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Abstract

Background: Growing evidence indicates that the functional state of microglial cells differs according to the pathological
conditions that trigger their activation. In particular, activated microglial cells can express sets of Kv subunits which sustain
delayed rectifying potassium currents (Kdr) and modulate differently microglia proliferation and ability to release mediators.
We recently reported that hippocampal microglia is in a particular activation state after a status epilepticus (SE) and the
present study aimed at identifying which of the Kv channels are functionally expressed by microglia in this model.

Methodology/Principal Findings: SE was induced by systemic injection of kainate in CX3CR1eGFP/+ mice and whole cell
recordings of fluorescent microglia were performed in acute hippocampal slices prepared 48 h after SE. Microglia expressed
Kdr currents which were characterized by a potential of half-maximal activation near 225 mV, prominent steady-state and
cumulative inactivations. Kdr currents were almost abolished by the broad spectrum antagonist 4-Aminopyridine (1 mM). In
contrast, tetraethylammonium (TEA) at a concentration of 1 mM, known to block Kv3.1, Kv1.1 and 1.2 subunits, only weakly
reduced Kdr currents. However, at a concentration of 5 mM which should also affect Kv1.3 and 1.6, TEA inhibited about 30%
of the Kdr conductance. Alpha-dendrotoxin, which selectively inhibits Kv1.1, 1.2 and 1.6, reduced only weakly Kdr currents,
indicating that channels formed by homomeric assemblies of these subunits are not important contributors of Kdr currents.
Finally, agitoxin-2 and margatoxin strongly inhibited the current.

Conclusions/Significance: These results indicate that Kv1.3 containing channels predominantly determined Kdr currents in
activated microglia after SE.
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Introduction

Recent experimental evidence has considerably expanded our

knowledge of the biology and functions of microglia, the brain resident

macrophages. First, it is now acknowledged that microglial cells in the

healthy brain is not in a resting or dormant state but rather have an

active surveying function, constantly exploring the cerebral paren-

chyma [1,2]. Second, the activation state developed by microglia in

response to various stimuli is not unique: different stimuli and different

contexts lead microglia to develop different functional states which

correspond to a diversity of functions of microglia underlying their

deleterious or beneficial effects on neuronal survival and function (for

review, [3]. Third, new roles for microglia have also been proposed in

non-pathological contexts. In particular, microglia regulates neuronal

death which occurs normally during brain development [4], as well as

synaptogenesis (for review, [5]).

Potassium channels play a pivotal role in the activation process of

microglia. Surveying non-activated microglia expresses little if any

voltage-activated potassium channels (Kv) whereas large inward

rectifying (Kir) and delayed rectifying outward potassium (Kdr)

currents have been observed in activated microglia (for review, [6]).

Interestingly, the expression pattern of these two types of potassium

currents varies upon experimental and activation conditions [7–14].

Furthermore, as far as Kdr channels are concerned, several subunits

have been identified in microglia and seem to control different

functional aspects of its activation. Indeed, both Kv1.3 and Kv1.5

channels modulate the proliferation of activated microglial cells

[13,15]. In addition, Kv1.3 channel blockers reduce the NADPH-

mediated respiratory burst of activated microglia and therefore the

subsequent production of superoxide and free radicals which

contributes to the deleterious effect of these cells on neuronal survival

[16]. A role for Kv1.5 channels in controlling the LPS-induced release

of nitric oxide by microglia has been proposed [13], although a

calcium-activated potassium channel, KCa3.1, modulates also this

release [17]. Finally, the expression of Kv1.1, Kv1.2 and Kv3.1

channels is up-regulated in some models of microglia activation and

could regulate the production of pro-inflammatory signalling

molecules such as IL-1beta, IL-6, TNFalpha and nitric oxide [18–20].
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We have recently shown that microglial cells are in a particular

activation state 24 to 48 h after a status epilepticus (SE). From a

functional point of view, this state is characterized by an up-

regulation of all their responses mediated by the activation of ATP

receptors and the expression both Kir and Kdr currents [10].

Because the identity and the level of expression of the Kv channels

mediating Kdr currents is finely tuned according to the activation

state and determines other parameters of microglia activation (see

above), the present study aimed at identifying which of the Kv

channels are functionally expressed by microglia after SE. We

induced SE by systemic injection of kainate in CX3CR1eGFP/+

mice in which microglia expresses the green fluorescent protein

[21] and performed electrophysiological and pharmacological

analyses of Kdr currents of microglia in acute hippocampal slices

prepared 48 h after SE, i.e. at the peak of functional activation of

microglia in this model [10]. Our results provide strong evidence

for the predominant functional expression of Kv1.3 channels in

microglia activated by a SE.

Materials and Methods

Animals and seizure induction
All experiments followed Inserm and European Union and

institutional guidelines for the care and use of laboratory animals

(Council directive 86/609EEC). The heterozygous CX3CR1eGFP/+

mice used throughout this study were obtained by crossing

CX3CR1eGFP/eGFP [21] with C57BL/6 (Janvier, Le Genest Saint

Isle, France) wild type mice. Intra-peritoneal (i.p.) injection of

kainate (18–22 mg/kg) in phosphate buffer saline (PBS) was used to

induce a status epilepticus in 30 to 40 day-old mice, and age matched

PBS injected animals were used as control. Animals were observed

and classified according to the Racine scale: 1) freezing behaviour;

2) rigid posture with straight and rigid tail; 3) repetitive head

bobbing, rear into a sitting position with forepaws shaking; 4)

rearing and falling, jumping, running with period of total stillness; 5)

continuous level 4; 6) lost of posture and generalized convulsion

activity, usually preceding death. After kainate injection, mice

showed progression through the different stages, usually entering in

phase 1 about 15 minutes after the injection and reaching stage 3 in

30–45 minutes. Animals not showing the normal progression were

re-injected with half dose. Only animals reaching at least stage 4

were considered for this study. The duration of crises varied from 2

to 4 hours and mortality was around 20%.

Hippocampal slice preparation and electrophysiological
recordings

Hippocampal slices were prepared 48 h after the induction of

SE or after the i.p. injection of PBS for control animals. Mice were

killed by cervical dislocation, the brain was then quickly removed

and placed in ice-cold artifical cerebrospinal fluid (aCSF) bubbled

with carbogene (95% O2/5% CO2) and in which NaCl was

replaced with sucrose (in mM: 210 sucrose, 2.5 KCl, 26 NaHCO3,

1.25 NaH2PO4, 25 glucose, 1 CaCl2, 7 MgSO4; pH 7.4,

osmolarity ,310 mOsm). Transverse 350 mm thick slices were

cut using a vibratome, transferred to a heated (34uC) holding

chamber containing oxygenated (95% O2/5% CO2) standard

aCSF (in mM: 124 NaCl, 3 KCl, 26 NaHCO3, 1.25 NaH2PO4, 10

glucose, 2 CaCl2, 1 MgCl) for 1 h, and then subsequently

maintained at room temperature.

Individual slices were transferred to a recording chamber on the

stage of an Olympus microscope (BX50WI) with a 40x water

immersion onjective, equipped with cell-R imaging station

including MT20 illumination system (Olympus, France) and a

CCD camera (Hamamatsu ORCA2-AG, France). Slices were

constantly perfused at room temperature (21–24uC) with oxygen-

ated aCSF (3 ml/min). All drugs were bath applied. Visually-

identified eGFP-expressing microglial cells located at least 30 mm

below the slice surface were patched in whole-cell configuration in

the stratum radiatum of the CA1 region of hippocampus.

Micropipettes (5 to 7 MV) were filled with a solution containing

(in mM): K-gluconate 132, HEPES 11, EGTA 0.1, MgCl2 4

(pH 7.35 adjusted with KOH, osmolarity ,300 mOsm). All

potential values given in the text for experiments performed with

this solution were corrected for a junction potential of 10 mV. For

measuring Ca2+-activated potassium currents the intra-pipette

solution contained (in mM) KCl 120, BAPTA 5, MgCl2 2, Hepes

10 with 0 or 4.43, CaCl2.

Voltage-clamp recordings were performed using an Axopatch

200B (Molecular Devices, Sunnyvale, CA, USA). Currents were

low-pass filtered at 5 kHz, collected using PClamp 9 (Molecular

Devices, Sunnyvale, CA, USA) at a frequency 10 kHz and

analyzed off line using Clampfit (Molecular Devices, Sunnyvale,

CA, USA), ORIGIN (7.5, Origin Lab corporation, MA, USA),

and custom made program in MATLAB. An electrophysiological

characterization in voltage-clamp was made at the beginning of

the recording. Hyperpolarizing and depolarizing steps (from –150

to +30 mV for 50 ms) were used to determine I/V relationship of

each recorded cell. Membrane input resistance and capacitance of

the cells were determined from the current responses to voltage

pulses ranging from – 20 mV to +20 mV from a holding potential

of 270 mV. As previously described [10], the I/V relationship of

microglia from control animal was always linear whereas that of

microglia from epileptic animals showed inward and outward

rectifications. However, there was some variability in the

amplitude of the currents underlying these rectifications in

activated microglia [10]. For the purpose of the present study

we thus selected activated microglial cells which responded to a

step from 270 to +30 mV by an outward current of at least 50 pA

after leak subtraction (see below).

Activation and inactivation curves of the outward currents

activated by depolarization were obtained using a single protocol:

starting from a holding potential of 270 mV, a series of 1 s duration

pre-pulses ranging from 290 to +50 mV were applied, followed by

a 200 ms pulse test at +50 mV. The activation and inactivation

curves were obtained measuring the peak of the current in the pre-

pulse and pulse test respectively. Then the leak current was

subtracted. The leak current was determined by fitting the linear

part of the I/V curve (from 280 to 250 mV). Conductance was

calculated, normalized to its maximal value and plotted against

holding or pre-pulse potential. The curve were fitted with the

Boltzmann equation G/Gmax = 100/(1+exp((V
1/2

-V)/k)), where V1/2

is the voltage at which the current is half activated, and k is the slope

factor of the activation curve. The inactivation time constant was

obtained by fitting the decay of the current evoked by a 1s pulse

from 270 to +30 with a monoexponential curve. To determine the

cumulative inactivation a series of 10 pulses of 200 ms of duration

was applied at different frequencies, and after leak subtraction,

currents were normalized to the first pulse.

The effects of drugs on potassium currents was assessed by

acquiring I/V curves (from 2150 to +50) with 5 sec intervals

between different pulses in control and after 10 minutes of drug

application. Leak current were subtracted off line, conductances

were determined and normalized to the maximal conductance.

Statistical significance was tested with paired t-test on currents at

+30 mV after leak subtraction. Temporal matched experiments

were performed without drug application to exclude variation of

the delayed rectifying current under study. Data values are

presented as mean6SEM. Statistical significance was tested with

Microglia Potassium Currents
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the program GraphPAd Instat (GraphPad Instat 3.06). Statistical

significance was established at *p,0.05 and **p,0.01.

Reagents
Alpha-dendrotoxin, recombinant agitoxin-2 and recombinant

margatoxin were purchased from Alomone labs (Jerusalem, Israel).

In experiments involving toxins, 0.1% bovine serum albumin was

added to the extracellular solution to limit binding of the toxin to

tubing and chamber. 4-Aminopyridine (4-AP), was purchased from

Tocris Bioscience (Bristol, UK), kainate from Ascent Scientific

(Weston-Super-Mare, UK); tetraethylammonium (TEA) and other

chemicals were purchased from Sigma-Aldrich (Lyon, France).

Results

Status epilepticus (SE) was induced by an intra-peritoneal injection of

kainate (see materials and methods) in CX3CR1egfp/+ mice. As

previously described [10], the activation of hippocampal microglia

gradually evolved during the first days that follow SE. The maximum

Figure 1. Activation of microglial cells 48 h after status epilepticus (SE) induced by intra-peritoneal injection of kainate. A Confocal
images of fluorescent microglial cells in the stratum radiatum of the CA1 region of the hippocampus of CX3CR1egfp/+ mice in control conditions (left)
or 48 h after SE (right). Each image is a maximum intensity z-projection of 31 confocal slices for a total thickness of 12 mm. B1 Examples of current
responses induced by voltage steps of 20 mV increment from 2150 to +30 mV (holding potential 270 mV) in microglial cells in control (left, black
traces) and 48 hours after the induction of status epilepticus (right, red traces). B2 I/V curves of the cells showed in B1 normalized to their capacitance.
The activated microglial cell expressed both inward and outward rectifying currents (red plot).
doi:10.1371/journal.pone.0006770.g001
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of this activation process peaks around 48 h after SE and at this stage

microglial cells have acquired a larger soma with thicker primary

processes than resting or surveying microglia (Fig. 1A). Whole-cell

recordings performed in acute hippocampal slices showed that the

current-voltage relationship of microglia recorded in the stratum

radiatum of the CA1 region of control mice was almost linear

between membrane potentials of 2140 to +40 mV (Fig. 1B). In

contrast, the I/V curve of activated microglia recorded after SE was

characterized by marked rectifications at hyperpolarized and

depolarized membrane potentials (Fig. 1B; see also Materials and

Methods for sampling of activated microglia). As described in the

introduction, several potassium channels can potentially be

responsible for the outward currents evoked by depolarizing voltage

steps and we therefore set up to study the biophysical and the

pharmacological properties of these currents.

Biophysical properties of Kdr channels in activated
microglia

We first characterized the biophysical properties of the channels

activated by depolarization to compare them with those reported

for other models of microglia activation. Activation and steady-

state inactivation curves were constructed from normalized

currents generated during the protocol shown in the inset of

Figure 2A1 and were fitted to Boltzmann equations (see also

Materials and Methods). Outward currents had an activation

threshold near 235 mV and were fully activated above 0 mV.

They were characterized by a half-maximal activation potential

(V1/2) of 222.660.5 mV (with a slope factor of 4.960.2 mV;

n = 13) and a steady-state half inactivation potential of

–30.260.52 mV (with a slope factor of 3.660.3 mV n = 13;

Fig. 2A2). During a long duration pulse at +40 mV, the current

inactivated with a time constant of 294612 ms (n = 24). Beside

their steady-state activation and inactivation characteristics,

potassium channels formed by different Kv subunits can also

differ by the magnitude of their cumulative inactivation in

response to repetitive depolarizing pulses applied with short

inter-pulse intervals (see for instance [22]). We therefore studied

cumulative inactivation of the outward currents evoked in

activated microglia in responses to a series of 10 depolarizing

200 ms steps at +30 mV (from a holding of 270 mV) applied

Figure 2. Biophysical properties of potassium channels expressed in microglial cells after status epilepticus. A1 Example of currents
used to obtain activation and inactivation curves in microglia after status epilepticus. Microglia cells were held at a potential of 270 mV and stepped
at different potentials for 1 s before a final step of 250 ms at +50 mV. The inset represents the voltage steps corresponding to the current traces
showed in the figure. A2 Average of activation and inactivation curves (n = 13) normalized to maximal conductance. B1 Examples of currents induced
in another microglial cell by 10 consecutive pulses from 270 to +30 mV with 30 s interval (left panel) or 0.4 s interval (right panel). B2 Evolution of
the peak current amplitude obtained at every pulse expressed as percentage of the first response for 7 tested cells. Note that the smaller is the inter-
pulse interval, the higher is the inactivation of the current.
doi:10.1371/journal.pone.0006770.g002
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every 400 ms; 2 s, 10 s or 20 s. As shown in figure 2B, the

amplitude of the outward current remained stable (or only slightly

decreased) during the 10 pulses at low frequencies (below 0.1 Hz)

but gradually decreased during the first pulses evoked with

frequencies of 0.5 Hz and 2.5 Hz. In the latter case, the outward

current amplitude reached a steady state at the 7th pulse which

amounted approximately 30% of its initial value. Altogether, the

biophysical properties of Kdr currents of activated microglia

resemble those of channels made up of Kv1.3 rather than of the

other Kv subunits, in particular Kv1.5 or Kv3.1 which activate at

more depolarized potentials and show limited steady-state and

cumulative inactivation.

Pharmacological properties of Kdr channels in activated
microglia

Consistent with the activation of Kdr channels, the outward

currents were fully blocked by intracellular caesium (not shown)

and by extracellular 4-AP. As shown in figure 3A, bath application

of 1 mM 4-AP had no effect on the inward rectification or on the

linear portion of the I/V curve but largely decreased the outward

currents. Figure 3B shows the dramatic effect of 4-AP on the

normalized conductance (see material and methods) of Kdr

currents plotted as a function of the membrane potential. On

average, 4-AP blocked 94.561.3% (n = 8, p,0.01, paired t test) of

the outward current (leak-subtracted) induced by a step at +30 mV

(Fig. 4). This concentration of 4-AP should block all Kv subunits

identified so far in microglia, except Kv1.6 which should be only

partially inhibited (see table 1).

We then tested the effect of TEA, another large spectrum

inhibitor of potassium channels. At a concentration of 1 mM,

TEA should block mostly Kv1.1 and Kv3.1 but not Kv1.2, Kv1.3

and Kv1.5 (see table 1). As shown in figure 3C, bath application of

1 mM TEA inhibited only slightly the outward current evoked in

activated microglia. However, increasing TEA concentration to

5 mM, which should also partially block Kv1.3, decreased more

significantly the currents (Fig. 3C). Comparison of the activation

and inactivation curves obtained from the same cells before and

after application of 5 mM TEA did not reveal any significant shift

of the potentials of half-maximal activation or inactivation (n = 7,

p = 0.83 and p = 0.89, respectively, paired t test). Such shifts could

have been expected if Kv3.1, which activate and inactivate at

more depolarized values, would have contributed substantially to

the current. On average, an inhibition of 15.863.6% (n = 9,

p,0.01, paired t test) and 30.261.2% (n = 7, p,0.01, paired t

test) of the current evoked by a step at +30 mV was observed with

1 mM and 5 mM TEA, respectively (Fig. 4). Experiments in

absence of any blocker and matching the temporal course of drug

testing experiments did not reveal any significant change (Fig. 4,

p = 0.97, paired t test, n = 5). These results suggest that Kv1.1 and

Kv3.1 have not a major contribution to the microglia outward

currents.

We then tested if the snake toxin a-dendrotoxin which blocks

Kv1.1, Kv1.2 and Kv1.6 with nanomolar affinity (see table 1) had

any major effect on microglia outward currents. Bath application

of 50 nM a-dendrotoxin slightly affected the delayed rectified

current (Fig. 5A). On average the current evoked by a step at

+30 mV was inhibited by 1362% (Fig. 4, n = 4 p,0.001, paired t

test), suggesting that Kv1.1, Kv1.2 and Kv1.6 have only a minor

contribution.

Thus, the effect of 4-AP which virtually abolishes all outward

currents is probably due to a blocking of Kv1.3 or Kv1.5

containing channels. Unfortunately, there is no specific blocker of

Kv1.5 subunits. Lagrutta et al. (2006) showed that DPO-1 blocks

homomeric Kv1.5 channels with nanomolar affinities but

according to the same authors, this drug showed little or no

selectivity for Kv1.5 over other Kv1.x mediated currents [23]. We

therefore tested the effect of recombinant agitoxin-2 (AgTx) which

potently blocks homomeric Kv1.3 channels at low nanomolar

concentrations [15,24]. As shown on figure 5B, the Kdr

conductance was partially inhibited upon application of 10 nM

AgTx and was almost completely blocked with a concentration of

50 nM. On average, 10 nM and 50 nM of the toxin inhibited the

outward currents induced by a step at +30 mV by 44.967.1%

(n = 14 p,0.01, paired t test) and 91.161.8% (n = 6 p,0.05,

paired t test), respectively (Fig. 4). The fact that high concentra-

tions of AgTx were needed to block microglial Kdr currents was

somehow surprising given the high affinity of the toxin for Kv1.3

(or even for Kv1.1 and Kv1.6; see table 1). A lower accessibility of

the toxin in acute slices or a possible lower affinity of the toxin for

heteromeric combinations containing Kv1.3 could explain this

result. We therefore tested another toxin, margatoxin, which is

Figure 3. Effects of broad spectrum blockers of potassium
channels on the outward rectifying current expressed by
microglia 48 h after the induction of status epilepticus. A
Example of the current (left panel) induced by a voltage step from
270 to +30 mV in control (black trace) and after perfusion of 4-AP
(1 mM, red trace), and the I/V relationships in the same cell (right
panel). Note that 4-AP almost completely abolished the outward
rectifying currents without affecting the inward currents. B–C Examples
of leak subtracted currents induced by a voltage step from 270 to
+40 mV in control (black trace) and after 4-AP 1 mM (B, red trace) or
TEA 5 mM (C). The leak conductances of the cells in B and C were 585
and 256 pS, respecitively. The graphs on the right represent the
conductance, normalized to its maximum value, as a function of
membrane potential and its inhibition induced by 4-AP (B, n = 8), TEA
(C) 1 mM (n = 9) and 5 mM (n = 7).
doi:10.1371/journal.pone.0006770.g003
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known to block Kv1.3 homomers and Kv1.3/Kv1.5 heteromers

with different affinities [25]. We tested two different concentra-

tions of margatoxin: 1 nM which partially blocks Kv1.3 homomers

but had no effect on Kv1.3/Kv1.5 heteromers and 10 nM which

fully blocks Kv1.3 homomers and only partially Kv1.3/Kv1.5

heteromers [25]. As shown on figure 5C, 1 nM margatoxin

blocked already substantially Kdr currents which were abolished

by a concentration of 10 nM. On average, 1 nM and 10 nM of

the toxin inhibited the outward currents induced by a step at

+30 mV by 55.968.3% (n = 7 p,0.05, paired t test) and

88.762.9% (n = 11 p,0.01, paired t test), respectively (Fig. 4).

Thus, the effects of margatoxin rather support a predominant

expression of homomeric Kv1.3 channels in activated hippocam-

pal microglia.

Finally, we tested whether calcium-activated potassium channels

could contribute to the outward currents measured in activated

microglia. Chelating intracellular calcium by including 10 mM

BAPTA in the intracellular recording solution had no effect on the

general aspect of the I/V curves, and no significant difference

(p = 0.63, t test) was observed between outward current densities

elicited by a step from 270 to +30 mV (n = 5) compared to control

experiments (n = 5, data not shown). However, the recording

conditions used to study Kdr currents may not favour the

detection of calcium-activated potassium currents. We therefore

adopted the recordings conditions (see material and methods) used

previously by others [14,26] to test directly whether calcium-

activated potassium currents were up-regulated after SE. In the

presence of 1 mM internal calcium (4.43 mM Ca2+, 5 mM

BAPTA), hippocampal microglia from control (i.e. PBS-injected)

mice held at 0 mV and stepped at +80 mV displayed an outward

current which was reversibly inhibited by 1 mM TEA (Fig. 6A, C).

Consistent with the involvement of calcium-activated potassium

channels, this TEA-sensitive current was not observed in the

absence of intracellular calcium (no added calcium and 5 mM

BAPTA; Fig. 6A, C). Similar results were obtained with activated

microglia 48 h after SE (Fig. 6B, C) and no difference was

observed in the TEA-sensitive current densities between resting

and activated microglia (p.0.5). These results therefore confirm

the expression of calcium-activated potassium channels by

microglia but also indicate that the current mediated by these

channels is not up-regulated after SE.

Discussion

The purpose of the present study was to identify which channels

mediate the outward currents of hippocampal microglia activated

after SE. We found no sign for the up-regulation of calcium-

activated potassium currents after SE. However, biophysical and

pharmacological analyses favour the involvement of potassium

channels of the Kdr family containing Kv1.3 subunits.

Comparison with cloned Kv subunits
Among the several subunits of the Kv family which are

expressed by microglia in different models of activation, Kv1.1,

Kv1.2, Kv1.3, Kv1.5, Kv1.6 and Kv3.1 could in theory mediate

Kdr currents in hippocampal microglia (see introduction for

references). However, comparison of the pharmacological and

biophysical properties of the currents generated by these subunits

in expression systems with those of Kdr current of activated

hippocampal microglia argues against a predominant contribution

of of several of these subunits in microglia. The relatively small

effect of a-dendrotoxin excludes a major contribution of Kv1.1,

Kv1.2 and Kv1.6 [24,27–29]. The fact that 1 mM TEA had only

a minor inhibitory effect on these currents also argues against a

major role of Kv1.1 and Kv3.1 for which IC 50 values of TEA are

3 to 10 times lower than this concentration (table 1; [24,28]). The

observation that TEA, even at 5 mM, did not shift the activation

and inactivation curves of the current is an additional evidence

Figure 4. Summary of the effects induced by the different drugs tested on the outward rectifying potassium current evoked by a
voltage step from 270 to +30 mV. The histogram represents the average of the leak subtracted current after drug application and normalized to
its pre-drug value. The ‘‘time matched control’’ bar corresponds to experiments in which the current was measured during 10 to 15 minutes without
any drug application to control for the absence of any significant run-down of the current. Statistical tests were done on raw data (paired t test,
**p,0.01; the number of tested cells for each condition is that given in the legends of figures 3 and 4).
doi:10.1371/journal.pone.0006770.g004
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against the involvement of Kv3.1 which activates and inactivates

at more depolarized potentials than those measured in microglia

(table 1; [24,30,31]).

Thus, the two most likely candidates responsible of Kdr currents

in hippocampal microglia are Kv1.3 and Kv1.5. The absence of

Kv1.5 subunit selective inhibitors did not allow probing directly

for the functional expression of this subunit in activated microglia.

Yet, the biophysical properties of Kdr currents of hippocampal

microglia seem to exclude a predominance of homomeric Kv1.5

channels. Indeed, the potential for half-maximal activation of

Kv1.5 channels is usually more depolarized than that observed in

hippocampal microglia (see table 1; [24,30,32–35]. In addition,

Vicente et al. (2006) showed that homomeric Kv1.5 channels

expressed in HEK cells show little steady-state inactivation, which

is in marked contrast with the profound inactivation we observed

in hippocampal microglial cells. Interestingly, the same study

showed that homomeric Kv1.3 and heteromeric Kv1.3/Kv.1.5

channels do inactivate [25]. Accordingly, we found that Kdr

currents were inhibited by two toxins known to block Kv1.3

containing channels, AgTx and margatoxin [36,37]. The fact that

the latter one inhibited half of the current at 1 nM and almost

abolished it at 10 nM favours the conclusion that microglia Kdr

currents are supported by Kv1.3 homomers rather than by Kv1.3/

Kv1.5 heteromers, and excludes the presence of Kv1.5 homomeric

channels, the inhibition of which requires more than 10 times

higher concentrations of margatoxin [25].

Comparison with microglia/macrophages in culture
Several biophysical properties of the Kdr currents found in

hippocampal microglia after SE resemble those recorded in

microglia obtained from tissue print and maintained in culture for

more than a week. In these conditions, microglial cells express

predominantly Kv1.3 subunits and their Kdr currents are

characterized by a potential for half-maximal activation of

227 mV and a potential for steady-state half inactivation of

238 mV [15] which compare favourably with those of activated

hippocampal microglia (224.0560.53 mV and 235.2260.53 mV,

respectively). Although not identical, the time constants for

inactivation measured during long duration depolarizing pulses

were also comparable in both cases (400–600 ms in cultured

microglia and 290618 ms in our study). These properties differ

markedly from those reported by the same authors for the Kdr

currents of microglia at earlier time points in culture and which are

dominated by Kv1.5 subunits [15]. Indeed, Kdr currents of cultured

microglia with a predominant expression of Kv1.5 activate at more

depolarized potentials (V1/2 for activation near 10 mV) and

Table 1. Biophysical and Pharmacological properties of cloned Kv-containing channels potentially expressed in microglia.

Biophysical
properties Kv 1.1 Kv 1.2 Kv1.3 Kv1.5

Kv1.3/1.5
heteromer Kv1.6 Kv3.1

Present
study

Activation V1/2 mV) 232 [24] +27 [24] 223 [25] 26.7 [25] 220 [25] 217 [27] 16 [24] 222.660.5

229 [39] 234 [39] 226 [24] 23 to 225 [24] 27.2 to 6.3 [22] 211 [29] 12.5216.9 [31]

226 [28] 213 to 225 [32] 219 [33]

226 to 235 [40] 211 [34]

0 to 215 [35]

225 [39] 28.6 [30]

Steady-state 247 [39] 244 [39] 244 [39] 233 [33] 29.6 [31] –30.26.52

inactivation 245 [28] 210 to 233 [35] 217 [30]

V1/2 (mV) 238 to 241 [37]

226 [30]

Inactivation 526 [25] 1,300; 17,000 [33] 833–1470 [25] 294612

time constant 5000 [35] 365–1740 [22]

(msec)

.5000 [25]

Cumulative
inactivation

No [24] No [24] Yes [24] No [24] No [29] No [24] Yes

Pharmacological Properties (IC 50)

4 AP 290 mM [24] 590 mM [24] 195 mM [24] 270 mM [24] 1.5 mM [27] 29 mM [24]

200 mM [28] 200–1500 mM [32] 0.1–400 mM [32] 0.3 mM [29]

1500 mM [41]

Alpha – DTX 20 nM [24] 17 nM [24] 250 nM [24] .1 mM [24] 20 nM [27] .1 mM [24]

100 nM [28] 25 nM [29]

TEA 0,3 mM [24] 560 mM [24] 10 mM [24] 330 mM [24] 7 mM [27] 0.2 mM [24]

0.4 mM [28] 11–50 mM [32] 40–330 mM [32] 1.7 mM [29]

10–11 mM [40]

AgTx 2 44 pM [37] 4 pM [37] 37 pM [37]

MgTX 30 pM [25] 30 pM [36] .1 mM [25] 5 nM [40] .200 nM [36]

Numbers in brackets correspond to the articles referenced in the reference list.
doi:10.1371/journal.pone.0006770.t001
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inactivate with a slower time constant (1200 ms; [15]. However, two

characteristics of the Kdr currents of hippocampal microglia do not

fit with those of Kv1.3-expressing cultured microglia. The first one

concerns agitoxin-2 for which, compared to Kv1.3-expressing

microglia [15], a ten times higher concentration was needed to

block Kdr currents of hippocampal microglia in acute slices. Apart

from a problem of penetration of this toxin in the slice, there is no

clear explanation for this difference. Yet, it is worth noting that even

in culture, the concentration used to block Kv1.3-mediated currents

in microglia is much higher than that used on cloned subunits in

heterologous expression systems [15,36]. The second difference

concerns the cumulative inactivation. Kdr currents evoked in

Kv1.3-expressing cultured microglia were characterized by a

marked cumulative inactivation which leads to more than 50% of

current inhibition with inter-pulse intervals of 10 sec [15]. In

contrast, a similar amount of inactivation was achieved in activated

hippocampal microglia only with inter-pulse intervals smaller than

0.5 sec (see Fig. 1C2). Interestingly, the presence of Kv1.5 together

with Kv1.3 in heteromeric combinations seems to reduce its

amplitude in macrophages and in LPS treated cultured microglia

[13,22]. Yet, the expression of Kv1.3/Kv1.5 heteromers in

hippocampal microglial cells does not fit well with the sensitivity

to margatoxin, the activation curves and the steady-state inactiva-

tion of Kdr currents in these cells. Altogether, these observations

therefore suggest that Kv1.3 is the predominant Kv subunit

expressed by activated microglia in the epileptic hippocampus.

Whether a low proportion of Kv1.5 contributing to heteromeric

combinations or the existence of post-transcriptional mechanisms

determines some of the functional properties of these Kdr channels

is however difficult to test in the absence of specific inhibitors of

Kv1.5 subunits.

Possible roles of Kv1.3 subunits in activated microglia
after SE

The expression of potassium channel subunits mediating Kdr

currents in activated microglia seems to control several functional

Figure 5. Effects of a-dendrotoxin (A, 50 nM), agitoxin-2 (B, 10
and 50 nM) and margatoxin (C, 1 and 10 nM) on the leak
subtracted current induced by a voltage step from 270 to
+40 mV (black traces recorded in control, red traces after drug
application). The leak conductances of the cells in A, B and C were
338, 862 and 332 pS, respectively. The graphs on the right represent the
conductance, normalized to its maximum value, as a function of the
membrane potential and its inhibition by a-dendrotoxin (A, n = 4, Dtx),
agitoxin-2 (B, AgTx, n = 14 for 10 nM, n = 6 for 50 nM) and margatoxin
(C, MgTX, n = 8 for 1 nM, n = 11 for 10 nM).
doi:10.1371/journal.pone.0006770.g005

Figure 6. Calcium-activated potassium currents in resting and
activated microglia. A, B Examples of currents induced by voltage
steps from 0 to +80 mV before (black traces) and after (red traces) bath
application of TEA (1 mM) with 1 mM (left panel) and 0 mM (right panel)
estimated intracellular free calcium in microglial cells from control (A)
and from epileptic (B) mice. C Summary of the effects of TEA (1 mM,
red column) and intracellular calcium on the current densities induced
by voltage steps from 0 to +80 mV in microglia of control and epileptic
mice (paired t test, *p,0.05).
doi:10.1371/journal.pone.0006770.g006
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parameters of the activation process. Kv1.3, but also Kv1.5,

subunits expressed by activated microglial cells modulate their

proliferation [13,15]. The presence of Kv1.3-containing channels

in activated microglia is therefore in keeping with our previous

observation that the number of microglial cells increased in the

hippocampus after SE and that many of these cells also expressed

markers of proliferation such as Ki67 and MAC2 [10]. However,

the exact role of these subunits in microglia proliferation remains

controversial. Pannasch and collaborators reported that up-

regulation of Kv1.3 and of Kv1.5 rather decreases microglia

proliferation induced by LPS in culture or by nerve lesion in vivo

[13]. On the contrary, Kotecha and Schilchter (1999) observed

that blocking either of these subunits decreases the proliferation

rate of un-stimulated microglia in long term cultures. The reason

for such a difference is not clear but may rely on the different types

of stimulation leading to microglia activation. Thus, in the case of

microglia activated by SE, it would be interesting to clarify

whether the up-regulation of Kv1.3 subunits promotes or inhibits

their proliferation.

Finally, Schlichter and collaborators have clearly established

that Kv1.3 subunit blockers reduce the NADPH-mediated

respiratory burst of activated microglia and therefore the

subsequent production of superoxide and free radicals which

contributes to the deleterious effect of these cells on neuronal

survival [16]. The inflammatory reaction which occurs in the

hippocampus after SE is accompanied by neuronal cell death,

even in models in which the susceptibility to seizures is the lowest

[10,38]. Whether this neuronal death is a consequence of

microglia activation and of the up-regulation of Kv1.3 in these

cells is an appealing hypothesis which remains to be tested.
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