p2 � � � pm), then this error function can be

written as

E ¼
1

ða1a2 � � � am� 1Þ
2=m jjPαjj

2

2
: ð21Þ

Fig 4. Contour and surface plots for error function E = (ExEyEz)1/3, using the the data in Fig 2.

https://doi.org/10.1371/journal.pone.0208793.g004
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To obtain the connection between the minimizer of E and the centroid of the error simplex

we need the minimizers for the Ej’s. To determine them, note that for k = 1, 2, � � �, m − 1,

@akPα ¼ pk:

Also, from Eq (19), Ej ¼ Pα � Pα=a2
j . Consequently,

@akEj ¼
2

a2
j

Pα � pk �
dkj

aj
Pα

 !

;

where δkj is the Kronecker delta. To determine the equation to solve to find the minimizer,

consider the case for E1. SettingrαE1 = 0, yields the (m − 1) × (m − 1) system of equations

Aα ¼

Pα � Pα=a1

0

..

.

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð22Þ

where A consists of the first m − 1 rows of PTP. Since Pα � Pα = α � (PTP)α, then, letting rT be

the mth row of PTP,

Pα � Pα ¼ α �
A

rT

 !

α ¼ Pα � Pα � r � α:

This means that Eq (22) can be replaced with the equation Rα = 0, where R is the matrix

obtained by removing the first row from PTP. In a similar manner, the minimizer for Ej is

found by solving the equation obtained by removing the jth row from PTP. To be more explicit

about what equation needs to be solved, for E1, it is

p1 � p2 p2 � p2 � � � pm� 1 � p2

..

. ..
.

� � � ..
.

p1 � pm� 1 p2 � pm� 1 � � � pm� 1 � pm� 1

p1 � pm p2 � pm � � � pm� 1 � pm

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

a1

a2

..

.

am� 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼

p2 � pm

..

.

pm� 1 � pm

pm � pm

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:

In general, the coefficient matrix for Ej is the (m − 1) × (m − 1) matrix that is obtained by

removing the jth row and mth column from PTP, and the right hand side is the (m − 1)-vector

that is obtained by removing the jth entry in the mth column of PTP.

To establish the connection between the centroid and the minimizer of E, assume that the

data are close to planar. Specifically, letting P = P0 + ε P1, then for small ε, α* α0 + εα1 + ε2
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α2+ � � �, where P0α0 = 0. Now, settingrα E = 0, the problem to solve is

Aα ¼
1

m

1=a1

1=a2

..

.

1=am� 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

Pα � Pα: ð23Þ

Also, A = A0 + εA1 + ε2A2 + � � �, where A0, A1, A2 are the first (m − 1)-rows of PT
0
P0,

PT
0
P1 þ PT

1
P0, and PT

1
P1, respectively. With this, the O(ε) problem that comes from Eq (23) is

A0α1 þ A1α0 ¼ 0; ð24Þ

and the O(ε2) problem is

A0α2 þ A1α1 þ A2α0 ¼
1

m

1=a10

1=a20

..

.

1=am� 1;0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

P0α1 þ P1α0ð Þ � P0α1 þ P1α0ð Þ: ð25Þ

In comparison, using the same form for the expansions for E1, then one finds from Eq

(22) that the O(ε) equation is the same as the one given in Eq (24). This is also true for

the other Ej’s. Therefore, the α1 term for the centroid and for minimizer of E are equal (as is

the α0 term). As for the O(ε2) term, for E1, one finds from Eq (22) that the problem to solve

is

A0α2 þ A1α1 þ A2α0 ¼

1=a10

0

..

.

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ðP0α1 þ P1α0Þ � ðP0α1 þ P1α0Þ: ð26Þ

The equations for the other Ej’s are the same except for the appropriate modification of the

first vector on the right hand side of the equation. Given that α0 and α1 are the same for E and

the Ej’s, it follows that the O(ε2) term in the centroid and the minimizer of E are equal. There-

fore, the conclusion is that the minimizer of E and the centroid are equal through terms of

order ε2. Expressed mathematically, if α is the minimizer of E, and αj the minimizer of Ej,
then

α ¼
1

m

Xm

j¼1

αj þ Oðε3Þ: ð27Þ

Example in R3

As before, for notational simplicity, let p1 = x, p2 = y, p3 = z, α2 = α, and α3 = β. The model

function can then be written as z = αx + βy. In this case, from Eq (19), the individual error

Invariance properties for the error function used for multilinear regression
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functions are:

Ex ¼
Xn

i¼1

ðxi � zi=aþ byi=aÞ
2

¼ x � x � 2x � z=aþ 2bx � y=aþ z � z=a2 � 2by � z=a2 þ b
2y � y=a2;

ð28Þ

Ey ¼
Xn

i¼1

ðyi � zi=bþ axi=bÞ
2

¼ y � y � 2y � z=bþ 2ax � y=bþ z � z=b2
� 2ax � z=b2

þ a2x � x=b2
;

ð29Þ

Ez ¼
Xn

i¼1

ðzi � axi � byiÞ
2

¼ z � z � 2ax � z � 2by � zþ a2x � xþ 2abx � y þ b2y � y:

ð30Þ

The minimizer αx of Ex is

αx ¼
1

ðx � yÞðy � zÞ � ðx � zÞðy � yÞ

y � z � y � y

� x � z x � y

 ! y � z

z � z

 !

; ð31Þ

the minimizer αy of Ey is

αy ¼
1

ðx � xÞðy � zÞ � ðx � zÞðx � yÞ

y � z � x � y

� x � z x � x

 ! x � z

z � z

 !

; ð32Þ

and the minimizer αz of Ez is

αz ¼
1

ðx � xÞðy � yÞ � ðx � yÞ2
y � y � x � y

� x � y x � x

 ! x � z

y � z

 !

: ð33Þ

The resulting error function based on the geometric mean is

Eða; bÞ ¼ ðExEyEzÞ
1=3

¼
1

a2=3b
2=3

z � z � 2ax � z � 2by � zþ a2x � x þ 2abx � y þ b2y � y
� �

:
ð34Þ

Taking the first partials of this, and setting them to zero, one obtains the (nonlinear) system

a2x � x þ abx � y þ by � z ¼ z � z ð35Þ

b
2y � y þ abx � y þ ax � z ¼ z � z: ð36Þ

These equations can be written in somewhat simpler terms by letting

q ¼ a
ffiffiffiffiffiffiffiffiffi
x � x
z � z

r

and p ¼ b
ffiffiffiffiffiffiffiffiffi
y � y
z � z

r

:
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Using the law of cosines, then Eqs (35) and (36) become

q2 þ pq cosyxy þ p cosyyz ¼ 1 ð37Þ

p2 þ pq cosyxy þ q cosyxz ¼ 1; ð38Þ

where θxy is the angle between x and y (with similar definitions for the other angles). An ana-

lytical formula for the solution of these equations is not apparent, but it is a simple matter to

compute the solution numerically.

As an example, for the plane with α = −10 and β = 6, 40 randomized points within a dis-

tance of 0.15 of the plane were used for the data. The location of the minimizer of E was found

by solving Eqs (35) and (36) using MATLAB’s fminsearch command, and the location is

shown in Fig 5. Also shown are the locations of the minimizers for Ex, Ey, and Ez, and the asso-

ciated triangular region formed by these three points. For comparison, the location of the solu-

tion as determined using an unscaled PCA is shown. As expected from Eq (27), the of E
minimizer is located near the centroid of the triangle. To quantify the difference, using the for-

mula in Eq (18), CF� 0.02. Finally, to demonstrate the convexity of the error function in the

octant containing the minimizer, the contour and surface are shown in Fig 6.

Fig 5. Typical locations for the various minimizers of the plane example. Vertices of the simplex are minimizers using individual

coordinate projections Ex, Ey, and Ez.

https://doi.org/10.1371/journal.pone.0208793.g005
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Application to real world data sets

What follows are applications of the hyperplane function to various real world data sets. In the

process, comparisons are made with a PCA. Also, three of the data sets have been used in

other studies to compare multiple linear regression methods, and this is discussed in the

respective application.

Crime data

As an illustration, and a comparison with a PCA, consider the data for the seven major crime

rates and population for the larger cities in the U.S in 2009 [15]. Of the 105 cities reported, 79

were randomly chosen for the training set, and the testing dataset consists of those left out.

With this, n = 79 and m = 8. The minimizer of Eq (20) was found using a modified Polak-

Ribière descent procedure, with Armijo’s method used to solve the line search problem. The

modification is that if the search direction determined using Polak-Ribière is not a direction of

descent, then the steepest descent direction is used instead. A description of the Polak-Ribière

and Armijo’s methods can be found in [5, 16]. The starting point for the descent procedure

was a convex combination of the minimizers for the Ej’s, which was computed using the for-

mulas given earlier. Also, the normalization for the PCA uses jjpjjj2=
ffiffiffi
n
p

, for each column j of

the centered training data matrix.

Fig 6. Contour and surface plots for error function E = (ExEyEz)1/3 for the planar fit data.

https://doi.org/10.1371/journal.pone.0208793.g006
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The resulting testing versus training comparison for each variable is shown in Fig 7. For Eq

(20), the αj’s are determined by minimizing E and then using those same values for each

graph. For example, for the graph associated with p1, the model function is rewritten as

p1 ¼ �
a2

a1

p2 �
a3

a1

p3 � � � � �
am� 1

a1

pm� 1 þ
1

a1

pm; ð39Þ

and the resulting training-testing values are plotted. For the PCA, a seven component approxi-

mation is made. To make a more quantitative comparison between these two approaches, and

because both methods are reflectively invariant, the normalized least squares errors for each of

these graphs is given in Table 1. The normalization used is N||pj||1/n, where n is the number of

values in the training set and N the number in the testing set. It is seen, at least in this example,

that the values using Eq (20) produce a uniformly better result than those obtained using a

PCA. To make the point that the fit using a PCA varies with the scaling, the errors using two

other scalings are also given in Table 1. The scaling used for PCA1 is considerably worse than

the PCA values, while the PCA2 values in the last column are distinctly better.

Fig 7. Comparison between fits using a hyperplane approximation to the crime and population data. Shown are the values

obtained using the error function in Eq (20), indicated with the o’s, and using a PCA (x). The dashed line in each graph corresponds

when the training and testing data are equal.

https://doi.org/10.1371/journal.pone.0208793.g007
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Wine quality data

As a second example, data mining has been used to predict tasting preferences for wine [17].

The dataset for red wine consists of 1599 instances (vectors) containing values for 12 attributes,

11 being physicochemical properties of the wine and one the quality score for taste. The physi-

cochemical properties in this case are: fixed acidity (α1), volatile acidity (α2), citric acid (α3),

residual sugar (α4), chlorides (α5), free sulfur dioxide (α6), total sulfur dioxide (α7), density

(α8), pH (α9), sulphates (α10), and alcohol (α11). Following the protocol used in [17], the train-

ing set consists of 2/3 of the original (randomly chosen), and the testing set the remaining 1/3.

They also used a regression error characteristic (REC) curve, which is defined in [18], to evalu-

ate how well various regression procedures predict the taste score. To compare how Eq (20)

does, using the training set, the minimizer is computed with the modified Polak-Ribière

method described earlier, treating the data as defining a smooth function. The resulting REC

curve determined using Eq (20) is shown in Fig 8. Also shown are the curves obtained using a

Table 1. The E and PCA columns are the normalized least squares errors from Fig 7. The PCA1 and PCA2 columns

are the errors for a PCA using two different column scalings.

E PCA PCA1 PCA2

p1 3.92e−01 2.98e+00 6.14e+02 1.24e−01

p2 9.76e−02 2.97e+00 1.24e−01 8.65e−02

p3 2.13e−01 8.23e−01 1.13e+00 6.70e−01

p4 3.67e−01 1.41e+00 2.27e+00 1.94e+00

p5 1.88e−01 7.78e−01 2.36e+00 7.44e−02

p6 3.33e−02 2.23e−02 1.85e−01 2.19e−02

p7 1.07e−01 6.92e−02 3.55e+01 5.80e−02

p8 5.80e−02 3.58e−02 3.55e−01 3.64e−02

https://doi.org/10.1371/journal.pone.0208793.t001

Fig 8. The regression error characteristic curve (REC) for the red wine testing data using the error function in Eq (20), solid

red, using a PCA, blue, and least squares, black. The dashed red curve is the curve using Eq (20) after converting back to the

original integer scale reported in [17].

https://doi.org/10.1371/journal.pone.0208793.g008
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PCA as well as from using a standard multivariable least squares regression. The dashed curve

is what is obtained using Eq (20) if the predicted values are converted back into integer scores

as originally used in [17]. Finally, for the two and three dimensional examples considered ear-

lier, it was found that the centroid of the error simplex furnished a fairly accurate approxima-

tion for the minimizer. A measure of how close they are is given in Eq (18). Generalizing this

formula for the wine example, it is found that CF� 0.15, which indicates they are reasonable

close.

It is evident from Fig 8 that standard least squares provides better predictive values for the

taste score than when using Eq (20). This can be quantified using the mean absolute deviation

(MAD), which is defined as ||y − y�||1/N, where y� are the test values, y are the predicted val-

ues, and N is the number of observations in the testing set (note that the values are unscaled).

For Eq (20) the MAD value is 1.5, while using least squares it is 0.5. Consequently, if given a

particular bottle of red wine, least squares would provide a better predictor of how it tastes.

What Eq (20) provides is a better model for how to modify the physicochemical properties to

achieve a particular taste score, and the reason is reflective invariance. To illustrate, with the

coefficients computed previously, the resulting MAD values for the other possible training-

testing cases are given in Table 2. The fact that the least squares values are so poor is not sur-

prising, and the reason was given earlier. Namely, the values obtained using pm as the depen-

dent variable are not equivalent to the values obtained if the model equation is solved for, say,

p1, and then considering it as the dependent variable.

Wave height data

Wave height at Buoy Station 46006, located in the northern Pacific Ocean, is measured hourly,

along with the wind direction, wind speed, wind gust, dominant wave period, average wave

period, barometric pressure, and water temperature [19]. The specific data considered here

come from measurements over approximately 11 months. The dataset consists of 7960

instances containing values for the eight attributes. A reduced version of this dataset was

examined in [20], in comparing how various regression procedures do on real ecological data.

The reduction was to use the daily average values rather than the hourly data, but all of the val-

ues are considered here. Following the protocol used in [20], the training set consists of 3/4 of

the original (randomly chosen), and the testing set the remaining 1/4. The comparison was

made using the mean squared prediction error (MSPE), which is defined as jjy � y�jj2
2
=n,

Table 2. The MAD values for red wine, as determined using Eq (20) and from conventional least squares. The last

column is the ratio of the least squares value to the one obtained using Eq (20).

attribute E Least Squares Ratio

fixed acidity 6.400e-01 7.455e+00 11.6

volatile acidity 2.299e-01 5.325e-01 2.3

citric acid 1.783e-01 2.481e+00 13.9

residual sugar 1.544e+00 8.459e+00 5.5

chlorides 8.297e-02 3.099e-01 3.7

free sulfur dioxide 1.241e+01 1.062e+02 8.6

total sulfur dioxide 3.848e+01 1.470e+02 3.8

density 9.008e-04 8.729e-03 9.7

pH 1.068e-01 3.286e+00 30.8

sulphates 3.350e-01 5.486e-01 1.6

alcohol 1.123e+00 2.075e+00 1.8

taste 1.493e+00 5.134e-01 0.3

https://doi.org/10.1371/journal.pone.0208793.t002
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where y� are the test values for the wave height, y are the predicted values, and n is the number

of observations in the testing set (note that the values are unscaled). Using Eq (20), the MSPE

is about 1.2, which compares favorability with the mean MSPE of 12.3 found in [20]. The

resulting MAD value is about 0.8, and the REC curve is shown in Fig 9. Finally, for this exam-

ple, CF� 0.16. This indicates that the centroid of the error simplex and the minimizer are

close, although not as close as in the earlier examples.

Chemical reaction data

The chemical oscillator known as the Belousov-Zhabotinskii reaction can be described with

the following five reactions [21]

Aþ Y ! X þ P;

X þ Y ! 2P;

Aþ X ! 2X þ 2Z;

2X ! Aþ P;

Z !
1

2
fY:

The chemicals here are bromous acid (X), bromide (Y), cerium-4 (Z), bromate (A), and a

product P. Given known initial concentrations for each species, measurements are made at

later times to follow the evolution of the overall reaction. The complication is that one or more

of these reactions are very fast, or occur at very low concentrations, so accurate measurements

are difficult. What is demonstrated here is how the hyperplane fit can be used in the case of

when four of the five concentrations are measured, and the fifth is determined using regres-

sion. What is important is that no matter which four are chosen, that the same (equivalent)

value is obtained for the fifth species. To demonstrate, the reactions were run for 20 different

initial concentrations, and the values for the five species were recorded at 60 second intervals

Fig 9. The regression error characteristic curve for the wave height data using the error function in Eq (20).

https://doi.org/10.1371/journal.pone.0208793.g009

Invariance properties for the error function used for multilinear regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0208793 December 26, 2018 20 / 25

https://doi.org/10.1371/journal.pone.0208793.g009
https://doi.org/10.1371/journal.pone.0208793


up to 10 minutes. The resulting dataset consists of 180 instances, and these were randomly

split into a training set (3/4) and a testing set (1/4). The values fitted are those for Z. Using Eq

(20), the MAD value is 0.015 and the MSPE is 4.6 × 10−4. Using a standard least squares fit the

values are 0.012 and 3 × 10−4, respectively. However, if you fit the values for, say, A, and then

transform back to the equation for Z, then the MAD and MSPE values using Eq (20) remain

unchanged while the least squares values are 0.024 and 10−3. As a final comment, using a

reflectively invariant error function with chemical density fits has the distinct advantage of

being able to determine possible conservation laws inherent in the system.

Chlorophyll-a data

The link between phytoplankton and water chemistry has been the subject of several recent

studies, although the connections with specific chemical species are incompletely understood.

Several correlations have been made, and the physicochemical parameters most commonly

considered are oxygen, pH, NH4-N (ammonium nitrogen), NO3-N (nitrate nitrogen), and

PO4-P (phosphate phosphorus) [20, 22–24]. The latter study used the values for the Chloro-

phyll-a density, along with various chemical properties, of lakes in the Northeast that were

measured over a four year period [25]. Altogether, there are 20 useable variables in this study,

and 500 observations. After removing incomplete entries and others that are not useable, the

data set consists of 348 observations. The model requires specification of which variables to

use, and after some analysis of the data it comes down to five: total dissolved aluminum,

nitrate, total nitrogen, total phosphorous, total suspended solids, and turbidity. In comparison,

in [20], 10 variables were initially used. Using Eq (20), the resulting MSPE is about 1.1, which

compares favorability with the mean MSPE of 2.4 found in [20]. The resulting normalized

MAD value is about 0.7, and the REC curve is shown in Fig 10. Finally, for this example, CF�

0.13. This indicates that the centroid of the error simplex and the minimizer are close, similar

to what was found for the wave height example.

Fig 10. The regression error characteristic curve for the Chlorophyll-a data using the error function in Eq (20).

https://doi.org/10.1371/journal.pone.0208793.g010
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Other dimensional fits

It is possible to write down the formulas for the other cases, but it is more informative to con-

sider a particular case that illustrates how this is done. So, consider the case of when there are

four variables, x, y, z, and w. There are three subspace approximations possible, corresponding

to one, two and three dimensions. The one and three dimensional cases were discussed above,

and so only the two dimensional case is considered. Writing the model functions as z = α11x +

α12y, w = α21x + α22y. This can be written in matrix form as

z

w

 !

¼ A
x

y

 !

:

It is possible to rewrite the above equation in five different, but equivalent, ways. For exam-

ple, if z and w are taken to be independent then

x

y

 !

¼ B
z

w

 !

;

while if y and z are taken to be independent then

x

w

 !

¼ C
y

z

 !

:

The other three forms are

y

w

 !

¼ D
x

z

 !

;
y

z

 !

¼ E
x

w

 !

; and
x

z

 !

¼ F
y

w

 !

:

The entrees in the above matrices are known expressions involving the original coefficients

α11, α12, α21, and α22. For example,

B ¼ A� 1 ¼
1

a11a22 � a12a21

a22 � a21

� a12 a11

 !

:

The error function corresponding to the variable x is

Ex ¼
Xn

i¼1

½ðxi � B11zi � B12wiÞ
2
þ ðxi � C11yi � C12ziÞ

2
þ ðxi � F11yi � F12wiÞ

2
�:

The three terms in the above sum correspond to the case when x is taken to be dependent.

In a similar manner,

Ey ¼
Xn

i¼1

½ðyi � B21zi � B22wiÞ
2
þ ðyi � D11xi � D12ziÞ

2
þ ðyi � E11xi � E12wiÞ

2
�:

The corresponding error to determine the α’s is

Eða11; a12; a21; a22Þ ¼ ðExEyEzEwÞ
1=4
:
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Concluding remarks

The principal conclusions from this study are:

1. Scale and rotational invariance of the error function are incompatible.

2. Using the geometric mean of the ordinary least squares error functions, one obtains an

error function which is scale and reflectively invariant, and which is easily extendable to

low dimensional approximations for multilinear regression. For the two cases worked out,

which correspond to a line and hyperplane approximation, the minimizer can be well

approximated using the centroid of the error simplex obtained from the minimizers for the

ordinary least squares error functions.

Because the error function used here is not quadratic, finding the minimizer requires using

a nonlinear optimization procedure. The result is that more computational time is needed

than for linear least squares. How much time depends on the size of the data matrix, and the

number of variables involved. For the wine example considered earlier (12 variables and 1599

data vectors), linear least squares using MATLAB’s mldivide routine takes about 1 msec, while

the nonlinear optimization procedure takes about 100 msec (using a 2017 iMac). So, although

the relative time is fairly large, the actual time is small. The proposed error function does have

the advantage of having a warm start, which is the centroid approximation, and this helps

reduce the computing time.

In terms of future work, it remains to determine if the centroid approximation applies to

the other lower dimensional approximations. Also, there is the question as to the sensitivity of

the minimizer to outliers in the training set. This is a problem for a PCA, and one approach to

improve the robustness of a PCA is to switch from a ℓ2-norm to a ℓ1-norm [26, 27], a ℓp-norm

[28], or a norm based on a generalized mean [29]. These are used, in part, because they pre-

serve the rotational invariance of a PCA. It is straightforward to use these norms with the geo-

metric mean function, and this will not affect its invariance properties. What has not been

investigated is the sensitivity of the proposed error function to outliers, or whether switching

norms might reduce any potential sensitivities.
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