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Abstract: (1) Background: Dyes play an important role in food, medicine, textile, and other industries,
which make human life more colorful. With the increasing demand for food safety, the development
of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using
the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried
out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).
(3) Results: 248 articles were included in this review. This review summarizes the research progress
on natural dyes in the last ten years. According to structural features, natural dyes mainly include
carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized.
Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last
10 years are summarized, and the biological effects of dyes regarding illumination conditions. The
disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their
application. Here, some feasible strategies (potential resources, biotechnology, new extraction and
separation strategies, strategies for improving stability) are described, which will contribute to the
development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and
potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality
tests and receive many regulatory approvals before their final entry into the market as food colorants
or as drugs.

Keywords: natural dyes; structure features; pharmacological activities; development strategies

1. Introduction

Dyes play an important role in food, medicine, textile, and other industries, which
make human life more colorful. Dyes are divided into natural and synthetic dyes according
to their source. However, many synthetic colorants have environmental toxicity and
threaten human health. These adverse effects of synthetic colors have made the scientific
community skewed toward natural colors [1]. With the increase in the demand for natural
dyes in food, cosmetics, and other fields, it is of important value to develop natural dyes,
especially in the food field.

Natural dyes are widely found on land and in the sea, and can be extracted from
plants, animals, microorganisms, minerals, and some other materials. Most mineral dyes
cannot be used in the food industry because they are harmful to humans. Most plant dyes,
animal dyes, and microbial dyes are not only safe and reliable, but also have functions of
nutrition and pharmacological activities such as antioxidant, anti-inflammatory, anti-cancer,
anti-obesity, anti-microbial, and anti-viral effects. The use of natural dyes has a long history,
for example, indigo, which is extracted from plants, has been used for thousands of years [2].
In addition to being classified by source and color [3], natural colorants are divided into the
major categories by chemical structure, such as indole derivatives (quinones and violacein),
alkaloids, polyenes, macrolides, peptides, or terpenoids [4]. In recent years, some new

Molecules 2022, 27, 3291. https://doi.org/10.3390/molecules27103291 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27103291
https://doi.org/10.3390/molecules27103291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-2596-9622
https://doi.org/10.3390/molecules27103291
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27103291?type=check_update&version=2


Molecules 2022, 27, 3291 2 of 34

natural dyes have been isolated, and new activities, mechanisms, and new applications
have been explored.

This review summarizes the research progress on natural dyes in the last ten years.
Information in the last 10 years (from 2012 to 2022) was searched using the databases
PubMed and Web of Science, structures of compounds were checked with the database
SciFinder, and the review was carried out according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [5,6]. The category of natural
dyes and main compounds are listed according to the literature, and different categories
of dyes were used as terms to retrieve related bioactivities (Table 1). This review involves
some new natural dyes and development strategies of natural dyes, which provide insight
for further development and potential applications of the natural dyes.

Table 1. Terms used in the search strategy.

Electronic Database Search and Terms

Web of Science
PubMed

#1 (“Natural dye” OR “Natural pigment” OR “Natural colorants”) AND
(“Carotenoids” OR “Anthocyanins” OR “Curcumin” OR “Chlorophylls” OR
“Alkaloid” OR “Quinone”)
#2 “New” And “Pigment” AND (“Carotenoids” OR “Anthocyanins” OR
“Curcumin” OR “Alkaloid” OR “Quinone”) AND “Isolated”
#3 (“Carotenoids” OR “Anthocyanins” OR “Curcumin” OR “Betalain”) AND
(“Antioxidant” OR “Inflammatory” OR “Anti-cancer” OR “Cancer” OR
“Anti-bacterial” OR “Antimicrobial” OR “Obesity” OR “Anti-obesity” OR
“Diabetes” OR “Cardiovascular” OR “Anti-viral” OR “Neuroprotective” OR
“Alzheimer’s disease”)
#4 (“Extraction” OR “Isolation” OR “Extracted” OR “Isolated”) AND
(“Carotenoids” OR “Anthocyanins”) AND “New method”

2. Results
2.1. Literature Search Results

The flowchart of the literature search and selection of this review is shown in Figure 1.
Overall, 87,871 studies were identified. Then, 44,028 records were removed for the follow-
ing reasons: reviews, book chapters, letters, news, patents, meeting papers, reports, etc.
Duplicated papers and records that are not relevant to the topic were excluded after the
database screening, and 3562 studies were identified. By screening the titles and abstracts,
2536 records were excluded because they were similar and had no relevance to the scope of
this review. Then, the full text of 1026 papers was reviewed and assessed to check if they
were eligible for this scoping review. As a result, 248 studies were included in this review.

Figure 1. The flowchart of the selection process of literature based on PRISMA.
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2.2. Resources

Natural dyes can be extracted from plants, animals, microorganisms, minerals, and
some other materials (Figure 2).

Figure 2. Resources of natural dyes including plants, animals, microorganisms, and minerals.

2.2.1. Plants

In nature, the leaves, roots, flowers, and fruits of plants are all important sources
of natural dyes [7–9] and these natural dyes determine the color of different parts of
plants. For example, chlorophylls are responsible for the green color of leaves, carotenoids
are responsible for yellow and red flowers, vegetables, and fruits, while anthocyanins
determine the color of flowers and fruits from orange to dark blue [10]. The color of
mangoes and tomatoes is associated with carotenes and lycopene, respectively [11,12].
Cornflowers, blueberries, mulberries, and strawberries are rich in anthocyanins. Betalains
present in vacuoles of plants are responsible for beetroot’s deep red or yellow color [13].
Seasons change, plant leaves change from green to yellow or red, and the changes in
leaves’ color during leaf senescence depend on the different combinations of chlorophylls,
carotenoids, and anthocyanins [14,15]. Most of the sources of plant dyes are leaves, flowers,
fruits, and roots, which are renewable resources and can be used as a source of natural dyes.

2.2.2. Animals

Animals are also sources of natural dyes. The most common ones are carmine acid,
astaxanthin, and lac dyes. Carmine acid, varying from pink to reddish-purple, is a natural
dye extracted from the dried bodies of females of the insect species Dactylopius coccus
Costa (cochineal). Carmine acid has been used in food, cosmetics, medicine. and textile
production and is allowed by the food laws in different countries [16,17]. Astaxanthin
is widely found in nature, especially in aquaculture products such as shrimp, crab, and
fish [18]. Astaxanthin, as a red–orange ketocarotenoid, has excellent antioxidant activity [19]
and it is widely used as a color additive in production [20]. Lac dyes are pink–red–purple
organic colourants derived from an insect and contain several components, such as laccaic
acid A, laccaic acid B, laccaic acid C, laccaic acid D, and laccaic acid E [21]. Lac dyes have
been used for textiles and painting for thousands of years [22]. Recently, some new quinone
dyes were isolated from the deep-sea crinoid Hypalocrinus naresianus [23,24]. With the
development of marine resources, deep-sea animals are expected to become potential new
sources of natural dyes.
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2.2.3. Microorganisms

Microorganism communities are the most widely distributed living organisms. They
are closely connected with animals, plants, and other microorganisms in the form of
saprophytic states, symbiosis, and parasitism, and constitute an important part of the
biosphere and ecosystem [25]. Microorganisms, including bacteria, fungi, and some al-
gae, are an important source of natural dyes [26,27]. At the moment, an extraordinary
range of microbial pigments in various environments is available, such as carotenoids
(β-carotene, canthaxanthin, astaxanthin), bacteriochlorophylls, flavins, indigoids, melanins,
pheomelanin, prodigiosin, violacein, glaukothalin, phycocyanin, xanthomonadin [28–30].
Fungi have been identified as potential dye producers, and some pigment-producing
fungi are as follows: Aspergillus niger, Aspergillus versicolor, Monascus sp., Trichoderma
viride, Penicillium purpurogenum [31], Aspergillus sydowii, Aspergillus aureolatus, Aspergillus
keveii, Penicillium flavigenum, Penicillium chermesinum, Epicoccum nigrum, Lecanicillium aphan-
ocladii, and Fusarium sp. [32]. Some of the fungal dyes have already been used as food
colorants in the market, such as Monascus pigments, arpink red from Penicillium oxalicum,
riboflavin from Ashbyagossypii, and β-carotene from Blakeslea trispora [33,34]. Since the
1880s, Monascus pigment has been widely used as food coloring throughout the world [35].
In Asia, Monascus pigment has been widely utilized in food industries, especially in China
and Japan [36]. Compared to plants and animals, fungi show immense advantages in
production and cost. For example, fungal dyes are season-independent and can grow in
a cheap culture medium easily and fast. In particular, fungal dyes show good stability,
solution, different color shades, and easy processing [37]. Microbial dyes are expected
to replace synthetic colorings and, since most of them are eco-friendly and nontoxic to
humans, they can be used for application as food additives and in the medicinal field.
Fungi could be a good and readily available source of natural dyes.

2.2.4. Minerals

Mineral dyes are refined from natural minerals and are mainly used for painting,
handicrafts, antiques, and restoration of cultural relics. Since ancient times, cinnabar (HgS)
has been used as a red dye, widely used in the art of ancient Rome, for adornment, and in
medieval manuscripts of colored drawing or patterns [38]. Aerinite is a light-blue mineral,
which comes from local ores in the southern Pyrenees. Blue dye can be created from aerinite
and was used in Romanesque wall paintings in Andorra and Catalonia, Spain [39]. Natural
ultramarine (UMB) dyes from lapis lazuli have been used in the past [40]. The UMB dyes,
as one group of mineral dyes, are characterized by sodalite structure and colored sulfur
species as chromophores are encapsulated inside. The general formula of UMB dyes is
Na8[AlSiO4]6[S2S3]2 [41]. Ancient painters, potters, and craftsmen obtained blue, green,
red, and black colors from rocks or minerals. Therefore, minerals dyes are more suitable for
use in art and architecture than food additives.

2.3. Structural Features of Natural Dyes

Natural dyes can be divided into the major categories by chemical structure. They
mainly include carotenoids, polyphenols, porphyrins, alkaloids, and quinones (Figure 3).
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Figure 3. The major categories of natural dyes divided by chemical structure.

2.3.1. Carotenoids

Carotenoids are tetraterpene, liposoluble, and yellowish-orange dyes, and the differ-
ence in colors depends on the specific conjugated double-bond structure of molecules [42].
Carotenoids, as the most widely distributed dyes in nature, are found in microorganisms
(photosynthetic bacteria, some species of archaea), plants (leaves, fruits, flowers), and
animals (birds, insects, fish, and crustaceans) [8]. According to the length of their carbon
backbone, carotenoids have been classified as C30, C40, and C50 carotenoids [43]. C40
carotenoids have eight isoprene molecules and the yellow, orange, and red hues depend
on an extensively conjugated polyene chain. This characteristic chemical structure is re-
sponsible for their physiological function as an antioxidant and provitamin A nutrient, as
well as their ability to protect from UV radiation [44]. Carotenoids are divided into two
groups: carotenes and xanthophylls (Figure 4). Carotenes, such as α-carotene, β-carotene,
γ-carotene, and lycopene, are hydrocarbons. About 50 kinds of carotenes have been found
in nature [45]. β-carotene can be converted into vitamin A after entering the body, which
is an important vitamin for humans and it can help prevent eye damage and protect
skin [46]. Xanthophylls are carotenoids containing oxygen atoms, such as astaxanthin,
lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, and peridinin. Structures of xantho-
phylls show marked diversity and about 800 kinds of xanthophylls have been reported
in nature up until 2018 [8]. Those molecules of xanthophylls include hydroxy, carbonyl,
aldehyde, carboxylic, epoxide, and furanoxide groups. They assist in photoprotection
and light harvesting, and play potential roles in the photosynthetic system. In fact, some
xanthophylls have been widely used in various fields. For example, natural astaxanthin has
been approved as a food colorant in fish and animal feed by the FDA [47]. Canthaxanthin
is also widely applied in food, cosmeceutical, pharmaceutical, fishery, poultry, and other
industries [48]. Canthaxanthin as a food additive in fisheries could improve the color of
shrimp and salmonid fish [49]. In addition, zeaxanthin and lutein are considered to play a
potential role in maintaining eye health [50]. In recent years, several carotenoids have been
isolated (Table 2), but more attention has been paid to screening strains from nature that
can produce carotenoids. Carotenoids are widely produced by microorganisms and plants.
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Carotenoids as essential components of the human body have great development value.
The health benefits of carotenoids have also been widely studied.

Figure 4. The structures of carotenoids including carotenes and xanthophylls.

Table 2. Several newly isolated and identified natural dyes in the last 10 years.

Category Compounds Source Ref.

Carotenoids 6′-Epimonadoxanthin Rosary goby (Gymnogobius castaneus) [51]
3′-Deoxycapsorubin Red mamey (Pouteria sapota) [52]
3,3′-Dideoxycapsorubin Red mamey (Pouteria sapota) [52]
Methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate Planococcus maritimus strain iso-3 [53]
Diapolycopenedioc Acid Xylosylesters A/B/C Rubritalea squalenifaciens [53]
13Z-zeaxanthin dipalmitate Wolfberry [54]

Anthocyanins Malvidin-3-(p-coumaroyl)-rutinoside-5-glucoside Transgenic Del/Ros1 tomato fruit [55]
Malvidin-3-(feruloyl)-rutinoside-5-glucoside Transgenic Del/Ros1 tomato fruit [55]
Petunidin-3-(cis-p-coumaroyl)-rutinoside-5-glucoside Tomato cultivar Indigo Rose [56]
Malvidin-3-(cis-p-coumaroyl)-rutinoside-5-glucoside Tomato cultivar Indigo Rose [56]
Petunidin-3-(trans-p-coumaroyl-rhamonside)-glucoside-5-
glucoside Tomato cultivar Indigo Rose [56]

Malvidin-3-(p-methoxy-trans-coumaroyl)-rutinoside-5-glucosid Tomato cultivar Indigo Rose [56]
Delphinidin 3-O-a-L-rhamnopyranosyl-(1→6)-b-D-
glucopyranoside-30-O-b-D-glucopyranoside Tamarillo fruit [57]

Cyanidin 3-[2′’-(6′”-coumaroyl)-glucosyl]-glucoside Nitraria tangutorum [58]
Pelargonidin-3-O-coumaroylglucoside Mulberry (Morus moraceae) juice [59]
Delphinidin-3-O-coumaroylglucoside Mulberry (Morus moraceae) juice [59]
Cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-
caffeoyl)-β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-6-
O-(trans-sinapoyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-
glucopyranoside]

Purple-violet flowers of Moricandia arvensis [60]
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Table 2. Cont.

Category Compounds Source Ref.

5,7-Dimethylmalvidin 3-O-β-galactopyranoside Blue Plumbago flower [61]
5,7-Di-methylpetunidin 3-O-β-galactopyranoside Blue Plumbago flower [61]
5,7-Di-methyldelphinidin 3-O-β-galactopyranoside Blue Plumbago flower [56]
5,7-Dimethylmalvidin 3-O-α-rhamnopyranoside Blue Plumbago flower [61]
5,7-Dimethyldelphinidin 3-O-α- rhamnopyranoside Blue Plumbago flower [61]
5,7-Dimethylpetunidin 3-O-α-rhamnopyranoside Blue Plumbago flower [61]
petunidin 3-O-[6-O-(4-O-(4-O-cis-(β-D-glucopyranoside)-p-
coumaroyl)-α-L-rhamnopyranosyl)-β-D-glucopyranoside]
-5-O-[β-D-glucopyranoside]

Wild Lycium ruthenicum Murr. [62]

3-O-(6-O-α-L-Rhamnopyranosyl-β-D-glucopyranosyl)-7-O-(6-O-
(4-O-(6-O-(E)-caffeoyl-β-D-glucopyranosyl)-(E)-caffeoyl)-β-D-
glucopyranosyl)
del-phinidin

Bluish-purple petals of Chinese bellflower
(Platycodon grandifloru) [63]

3-O-(6-O-α-L-Rhamnopyranosyl-β-D-glucopyranosyl)-7-O-(6-O-
(4-O-(6-O-(4-O-β-D-glucopyranosyl-(E)-p-coumaroyl)-β-D-
glucopyranosyl)-(E)-caffeoyl)-β-D-glucopyranosyl)
delphinidin

Bluish-purple petals of Chinese bellflower
(Platycodon grandifloru) [63]

3-O-(6-O-α-L-Rhamnopyranosyl-β-D-glucopyranosyl)-7-O-(6-O-
(4-O-(6-O-(4-O-β-D-glucopyranosyl-(E)-caffeoyl)-β-D-
glucopyranosyl)-(E)-p-coumaroyl)-β-D-glucopyranosyl)
delphinidin

Bluish-purple petals of Chinese bellflower
(Platycodon grandifloru) [63]

Alatanin D Purple yam (Dioscorea alata L.) [64]
Alatanin E Purple yam (Dioscorea alata L.) [64]
Alatanin F Purple yam (Dioscorea alata L.) [64]
Alatanin G Purple yam (Dioscorea alata L.) [64]
Panaxidin A (pelaragonidin-4-vinylcatechol) Panax quinquefolius L. [65]
Panaxidin B (pelargonidin-4-vinylphenol) Panax quinquefolius L. [65]

Alkaloid Alstoscholarisine F/G Alstonia scholaris [66]
Oryzadiamine C Oryza sativa mutant [67]
Oryzadiamine A Oryza sativa with yellow grain [68]
Rosellin A Mushroom Mycena rosella [69]
Rosellin B Mushroom Mycena rosella [69]
Ergopigment 8/9/10 Claviceps purpurea [70]
Katorazone Streptomyces sp. IFM 11299 [71]
2-(4-((3E,5E)-14-Aminotetradeca-3,5-dienyloxy)
butyl)-1,2,3,4-tetrahydroisoquinolin-4-ol Fusarium moniliforme KUMBF1201 [72]

6′-O-malonyl-amaranthin Callus culture of Celosia cristata L. [73]
Quinone Hypalocrinins A/B/C/D/E/F/G Deep-sea crinoid Hypalocrinus naresianus [24]

5′-Hydroxytrypethelone The mycobiont of lichen Trypethelium
eluteriae Sprengel [74]

Gymnochrome A/H Deep-sea crinoid Hypalocrinus naresianus [23]
1,4,6b,7,10-Pentahydroxy-1,2,6b,7,8,12b-hexahydroperylene-3,9-
dione Endophytic fungus Alternaria tenuissima SS77 [75]

1,4,9,12a-Tetrahydroxy-12-methoxy-1,2,11,12,12a,12b-
Hexahydroperylene-3,10-dione Endophytic fungus Alternaria tenuissima SS77 [75]

1,4,9-tri-hydroxy-1,2-Dihydroperylene-3,10-dione Endophytic fungus Alternaria tenuissima SS77 [75]
Alaternosides A/C Rhamnus alaternus L [76]
6-Methoxy-rhodocomatulin 7-methyl ether Australian sponge Clathria hirsuta [77]
3-Bromo-6-methoxy-12-desethyl- rhodocomatulin 7-methyl ether Australian sponge Clathria hirsuta [77]
3-Bromo-6-methoxy-rhodocomatulin 7-methyl ether Australian sponge Clathria hirsuta [77]
3-Bromorhodocomatulin 7-methyl ether Australian sponge Clathria hirsuta [77]
Grandiquinone A Leaves of Tectona grandis [78]
Phomopsanthraquinone Fungus Phomopsis sp. PSU-MA214 [79]

2.3.2. Polyphenols

Anthocyanin is one of the most representative polyphenol natural dyes. Anthocyanins
and their glycosides, as species of water-soluble pigments, are ubiquitous in the plant world.
More than 250 kinds of anthocyanin molecules have been found from agricultural products
and they are responsible for the colors of products such as blueberry, black wolfberry,
cherry, black raspberry, strawberry, grape, and purple and red corn [80]. The color of
anthocyanin depends on the pH of the solution, which might be due to the transformation
of anthocyanin structure in different pH conditions [81]. For example, roselle anthocyanins
became red at pH 2.0–3.0 because the anthocyanins mainly were present in the form of
yellow salt ions; the red decreased at pH 4.6–6.0 with the structures transforming into blue
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quinonoidal base; at pH 7.0–9.0 the structures transformed to colorless pseudo-base and
the color gradually turned to blue. When the pH value was greater than 9.0, anthocyanins
turned to yellow-green due to the degradation in the strongly alkaline conditions [9,82].
Based on this characteristic, anthocyanins can be developed as indicators to monitor the
freshness of food and have great potential in intelligent packaging.

Pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and malvidin are the six
main anthocyanin compounds (Figure 5), and they differ in the number and positions of
the substituents in the benzene ring [83]. However, anthocyanins are present in nature in
the form of glycosides because free anthocyanins are unstable. Anthocyanins often form
3-glycoside or 3,5-diglycoside compounds with one or more glucose (the most common),
rhamnose, galactose, xylose, arabinose, etc. through glycosidic bonds [84,85]. The appli-
cation of anthocyanins in foodstuffs has been approved in many countries, including in
Europe (EU E No. E163), the United States, and Japan, and they are mainly used in bever-
ages, confectionery, baking, frozen snacks, and dairy and fruit products [86]. Some new
anthocyanins have been isolated and identified in recent years (Table 2), and anthocyanin
synthesis-related genes in different fruits and plants have also been extensively studied,
which provide a new strategy for anthocyanin development.

Figure 5. Molecular structures of the main anthocyanins.

Curcumin is a polyphenolic compound extracted from Curcuma longa L., which has
been generally recognized as safe [87]. Curcumin has also been approved by the FDA as a
natural food additive. Curcumin can be used as an acid–base indicator because it changes
from yellow to red at pH greater than 8 (Figure 6). Anthocyanin and curcumin are the main
phenolic natural dyes and promising natural dyes because they have been shown to have
many health benefits. Curcumin also plays a potential role in intelligent packaging [88].

Figure 6. Molecular structures of curcumin and the color changes in acid–base conditions.

2.3.3. Porphyrins

Porphyrin dyes are also known as tetrapyrrole derivatives and mainly include heme
and chlorophylls (Figure 7). Chlorophylls are magnesium-tetrapyrrole molecules and the
major photosynthetic greenish pigments found in algae, plants, and cyanobacteria that
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play essential roles in photosynthesis [89,90]. Chlorophylls mainly include five types:
chlorophyll a, chlorophyll b, chlorophyll c, chlorophyll d, and chlorophyll f. Chlorophyll
a and b play a dominant role in photosynthetic organisms, and chlorophyll a is essential
in photochemistry. Chlorophyll a as a blue/green pigment with maximum absorbance
from 660 to 665 nm and is the main pigment of phytoplankton; it is considered to indicate
the rhythm of marine ecosystems [91]. Chlorophyll b is converted to chlorophyll a via
7-hydroxymethyl chlorophyll a [92]. Chlorophyll d is found in marine cyanobacteria
and red algae, and chlorophyll f, found in various genera of cyanobacteria, co-occurs
with chlorophyll a [90,93]. Chlorophyll d and chlorophyll f show red-shifted absorption
features compared to chlorophyll a and chlorophyll b because of the position of formyl
substitutions. The maximal absorptions of chlorophyll d and chlorophyll f are 697 nm and
707 nm in methanol, respectively [93]. Sodium copper chlorophyllin, a green colorant, has
been approved by the USA FDA for use only in “citrus-based dry beverage mixes in an
amount not exceeding 0.2 percent of the dry mix” (http://www.ecfr.gov/cgibin/textidx?
SID=6ffd146f772f44d1b7b76af13be18518&node=21:1.0.1.1.27.1.31.12&rgn=div8 (accessed
on 5 May 2020)).

Figure 7. Molecular structures of heme, chlorophyll a, and chlorophyll b.

2.3.4. Alkaloids

Betalains as water-soluble natural plant dyes have been recognized as red food-
coloring agents due to no toxicity and health benefits [94]. Betalains contain several
dye compounds and those compounds contain nitrogen. The dye compounds in betalains
mainly include violet betalains such as betanin and yellow betaxanthins [95], and betanin
and vulgaxanthin I as representative structures of betalains are shown in Figure 8. Betalains
are red at pH 6–7, but instability with light and heat limits the application of betalains.
Therefore, they can be used as a colorant for food products with a short shelf life and food

http://www.ecfr.gov/cgibin/textidx?SID=6ffd146f772f44d1b7b76af13be18518&node=21:1.0.1.1.27.1.31.12&rgn=div8
http://www.ecfr.gov/cgibin/textidx?SID=6ffd146f772f44d1b7b76af13be18518&node=21:1.0.1.1.27.1.31.12&rgn=div8


Molecules 2022, 27, 3291 10 of 34

stored at low temperature in opaque packings, such as ice cream, frozen desserts, and
yogurts [96]. Betanin (E-number E162, CI Natural Red 33) as the main betalain component
has been widely used as a colorant for food products, such as ice creams, yogurts, cake
mixes, soft drinks, and gummy candies [97,98]. In the application of betanin as a food
colorant, a content of less than 50 mg/kg can provide the most ideal color [97].

Figure 8. Structure of alkaloid pigments including indigo, indirubin, and betalains.

Indigo as an ancient natural dye is extracted from tropical plants, woad (Isatis tinctoria),
and true indigo (Indigofera tinctoria) [99,100], and it is a remarkably stable blue dye and has
a long history of use in textiles. The bis(indole) indigotin is responsible for the blue color of
indigo-based dyes [101] and a new class of indigoids has been discovered [102]. FD&C blue
no. 2 is its disulfonate sodium salt and has been used in food and cosmetic industries [103].
Synthetic indigo dyes contain only one pigment, indigo, and natural indigo dyes also
contain indirubin, which have anti-inflammatory and anti-tumor effects [104]. Additionally,
betalains and indigo dyes are widely used in medicine and other fields because of their
extensive biological activities. In addition to these typical alkaloid dyes, some potential
new alkaloid dyes have been isolated from microorganisms and plants in recent years
(Table 2). Even though studies have shown that they show some pharmacological activities,
their safety still needs further study.

2.3.5. Quinones

Alizarin, 1,2-dihydroxy-9,10-anthraquinone (Figure 9), is the principal component
of the natural dye extracted from madder root (Rubia tinctorum) [105]. It is a type of an-
thraquinone fluorescent dye [106]. Because of their structural features, the anthraquinone
derivatives can easily and closely interact with DNA molecules [107]. Therefore, they confer
potential anti-tumor capabilities to these tricyclic planiform compounds because of the func-
tion of inducing cell apoptosis [108]. Alizarin has been applied in colorimetric indicators
of PH, glucose, and others, for example, alizarin complexone functionalized mesoporous
silica nanoparticles as smart nanoformulations which could be used in optical diagnosis,
individualized treatment, and noninvasive monitoring of diabetes management [109].
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Figure 9. Structure of quinone dyes including alizarin, skikonin/alkannin, laccaic acid A/B/C/E,
and laccaic acid D.

Alkannin and its enantiomer shikonin are valuable natural dyes found in purple-colored
roots of red gromwell (Lithospermum erythrorhizon) [110]. Recently, shikonins/alkannins have
been discovered to exhibit a range of pharmacological properties and could be used as
drug scaffolds to design a set of derivatives [111], which has excellent prospects in drug
development. Furthermore, the components of lac dyes laccaic acid A, laccaic acid B, laccaic
acid C, laccaic acid D, and laccaic acid E are also quinone dyes (Figure 9). In the last decade,
marine resources and microorganism resources were the main sources of new quinone
dyes, which suggested new directions and strategies for developing natural dyes. However,
the toxicity and pharmacological activities of these new natural dyes need to be further
studied so that they can be applied in the market.

2.4. Pharmacological Activities of Natural Dyes and Related Mechanisms

The pharmacological activities and related mechanisms of natural dyes have been stud-
ied extensively. The health benefits of carotenoids, anthocyanins, curcumins, and betalains
were mainly discussed in recent years, including antioxidant activity, anti-inflammatory ac-
tivity, anti-cancer activity, anti-cardiovascular disease activity, anti-obesity and anti-diabetic
activity, anti-microbial activity, anti-viral activity, and neuroprotective effect (Figure 10).
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Figure 10. The pharmacological activities of natural dyes.

2.4.1. Antioxidant activities

Oxidative stress is caused by excessive production of reactive oxygen species (ROS),
which leads to damage to cellular proteins, lipids, and DNA, and cell necrosis and apoptosis
occur when the antioxidant defense system cannot eliminate ROS [112]. Oxidative stress
might lead to many diseases including cardiovascular diseases, neurodegenerative dis-
eases, obesity/diabetes, and cancer, and even be associated with human lifespan [113–115].
Nowadays, natural dyes such as carotenoid and polyphenol dyes are considered excellent
antioxidants in nutraceutical and pharmaceutical fields. Carotenoids with provitamin
activity can effectively scavenge ROS and reduce oxidative stress in the human body. In
particular, astaxanthin showed excellent antioxidant activity in free radical scavenging,
singlet oxygen quenching, inducing the antioxidant enzymeparaoxonase-1, enhancing glu-
tathione concentrations, and preventing lipid peroxidation [116]. In the human umbilical
vein endothelial cell (HUVEC) model, astaxanthin generated small amounts of ROS to
activate the Nrf-2/HO-1 antioxidant pathway. However, it has been demonstrated that
β-carotene at high doses shows pro-oxidant effects because it could produce radical ions
that might damage cells [117]. In cellular and animal models, anthocyanins have been
shown to reduce the generation of ROS and protect from oxidative damage, thereby pre-
venting other diseases [118,119]. Anthocyanins as antioxidants could scavenge free radicals,
enhance antioxidant enzyme activity, suppress oxidative stress via clearance of ROS, and
sustain the level of GSH and the glutathione antioxidant defense system [120–123]. The
antioxidant activity of curcumin was realized by inhibition of serum malondialdehyde,
up-regulating transcription and expression levels of antioxidant enzymes and improving
mitochondrial function [124,125]. Some mechanisms of antioxidant activity are shown in
Table 3, showing that natural dyes can scavenge free radicals, reduce the generation of ROS,
inhibit lipid peroxidation and malondialdehyde (MDA), and up-regulate transcription and
expression levels of antioxidant enzymes including total superoxide dismutase (SOD), total
catalase (CAT), and glutathione peroxidase (GPx). Antioxidant activity is considered to be
an important mechanism for the treatment and prevention of other diseases, so it will be
mentioned for other diseases.
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Table 3. Mechanisms of some natural dyes for antioxidant activity.

Category Compounds Name Mechanism Refs.

Carotenoids Astaxanthin
Scavenged free radicals, quenched singlet oxygen,
↑ antioxidant enzyme paroxoanase-1, ↑ glutathione
concentrations, ↓ lipid peroxidation.

[116]

Activated the Nrf-2/HO-1 antioxidant pathway by
generating small amounts of ROS in HUVEC model. [126]

↓ Oxidative stress, ↓ MDA content, ↑ SOD [127]
Lycopene ↓ NADPH oxidase, ↓ ROS production [128]

Lutein ↑ SOD, ↓ ROS level, ↑ CAT, ↑ GPx, ↓ GR, ↓ MDA,
↑ reduced glutathione level [129]

Zeaxanthin ↓ Myeloperoxidase, ↓ MDA, ↑ SOD, ↑ CAT,
↑ glutathione level [130]

Polyphenols Anthocyanins Scavenged free radicals, ↑ SOD, ↑ total
antioxidant activity [120]

Cyanidin-3-arabinoside ↓ Renal oxidative stress (↑ SOD, ↑ CAT), ↓ lipid
peroxidation (↓ TBARS and ↓ MDA) [121]

Gy3G, Mv3G ↓ ROS, sustained the level of GSH and glutathione
antioxidant defense system [122]

Petunidin-3,5-O-diglucoside Scavenged free radicals, ↓ ROS, ↓ MDA level and
GSH consumption [123]

Anthocyanin extract from purple highland barley Scavenged free radicals, ↓ ROS, ↑ SOD, ↑ CAT [131]

Curcumin
↓ Serum MDA, ↑ total antioxidant activity,
↑ transcription and expression levels of antioxidant
enzymes, ↑ mitochondrial function

[124,125]

Alkaloids Betalain ↓ MDA, ↑ CAT, ↑ SOD, ↑ GPx, ↑ xanthine oxidase [132]

Betanin Scavenged free radicals, ↓ MDA, ↑ total
antioxidant activity [133]

2.4.2. Anti-Inflammatory Activities

Growing evidence suggests that inflammatory responses play a critical role in the
development and progression of major human diseases [134]. Oral administration of
zeaxanthin could ameliorate acetic acid-induced colitis by antioxidative effects and modu-
lation of pro-inflammatory cytokines. Zeaxanthin suppressed tumor necrosis factor-alpha
(TNF-α), interferon-gamma (IFN-γ), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and
nuclear transcription factor kappa B (NF-κB) levels, and inhibited nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2) protein expression [130]. Oral administration with
β-carotenoid ameliorated ulcerative colitis-associated local and systemic damage in mice by
acting on multiple targets such as NF-κB, COX-2, STAT3 IL-17, nuclear erythroid 2 (NF-E2)-
related factor 2 (Nrf2), matrix metalloproteinase-9 (MMP-9), and connective tissue growth
factor [135]. Studies have found that the anti-inflammatory mechanisms of astaxanthin
involve multiple signaling pathways including PI3K/AKT, Nrf2, NF-κB, ERK1/2, JNK, p38
MAPK, and JAK-2/STAT-3, and the anti-inflammatory effects showed preventive effects
on a variety of diseases [136]. Malvidin 3,5-diglucosid as an anthocyanin could reduce
inflammation symptoms through reducing NO production and reducing the induction of
pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6 in lipopolysaccharide (LPS)-
induced RAW264.7 macrophages [137]. The anti-inflammatory action effect of anthocyanins
can be attributed primarily to their antioxidant properties. Anthocyanins extracted from
Trifolium pratense (red clover) inhibited the expression of genes such as TNF-α, IL-1β,
iNOS, COX-2, and monocyte chemoattractant protein (MCP-1) and translocation of the
p65 subunit of NF-κB into the nucleus [138]. In addition to down-regulation of the redox-
sensitive nuclear NF-κB signaling pathway, the mitogen-activated protein kinase pathways
also appeared to play a role [139]. Curcumin exerts anti-inflammatory effects by regulating
inflammatory signaling pathways and inhibiting the production of inflammatory mediators.
Curcumin exerted its anti-inflammatory effect by inhibiting TLR4 expression, the phospho-
rylation of ERK, JNK, p38, and NF-κB in macrophages and TLR4-MAPK/NF-κB pathways
were involved [140]. The NF-κB signal pathway is the principal inflammatory signaling
pathway, and it reduces the expression of inflammatory cytokines including IL-1β, IL-6,
TNF-α, COX-2. Carotenoids, anthocyanins, and curcumin all regulate this pathway to
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achieve anti-inflammatory effects, and natural dyes can be used as food supplements to
treat inflammation and a variety of inflammation-related diseases.

2.4.3. Anti-Cancer Activities

The incidence of cancers continuously increased in the last few years and cancers
have overtaken cardiovascular diseases as the leading cause of death in some high-income
countries [141]. Cancer of the endocrine, digestive, urinary, and immune systems includes
breast cancer, liver cancer, gastric cancer, colorectal cancer, prostate cancer, lung cancer,
skin cancer, etc. [142]. Natural dyes have shown anti-cancer activities against several types
of cancer (Table 4). Carotenoids including β-carotene, lycopene, crocin, astaxanthin, and fu-
coxanthin have shown anti-proliferative and pro-apoptotic actions against various cancers.
For example, astaxanthin has been reported to inhibit the proliferation of breast cancer cells
by modulating different signaling pathways and molecular targets such as inhibition of
cellular migration and cell number, suppressing expression levels of pontin, mutp53, Oct4,
and Nanog, and activation of Bax/Bcl2, cleaved caspase-3, and cleaved caspase-9 as well
as the phosphorylation of ERK1/2, JNK, and p38. Anthocyanins play a potential role in
preventing and treating cancer [143–145]. Anthocyanin extracts and anthocyanins, such as
cyanidin-3-glucoside (C3G), peonidin-3-glucoside (Pn-3-G), malvidin-3-glucoside (M3G),
delphinidin-3,5-O-diglucoside (D-3-5-D), cyaniding-3-rutinoside (C3R), pelargonidin-3-
glucoside (Pg-3-G), cyanidin-3-xylosylutinoside (C3XR), and proanthocyanidins, have
been reported have inhibitory effects on breast cancer, colorectal cancer, liver cancer, lung
cancer, and prostate cancer. For example, anthocyanin extracts from purple potato can
suppress colon tumorigenesis by suppressing the Wnt/β-catenin signaling pathway and
enhancing mitochondrion-mediated apoptosis [146]. M3G as an adjuvant ingredient or
nutritional supplement can prevent liver cancer by inhibiting proliferation, migration, and
invasion-related pathways and promoting the apoptosis of liver tumor cells [147]. In addi-
tion, grape seed proanthocyanidins showed a radioprotective effect on normal lung cells
and were considered an ideal radioprotective drug for lung cancer patients treated with
radiotherapy [148]. Curcumin is a promising candidate for prevention and treatment of
several cancers. The anti-cancer activities of curcumin involve different signaling pathways
and molecular targets including modulation of growth factors, enzymes, transcription
factors, kinases, and inflammatory cytokines, and up-regulating pro-apoptotic and down-
regulating anti-apoptotic proteins [149]. The anti-lung cancer activity of curcumin has been
reported and curcumin could suppress cell proliferation and induce apoptosis via modulat-
ing the JAK2/STAT3 signaling pathway, PI3K/Akt signaling pathway, and Wnt/β-catenin
pathway [150–153]. Therefore, natural pigments can inhibit the proliferation of cancer cells
and induce apoptosis in colon cancer, breast cancer, lung cancer, liver cancer, gastric cancer,
prostate cancer, etc., and can be considered nutritional supplements and food additives.

Table 4. The mechanism of some natural pigments for anti-cancer activity.

Cancers Compounds
Name Category Mechanism Refs.

Breast cancer Lycopene Carotenoids Activation of ERK1/2, ↓ cyclin D1 ↑ p21 ↓ phosphorylation of Akt
and its downstream molecule mTOR ↑ Bax [154]

β-Carotene Carotenoids ↑ Apoptosis ↓ cell cycle
↓ PI3K/Akt ↓ ERK [155,156]

Lutein Carotenoids

↓ Breast cancer cell proliferation, ↑ expression of cellular
antioxidant enzymes, ↓ ROS, ↑ NrF2/ARE pathway, ↓ NF-κB
signaling pathway
↑ p53, ↓ HSP60

[157,158]

Crocin Carotenoids ↑ Disrupting the microtubule network
↓ Wnt/β-catenin target genes [159,160]
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Table 4. Cont.

Cancers Compounds
Name Category Mechanism Refs.

Astaxanthin Carotenoids

↓ Cellular migration, ↓ cell number
↓ Expression levels of pontin, mutp53, Oct4, and Nanog, ↓
proliferation
Activation of Bax/Bcl2, cleaved caspase-3, and cleaved caspase-9
as well as the phosphorylation of ERK1/2, JNK, and p38

[143–145]

D-3-5-D, C3R Polyphenols ↑ Intracellular reactive oxygen, ↑ apoptosis
↓ MCF-7 cells in the G2/M phases [161]

C3G, Pg-3-G Polyphenols ↓ AMPK, ↑ apoptosis
↑ Oxidative stress [162]

Curcumin Polyphenols

↓ NF-κB signaling pathway
↓ HER2-TK
↓ Akt protein, ↓ ubiquitin-proteasome pathway
↓ PI3K/Akt signaling pathway
↓ EGFR signaling

[163–167]

Betanin Alkaloids ↑ Apoptosis-related proteins (Bad, TRAILR4, FAS, p53) [168]

Colorectal Cancer Astaxanthin Carotenoids
↓ Invadopodia, ↓ EMT, ↑ E-cadherin, ↓ vimentin, ↓ cortactin, ↓
MMP2, ↑ miR-29a-3p, ↓ ZEB1, ↓ MYC
↑ Apoptosis, ↑ Bax, ↑ caspase-3, ↓ Bcl2

[169,170]

Fucoxanthin Carotenoids ↓ Proliferation
↑ DNA damage [171,172]

Crocin Carotenoids ↑ Caspase-3 and -7, ↓ proliferation [173]

C3G, C3XR, C3R Polyphenols ↑ Probiotics, ↓ inflammation
↓ Pathogenic bacteria [174]

C3G, C3XR, C3R Polyphenols ↑ MiR-24-1-5p, ↓ β-catenin [175]
Pg-3-G Polyphenols ↓ HT-29 colon cancer cells [176]
Anthocyanin
extract Polyphenols ↓ Wnt/β-catenin

↓ Mitochondrion-mediated apoptosis [146]

Curcumin Polyphenols ↓ NF-κB pathway, ↓ cell cycle
↑ Cytochrome c, ↑ Bax and p53, ↓ Bcl-2 [177,178]

Betaxanthin and
betacyanin Alkaloids

↓ Bcl2-like protein 4, ↓ cleaved poly ADP-ribosyl polymerase 1, ↓
cleaved caspase-3
↓ Anti-apoptotic protein B-cell leukemia/lymphoma 2 levels

[179]

Gastric cancer Crocin Carotenoids ↓ KLF5 HIF-1, ↑ miR-320, ↓ epithelial–mesenchymal transition,
↓ migration [180]

β-Carotene Carotenoids ↓ Cell viability, ↑ DNA damage, ↑ apoptotic indices, ↑ caspase-3,
↓ Ku70/80 [181]

Fucoxanthin Carotenoids ↑ Beclin-1, ↑ LC3, ↑ cleaved caspase-3 (CC3), ↓ Bcl-2,
↓ cell cycle, ↑ apoptosis, ↓ Mcl-1, STAT3, and p-STAT3 [182,183]

Astaxanthin Carotenoids

↓ Cell cycle
↑ NADPH oxidase activity, ↑ ROS levels, ↑ LDH release, ↑ the
number of propidium iodide-positive cells
↑ RIP1/RIP3/MLKL signaling pathway

[184,185]

Curcumin Polyphenols ↓ STAT3 pathway [178]

Liver cancer Astaxanthin Carotenoids

↑ Cell number in G2 phase
↑ Cell number in G2/M phase
↑ Apoptosis
↑ Oxidative stress, ↑ adiponectin

[186–188]

Crocin Carotenoids ↓ NF-κB, ↓ inflammation, ↓ cell cycle, ↑ apoptosis [189]

Fucoxanthin Carotenoids

↓ Glutathione (GSH) content, ↓ proliferation
Reverting body weight, serum albumin, antioxidant enzymes, all
the liver enzymes, serum bilirubin, and stress markers to normal
levels in hepatocellular carcinoma rats

[190,191]

C3G, Pn-3-G Polyphenols ↓ TNF-α, iNOS, NF-κB
↓ Cell proliferation [192]

C3G, C3R Polyphenols ↓ Lipid peroxidation, ↓ COX-2
↑ Nrf2-mediated antioxidant enzymes [193]

M3G Polyphenols ↓ Proliferation, ↑ apoptosis, ↓ ROS, ↑ JNK/p38 MAPK pathways,
↓ AKT phosphorylation, ↓ migration, ↓ invasion [147]
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Table 4. Cont.

Cancers Compounds
Name Category Mechanism Refs.

Curcumin Polyphenols ↓ Migration, ↓ invasion, ↓ epithelial–mesenchymal transition, ↓
aryl hydrocarbon receptor/ERK/SK1/S1P3 signaling pathway [194]

Curcumin Polyphenols ↓ Migration, ↓ invasion, ↓ epithelial–mesenchymal transition, ↓
aryl hydrocarbon receptor/ERK/SK1/S1P3 signaling pathway [194]

Betanin Alkaloids ↑ Nrf2, ↑ mitogen-activated protein kinases [195]

Lung cancer Astaxanthin Carotenoids
↑ Cell number in G0/G1 phase
↑ p38 MAPK
↑ Apoptosis

[196]

Crocin Carotenoids ↑ G0/G1 arrest, ↑ mRNA levels of p53 and Bax, ↓ Bcl-2, ↑
apoptosis [197]

Lutein Carotenoids ↓ PI3K/AKT, ↑ apoptosis [198]

C3G Polyphenols ↓ Lung tumor multiplicity and tumor area, ↓ expression of
proliferative cell nuclear antigen (PCNA) and Ki-67 [199]

Curcumin Polyphenols

↓ NF-κB, ↓ JAK2/STAT3 signaling pathway, ↓ JAK2
↓ Cell proliferation, ↑ apoptosis
↑ microRNA-192-5p, ↓ PI3K/Akt signaling pathway
↓ Wnt/β-catenin pathway

[150–153]

Betalain Alkaloids
↑ Proliferation, ↓ cell cycles, ↑ p53/p21, ↓ levels of cyclin-D1
complex, ↓ levels of p-PI3K, ↓ p-Akt, ↓ mammalian target
of rapamycin

[200]

Prostate cancer Astaxanthin Carotenoids ↑ Apoptosis, ↑ cleaved caspase-3;
↑ miR-375 and miR-487b [201]

Crocin Carotenoids ↓ Proliferation, ↓ cell cycle, ↑ apoptosis
↓ Bcl-2, ↓ Bax [202]

Proanthocyanidins Polyphenols ↓ Notch1 pathway [203]
C3G Polyphenols ↓ Epithelial–mesenchymal transition [204]

Curcumin Polyphenols
↓ Expression of CYP11A1 and HSD3B2, ↑ AKR1C2, ↓
dihydrotestos terone
↑ miR-34a, ↓ β-catenin, ↓ c-myc

[205,206]

2.4.4. Anti-Obesity and Anti-Diabetic Activities

The WHO estimates that by 2025, approximately 167 million people will become less
healthy because they are overweight or obese (https://www.who.int/news/item/04-03-20
22-world-obesity-day-2022-accelerating-action-to-stop-obesity (accessed on 1 April 2022)).
Obesity occurs when excess adipose tissue accumulates in the body, which can result in
metabolic syndrome, including type 2 diabetes, hypertension, and dyslipidemia [207].
(3R,3′R)-Astaxanthin could be a supplement to prevent weight gain, reduce plasma and
liver triacylglycerol, and decrease plasma and liver total cholesterol [208]. At the same
time, carotenoids could regulate gut microflora to reduce the incidence of obesity [208,209].
Lutein showed a preventive effect against cardiac and renal injury in STZ-induced hy-
perglycemic rats by altering antioxidant enzyme activities [129]. In anti-diabetic activity,
astaxanthin could attenuate STZ-induced diabetes by decreasing blood glucose and to-
tal cholesterol levels, and increasing blood levels of high-density lipoprotein cholesterol
(HDL-C) in a dose-dependent manner [210]. Anthocyanins have shown anti-obesity ef-
fects through multiple mechanisms including inhibiting lipid absorption, regulating lipid
metabolism, increasing energy expenditure, suppressing food intake, and regulating gut
microflora [211]. Anthocyanins could suppress lipid accumulation in adipocytes [212] and
reduce high-fat diet-induced metabolic damage [213]. Body mass index and body weight
were reduced when anthocyanin supplementation was 300 mg/d or less for 4 weeks [214].
Cyanidin 3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside as an anthocyanin isolated
from purple-fleshed sweet potato showed hypoglycemic effects by specifically suppressing
hepatic glucose output [215]. C3G from black soybeans showed anti-diabetes effects by
inducing the differentiation of 3T3-L1 preadipocytes into smaller and insulin-sensitive
adipocytes [216]. Curcumin has been used as a pharmacological traditional medicinal
agent in Ayurvedic medicine for about 6000 years. The anti-obesity mechanisms of cur-
cumin are associated with the enzymes, energy expenditure, adipocyte differentiation, lipid
metabolism, gut microflora, and anti-inflammatory potential [217]. Betacyanins purified

https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity
https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity
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from Hylocereus undatus peel could ameliorate obesity and insulin resistance in high-fat
diet-fed mice [218]. Natural pigments could be considered as dietary supplements to
prevent and ameliorate obesity and type 2 diabetes.

2.4.5. Anti-Cardiovascular Disease Effects

Cardiovascular diseases (CVDs) are a group of disorders that affect the heart and blood
vessels and represent the leading cause of morbidity and mortality worldwide [219]. Ox-
idative stress and inflammation play an important role in CVDs. It has been suggested that
carotenoids with antioxidant activity could prevent and ameliorate CVDs by suppressing
oxidative stress and mitigating inflammatory responses [220]. Lutein, a major carotenoid,
showed a protective effect in a cardiac failure rat model by improving cardiac morphology,
antioxidant status via positively regulating the Nrf2/HO-1 signaling pathway, and reducing
inflammatory markers (IL-1β, IL-6, TNF-α, NF-κB, p65) and apoptotic markers (caspase-3
and caspase-9) [221]. Data from several epidemiological studies have reported an inverse
correlation between anthocyanin intake and risk of CVDs or CVD-related mortality. Higher
habitual anthocyanin intake was also inversely associated with a risk of total myocardial
infarction in premenopausal women [222] and nonfatal myocardial infarction in men [223].
Molecular mechanisms of action of anthocyanins are complex and include modulation of
gene expression, cell signaling, and miRNA expression [224]. Curcumin has been found
to ameliorate various CVDs such as atherosclerosis, cardiac hypertrophy, cardiac fibrosis,
heart failure, myocardial infarction, and ischemia by multiple mechanisms and modulating
multiple signaling pathways [225]. For example, recent research has found that curcumin
shows a significant protective effect in myocardial ischemia–reperfusion by activating
the PI3K/AKT/mTOR signaling pathway and inhibiting inflammation, apoptosis, and
oxidative stress [226]. Betalain treatment protected hearts from failing via microRNA-
mediated activation of the anti-inflammatory signaling and restoring the matrix protein
modulation [132].

2.4.6. Anti-Microbial Activity

Red cabbage and sour cherry pomace anthocyanin extracts show anti-microbial effects
on Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Salmonella Typhimurium,
and Bacillus cereus [227]. Curcumin has a broad spectrum of anti-bacterial actions against
a wide range of bacteria [228]. Curcumin and its derivatives (curcumin monoglucoside,
curcumin diglucoside) possess strong anti-microbial properties against Streptococcus pneu-
moniae, even in penicillin-resistant strains. Curcumin showed anti-bacterial activity against
tested strains of methicillin-resistant S. aureus because of increased membrane permeability
and DNA fragmentation [229]. The efficacy of curcumin against Helicobacter pylori has
been studied and the potential mechanism is down-regulation of IL-17 through the induc-
tion of indoleamine 2,3-dioxygenase in H. pylori-infected human gastric mucosa [230].
The anti-fungal activity of curcumin has also been reported and curcumin could inhibit
biofilm formation and filamentation of Candida albicans. In anti-microbial photodynamic
therapy, chlorophyll a and chlorophyll b exhibited high anti-microbial activity under irradi-
ation [231]. Additionally, betalains have shown inhibitory effects against Gram-negative
bacteria such as Pseudomonas aeruginosa and S. Typhimurium, among others, and Gram-
positive bacteria, such as S. aureus, Enterococcus faecalis, and L. monocytogenes [232,233].
Dyes extracted from Rhodotorula glutinis could effectively inhibit the growth of B. cereus,
Salmonella enteritidis, and E. coli [234]. Chaetoviridide A and Chaetoviridide B are new
dye compounds isolated from the deep-sea fungus Chaetomium sp. NA-S01-R1, and they
showed anti-bacterial activities against Vibrio rotiferianus and Vibrio vulnificus [235]. In addi-
tion, the applications of natural dyes isolated from fungi in healthcare have been explored,
and silk sutures treated with an optimum concentration of natural fungal dye could inhibit
the growth of S. aureus and E. coli [236]. Therefore, natural dyes play a potential role in
anti-microbial activity against different pathogenic bacteria and have a bright prospect in
healthcare applications.



Molecules 2022, 27, 3291 18 of 34

2.4.7. Anti-Viral Activities

The carotenoids isolated from haloalkaliphilic archaeon Natrialba sp. M6 exhibited
significantly stronger activity in eliminating hepatitis C virus (HCV) and hepatitis B virus
(HBV) in infected human blood mononuclear cells than currently used drugs. This anti-
viral activity may be attributed to its inhibitory potential against HCV RNA and HBV
DNA polymerases, which thereby suppresses HCV and HBV replication, as indicated by a
high viral clearance % in the treated cells [237]. A marine carotenoid, siphonaxanthin from
Codium fragile, showed significant anti-viral activity with an IC50 of 87.4 µM against SARS-
CoV-2 pseudovirus entry, and was predicted to have relatively low acute toxicities [238].
Anthocyanin fractions of strawberry, raspberry, bilberry, and lingonberry showed strongly
anti-viral effects against influenza virus A/H3N2 through inhibiting the replication of
the virus [239]. Delphinidin, belonging to the anthocyanin family, has shown inhibitory
effect against HCV by a new mechanism, alteration of the viral particle structure, that
impairs its attachment to the cell surface [240]. The anti-viral activity of curcumin has been
widely studied, and the main mechanisms include direct interference with viral replication
machinery and suppression of cellular signaling pathways essential for cellular replication,
such as PI3K/Akt, NF-κB [241]. In Vero cells infected with EV71, the addition of curcumin
significantly suppressed the synthesis of viral RNA, the expression of viral protein, and the
overall production of viral progeny [242]. A recent study showed that curcumin inhibited
in vitro SARS-CoV-2 infection in Vero E6 cells by affecting the SARS-CoV-2 replicative cycle
and curcumin exhibited a virucidal effect with a variant/strain-independent anti-viral
effect and immune-modulatory properties [243]. Natural dyes with anti-viral activity might
play a potential role in the development and progression of COVID-19, which should be
explored further.

2.4.8. Neuroprotective Effect

Altered amyloid precursor protein (APP) processing potentiates the aggregation of
glycation products, and amyloid-β (Aβ) toxicity is a key pathogenic feature of Alzheimer’s
disease (AD) [244]. Carotenoids including cryptocapsin, cryptocapsin-5,6-epoxide, and
zeaxanthin showed anti-amyloidogenic potential by preventing the formation of the fib-
ril and through disruption of the Aβ aggregates [245]. Lutein protected dopaminergic
neurons by enhancing antioxidant defense and diminishing mitochondrial dysfunction
and apoptotic death, suggesting the potential benefits of lutein for Parkinson’s disease
treatment [246]. Natural dietary supplementation of anthocyanins could ameliorate neu-
rodegeneration and memory impairment in a mouse model of Alzheimer’s disease. Antho-
cyanins as a potent antioxidant neuroprotective agent reduced AβO-induced neurotoxicity
in HT22 cells via the PI3K/Akt/Nrf2 signaling pathway and improved memory-related pre-
and postsynaptic protein markers and memory functions in APP/PS1 mice [247]. Bilberry
anthocyanin consumption was considered to reverse AD-induced cognitive disfunction,
decrease hippocampal neuroinflammatory responses, and induce phagocytosis of microglia
to beta-amyloid protein plaques by regulating the CD33/TREM2/TYROBP signaling path-
way in microglia [248]. Pelargonidin belongs to the anthocyanins and has been found to
improve Aβ (25–35)-induced memory deficit through mitigation of oxidative stress, cholin-
ergic dysfunction, and astrocyte reaction [249]. The effect of curcumin on AD involves
multiple signaling pathways such as anti-amyloid and metal iron chelating properties,
antioxidation and anti-inflammatory activities [250], and curcumin treatment protected
rat PC12 cells from Aβ (25–35)-induced reduction in cell viability, apoptosis, the release
of LDH, and MDA production [251]. In AlCl3-induced AD rats, betalain ameliorated AD
by modulating oxidative stress and the NF-κB signaling pathway [252]. Therefore, natural
dyes could be a potent dietary supplement with antioxidant and neuroprotective effects.

2.4.9. Biological Effects of Dyes Regarding Illumination Conditions

Different from other compounds, dyes have the unique feature that the biological
effects are affected by illumination conditions (strict dark, ambient light, or controlled
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illumination). Photodynamic therapy (PDT) is a promising new treatment which uses
suitable photosensitizers, appropriate wavelengths of light, and oxygen to kill cancer cells
and microorganisms [90]. In recent years, the application of natural dyes as photosensitizers
in PDT has been studied. Erythrosine combined with C3G as photosensitizers in PDT could
eliminate Porphyromonas gingivalis biofilms [253]. PDT using purpurin (an anthraquinone
pigment) could effectively inhibit the growth of triple negative breast cancer cells both
in vitro and in vivo [254]. Blue light-activated curcumin markedly damaged membrane
permeability, resulting in cell death of S. aureus [255]. A clinical trial suggested oral
curcumin together with visible light might be a new therapeutic method for moderate to
severe plaque psoriasis [256]. Chlorophylls and derivatives as photosensitizers in PDT
could be used to treat acne vulgaris and microbial infection [231,257–259]. In therapeutic
PDT, the photosensitizers should absorb between 600 and 800 nm, and natural dyes might
show potential as photosensitizers, which is worthy of further study.

In fact, there are some debates about the biological activity of curcumin because it
is an unstable, reactive, nonbioavailable compound, which is also considered a PAINS
medication [260]. Some studies have found no significant difference between curcumin
and placebo [261], but some pharmacological activities of curcumin have been validated
in animal experiments and clinical trials in recent years [262–265]. Many factors affect the
activity of curcumin. The biggest problem is its poor water solubility, low absorption, and
fast metabolization and clearance. Therefore, curcumin is not necessarily ineffective, which
might be due to the low bioavailability. Recently, the interaction between gut microbiota
and curcumin was hypothesized to explain how curcumin directly exerts its regulatory
effects on the gut microbiota, thus explaining the paradox between its low systemic bioavail-
ability and its wide pharmacological activities [266]. Interestingly, light irradiation could
enhance the biological effects of curcumin. Low-dose curcumin plus visible light exposure
could significantly inhibit metastatic processes of renal cell carcinoma [267], and light
exposure might also enhance its efficacy in bladder cancer cell lines [268]. Exposure to light
also enhanced its anti-microbial capacity because of curcumin phototoxicity in bacterial
cells [269]. Therefore, although light affects the stability of some dyes, whether light ex-
posure can enhance the pharmacological activities of other dyes is still a problem. The
biological effects of the dyes regarding the illumination conditions should be studied. Even
so, it is necessary to improve the stability and bioavailability of natural dyes, and nanoscale
formulations are effective strategies and discussed in the next section.

2.5. Challenges and Potential of Natural Dyes

Although a variety of natural dyes have shown preventive and therapeutic effects on
a variety of diseases, there are still some challenges in practical application. (1) Stability:
Usage of this colorant in other products is limited by its poor stability to heat, light, and
pH conditions. (2) Water solubility and bioaccessibility: Some natural dyes including
carotenoids and curcumin have poor water solubility that limits their oral administration
and decreases their bioavailability. (3) Resource constraints and extensive use: Some natural
plant dyes will be limited by seasons and resources. In order to solve those problems, some
strategies have been put forward.

2.5.1. Resources

According to the published literature, the study of marine natural products has increas-
ingly captured the attention of scientists in recent years. Some new natural dyes including
carotenoids and quinone dyes have been isolated from marine resources [23,24,51,77]. Ad-
ditionally, new sources of natural dyes have been found in marine environments, such
as a fast-growing strain of Chlorella saccharophila and a new variety of the ridgetail white
prawn [270,271]. Marine resources show great potential for screening for new natural dyes
and high-yield dye sources. In contrast to other resources, microorganisms have enormous
advantages including rapid growth, easy processing, and independence from weather
conditions. Apart from colorants, some bacterial, fungal, and microalgal dyes possess many
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biological properties such as antioxidant, anti-microbial, and anti-cancer activities [90,272].
Microorganisms are an abundant source of novel bioactive compounds and, unlike higher
organisms, they are a source of easily renewable resources that give rise to production with
a potentially greater yield [27,273]. Some pigment-producing microorganisms are easy to
culture and have low production cost, so they are becoming more and more important
application objects in the production of natural dyes, and have very broad application
prospects. The optimized culture conditions could accelerate biosynthesis of the dyes
and enhance dye production [272,274]. Therefore, exploration of marine resources and
microorganism dyes is necessary.

2.5.2. Biotechnology

As described above, microorganisms have great potential in the development of natu-
ral dyes. In recent years, metabolic and genetic engineering approaches have been made
to modify or introduce particular pathway genes into microorganisms to increase produc-
tion of natural dyes, especially carotenoids and anthocyanins [275,276]. In recent years,
it has been reported that heterologous genes were transferred into E. coli to synthesize
carotenoids. E. coli has been engineered to produce various carotenoids, including lycopene,
carotene, astaxanthin, and crocin [277]. Park et al. introduced heterologous crt genes (crtE,
crtY, crtI, crtB, and crtZ) from Pantoea ananatis and the truncated BKT gene (trCrBKT)
from Chlamydomonas reinhardtii to construct the astaxanthin biosynthetic pathway, and
enhanced production of astaxanthin [278]. E. coli has been considered the most suitable
for anthocyanin production in previous studies, and some anthocyanins were obtained
from this microbial cell factory, such as cyanidin 3-O-glucoside and 3′-O-methylated and
peonidin 3-O-glucoside [279,280]. Saccharomyces cerevisiae has also been used to produce
anthocyanins in recent years. Eichenberger et al. engineered S. cerevisiae for de novo produc-
tion of the three basic anthocyanins, pelargonidin-3-O-glucoside, cyanidin-3-O-glucoside,
and delphinidin-3-O-glucoside [281]. An S. cerevisiae–S. cerevisiae co-culture platform was
designed to manufacture two anthocyanidins in flask-scale culture [282]. Biotechnology
makes the production of anthocyanin no longer dependent on plants alone. With optimizing
the culture and advances in biotechnology, microbial cell factories are the most promising
system to increase the yield of natural dyes for commercial and industrial purposes.

2.5.3. Efficient Extraction and Separation Strategy

In the actual development and application of natural dye, high-yield, lower-cost,
and environment-friendly technology is also very important. In recent years, some novel
extraction techniques have shown these advantages.

Ultrasound-assisted extraction is an effective method to extract natural dyes, and it
has been widely used in the extraction of anthocyanins and carotenoids because of shorter
extraction time, higher efficiency, and low solvent volumes [283,284]. The microwave-
assisted extraction process is economical due to shorter extraction time and less solvent
consumption. This method has been used to extract natural dyes from plants [285,286].
Supercritical fluid extraction is not only an advanced extraction technology for natural
products, but also an environmentally friendly technology. Recent studies used supercritical
CO2 to extract carotenoids and anthocyanins [287]. Regardless of the extraction method
used, the optimized conditions should be screened and used to improve yield. In the
separation of natural dyes, high-speed countercurrent chromatography (HSCCC) as a
chromatographic technique of the liquid-liquid type with large sample recovery and low
loss showed a bright prospect to separate natural dyes [288,289]. In fact, those techniques
can be used in combination. In order to extract anthocyanins more efficiently, a novel
procedure of ultrasound-assisted deep eutectic solvent extraction was proposed, and the
HSCCC method was involved in the separation and purification of anthocyanins [289].
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2.5.4. Improvement of Dye Stability
Co-Pigmentation

Co-pigments form noncovalent complexes with anthocyanins and have been used to
enhance color and stability. Different co-pigments could change the properties of pigments
by hyperchromic and bathochromic shifts [290]. Co-pigmentation of anthocyanins and phe-
nolic compounds and plant extracts has been reported. Rosmarinic acid, syringic acid, and
catechin showed significant hyperchromic effects for black chokeberry (Aronia melanocarpa)
anthocyanin [291]. Molecular modeling results showed that multiple co-pigments may in-
tensify the color of anthocyanins more than individual ligands, and phenolic acid–flavonol–
anthocyanin could be used as promising food red-colorants [292]. Blueberry wines showed
higher alcohol and titratable acidity, and lower sugar content by addition of caffeic acid,
syringic acid, and quercetin co-pigments during fermentation [293]. Additionally, herbal
extracts and plant extracts improved the stability of anthocyanins, hyperchromic effect,
and color density [291,294]. Piperine could be used to increase the bioavailability of cur-
cumin because of the molecular interactions of curcumin and piperine [295]. However,
co-pigmentation depends on the intermolecular interaction between co-pigments and
anthocyanins, and different co-pigments should be selected for different dyes.

Encapsulation

Encapsulation systems have been used to increase the solubility, chemical stability,
pharmacological activity, and bioavailability of natural dyes. Maltodextrin, lipid-based
nanocarriers including nanoliposomes, nanoemulsions and solid lipid nanoparticles [296],
biopolymer-based nanocarriers such as proteins [297], carbohydrates, and chitosan [298],
gold nanoparticles [299], and clay minerals [293] have been studied.

Liposomes have shown many advantages and attracted extensive attention because
of their good stability, nontoxicity, water-solubility, good cell compatibility, and targeted
delivery [300]. Based on the above advantages and colorless liposomes and the instability
of natural dyes, liposomes are widely used to encapsulate natural dyes to improve their
stability and targeting delivery. Carotenoids including lutein, β-carotene, lycopene, and
canthaxanthin were encapsulated in liposomes and the delivery systems improved the an-
tioxidant activity of carotenoids in a DPPH-scavenging assay and ferric reduction capacity
assay [301]. A study demonstrated that propolis–lycopene nanoemulsions could protect
skin against UVA radiation and confer better therapeutic effects [302]. In another study,
lycopene was loaded on nanostructured lipid carriers and solid lipid nanoparticles [303],
and they had a significantly improved effect on neuronal protection [296]. To protect the an-
thocyanin from adverse external conditions, liposomes were prepared with a supercritical
carbon dioxide process and had improved efficacy and potential application in food and nu-
traceuticals [304]. In addition, anthocyanin-loaded liposomes could effectively enhance the
stability of anthocyanin, antioxidant activity, and skin permeability [305]. Shikonin-loaded
liposomes were prepared with 1,2-dipalmitoyl-phosphatidylcholine and egg phosphatidyl-
choline lipids, which could reduce the side effects, enhance selectivity to cancer cells and
solubility, and protect shikonin from internal biotransformations and oxidization [306].
Curcumin-loaded liposomes have been extensively studied to solve the disadvantages
including poor aqueous solubility and low bioavailability [307]. Betanin-nanoliposomes
could improve the stability and antioxidant activity of betanin. Gummy candies using
betanin-nanoliposomes showed no differences in the sensory properties [308].

Therefore, liposomes are considered to be ideal models for encapsulating natural dyes,
which can improve stability, enhance the bioavailability, and achieve targeted delivery.

3. Conclusions and Future Prospects

Natural dyes widely exist in plants, anmimals and microorganisms, and show multiple
healthy effects including antioxidant, anti-inflammatory, anti-cancer, anti-microbial, and
anti-viral effects, and prevention and treatment of a variety of diseases, including diabetes,
obesity, cardiovascular and cerebrovascular diseases, eye diseases, and nervous system
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diseases. Many natural dyes have been developed as drugs and functional foods. Some
natural dyes have been approved by the FDA as food additives, such as curcumin and
phycocyanin. Natural dyes show great advantages in safety, but there are still problems
such as stability, solubility, and economic applicability. Furthermore, the unique feature
that the biological effects of dyes are affected the illumination conditions (strict dark, or
ambient light, or controlled illumination) should be paid attention. Some new strategies
for these problems have been proposed. Natural dyes have great potential for the discov-
ery of new drugs and functional food products. In terms of cost, marine resources and
microorganisms are considered potential resources of natural dyes in the future. Some new
technologies could be used for the production, extraction, and separation of natural dyes to
improve the yield of natural dyes, such as metabolic and genetic engineering approaches,
ultrasound-assisted extraction, and HSCCC. Co-pigments and encapsulation systems have
been studied extensively and proven to improve the hyperchromic effect, stability, solu-
bility, and bioavailability. Red, yellow, and blue dyes can be screened or modified from
natural dyes, and other colors can be deployed in different proportions.

In conclusion, natural dyes play an important role in food, medicine, textile, and
other industries, which make human life more colorful. This review classifies natural
dyes by structural features and summarizes the research progress on natural dyes in
the last ten years, including some of the newest dyes, pharmacological activities, and
promising strategies for developing natural dyes. The review provides new insight for
further development and potential applications of natural dyes.
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