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ABSTRACT Rhodopsins are widely distributed across all domains of life where they
perform a plethora of functions through the conversion of electromagnetic radiation
into physicochemical signals. As a result of an extensive survey of available genomic
and metagenomic sequencing data, we reported the existence of novel clades and ex-
otic sequence motifs scattered throughout the evolutionary radiations of both Type-1
and Type-3 rhodopsins that will likely enlarge the optogenetics toolbox. We expanded
the typical rhodopsin blueprint by showing that a highly conserved and functionally im-
portant arginine residue (i.e., Arg82) was substituted multiple times during evolution by
an extensive amino acid spectrum. We proposed the umbrella term Alt-rhodopsins
(AltRs) for all such proteins that departed Arg82 orthodoxy. Some AltRs formed novel
clades in the rhodopsin phylogeny and were found in giant viruses. Some newly uncov-
ered AltRs were phylogenetically close to heliorhodopsins, which allowed a closer exam-
ination of the phylogenetic border between Type-1 rhodopsins and heliorhodopsins.
Comprehensive phylogenetic trees and ancestral sequence reconstructions allowed us
to advance the hypothesis that proto-heliorhodopsins were a eukaryotic innovation
before their subsequent diversification into the extant Type-3 rhodopsins.

IMPORTANCE The rhodopsin scaffold is remarkably versatile and widespread, coupling
light availability to energy production and other light-dependent cellular responses with
minor alterations to critical residues. We described an unprecedented spectrum of sub-
stitutions at one of the most conserved amino acids in the rhodopsin fold, Arg82. We
denoted such phylogenetically diverse rhodopsins with the umbrella name Alt-rhodop-
sins (AltR) and described a distinct branch of AltRs in giant viruses. Intriguingly, some
AltRs were the closest phylogenetic neighbors to Heliorhodopsins (HeRs) whose origins
have remained enigmatic. Our analyses of HeR origins in the light of AltRs led us to
posit a most unusual evolutionary trajectory that suggested a eukaryotic origin for HeRs
before their diversification in prokaryotes.

KEYWORDS rhodopsins, Alt-rhodopsins, AltRs, heliorhodopsins, optogenetics,
metagenomics

Rhodopsins are remarkably promising molecules for modulating cell expression
with precision (1–3), but for many their biological role in the natural environment

remains largely obscure. With increasing sequence data, more rhodopsins are being
found (4–9), but it is unclear to what extent the sequence diversity of the rhodopsin-
verse has been explored. Type-1 (microbial rhodopsins) and Type-2 (animal rhodop-
sins) share similar, seven-helical topological conformation and membrane orientation
with the N terminus in the extracellular space and a Schiff base linkage from a con-
served lysine to retinal in the seventh helix (TM7) (10). However, while the overall fold
is the same, there is no detectable sequence similarity between these two types. A
completely new type of rhodopsin similar to Type-1 rhodopsins was identified recently
but with inverse membrane orientation (Heliorhodopsins, HeRs, or Type-3 rhodopsins)
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(11). Despite their orientation, HeRs also bind the retina using a conserved lysine in
TM7 (transmembrane helix 7). Apart from the lysine in TM7 that is essential for binding
retinal, several other functionally important residues have been identified, e.g., several
characteristic sequence motifs in TM3 and TM7 that may be predictive of the nature of
the ion pump. Proteorhodopsins typically display DTE or DTD motifs in TM3 and a
DxxxK motif in TM7. Inward chloride pumps may be recognized by NTQ or TSD motifs
in TM3 and a DxxxK motif in TM7 and heliorhodopsins have the ESL motif in TM3 and
SxxxK in TM7 (12).

One critical and highly conserved residue is Arg82 (BR numbering) in the third transmem-
brane helix (TM3). Since the discovery of bacteriorhodopsin (BR) in haloarchaea nearly 5 dec-
ades ago (13), no naturally occurring rhodopsins are known that do not have a conserved
Arg82 residue (12). Among conserved BR amino acids, Arg82 in TM3 was recognized as an
essential player within the photocycle due to its involvement in proton release through inter-
actions with Asp85, Asp212, and the retinal Schiff base (14, 15). Such conclusions are the
result of experimental work and observations from multiple mutagenesis studies that
describe the effects of targeted Arg82 substitutions on BR photocycle and proton release:
R82A (14, 16–18), R82C (16), R82H (15), R82K (18–20), and R82Q (14, 17, 20, 21). In general,
these studies indicate that the charge and hydrogen bonding capabilities of the residue in
position 82 drastically influence the interactions between the proton acceptor (Asp85) and
proton release group, thus altering or even abolishing proton release to the extracellular
space under normal physiological conditions (14–16, 18). This changed with the discovery of
xenorhodopsins (22) that were shown to have a tryptophan (W) or phenylalanine (F) in this
position and to function as unusual inward proton pumps (23). Since then, a few substitu-
tions to Arg82 were reported in (i) anion channels (K instead of R) (4), (ii) a few rhodopsins of
unknown function (Q, A, and T instead of R) (6), and (iii) potassium pumps (kalium rhodop-
sins, W instead of R) (5). However, no such substitutions have ever been described in HeRs.

In this work, we performed an extensive search through hundreds of metagenomes
and metatranscriptomes and showed that a surprisingly large number of rhodopsins
with peculiar amino acid substitutions and novel motifs had remained out of sight. We
utilized this newly unearthed diversity to construct large-scale, highly supported phy-
logenies and to generate a plausible evolutionary scenario for the origin and evolution
of Type-3 rhodopsins (heliorhodopsins; HeRs) (11).

RESULTS AND DISCUSSION
Novel clades of unusual rhodopsins. We scanned large collections of genomic,

metagenomic, and metatranscriptomic data sets from various sources (e.g., marine,
freshwater, brackish, sediments, prokaryotic/eukaryotic genomes, and eukaryotic tran-
scriptomes) to identify novel rhodopsin sequence variants. Sequences with seven
transmembrane helices and a conserved lysine in TM7 were considered bonafide rho-
dopsins (see Materials and Methods for details). We aligned these sequences with
known rhodopsins to identify characteristic motifs in TM3 and TM7. Unexpectedly,
these alignments also revealed substantial variation in residue 82 (Arg82) that had not
been observed before. We found that the known substitutions for this critical TM3 resi-
due (i.e., Arg82) could be significantly expanded by additional changes at this position
in both Type-1 and Type-3 rhodopsins. In sum, we found strong evidence supported
by at least 10 sequences in each case that residues H, K, Q, A, P, S, Y, E, and M can
replace Arg82. Other substitutions (N, I, F, T, L, G, D, V, and C) were also identified but
less than 10 times (see Table S1). We proposed the umbrella name Alt-rhodopsins
(AltRs) for all such microbial rhodopsins with a substituted Arg82 (i.e., non-R type rho-
dopsins as opposed to R-type ones with Arg82). This nomenclature included xenorho-
dopsins and kalium rhodopsins as subtypes of Alt-rhodopsins. Here, we differentiated
among the subtypes of Alt-rhodopsins by indicating the substituent amino acid sym-
bol (e.g., H-type when H replaced the canonical R).

AltRs were present in nearly all phylogenetic clades of rhodopsins in bacteria, arch-
aea, eukaryotes, and viruses (Fig. 1) (insofar as taxonomic origin could be reliably
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ascribed). However, by far the vast majority (n = 102) were found in the eukaryotic
Cryptophytes. Altogether, we classified 399 sequences as AltRs (see Table S2). At least 121
of these sequences originate from previously described channelrhodopsins found in unicel-
lular algae and giant viruses (4), xenorhodopsins (22), and potassium pumps (5), all classi-
fied as Type-1 rhodopsins. The previously undescribed sequences (n = 278) encompassed
both Type-1 and HeRs with 93 of them being of confident taxonomic origin, with 30 from
eukaryotes (26 cryptophytes, 1 fungus, 1 ciliate, and 2 unclassified), 34 of nucleocytoplasmic

FIG 1 Maximum likelihood phylogenetic tree of rhodopsins. Alt-rhodopsins are indicated by red circles at node tips. Ultrafast bootstrap values are shown
at selected nodes. A star indicates the novel clades of rhodopsins and Alt-rhodopsins. Yellow arrows indicate the position of H-type rhodopsins and their
counts. The inset at the top left shows a simplified version of the phylogenetic tree marking all reference rhodopsin sequences (in green circles). See also
Tables S1 and S2 and FigShare Data at https://figshare.com/s/f2d7b1065930bf350c2f.
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large DNA viruses (NCLDVs), 25 bacterial (12 proteobacteria, 9 actinobacteria, 3 cyanobacte-
ria, and 1 Verrucomicrobiota) and 4 archaeal (3 Halobacteriota and 1 Thermoplasmatota).
Of the sequences with uncertain taxonomy (n = 185), 110 were likely eukaryotic, 42 were
bacterial, and the remaining 33 were unclassified. This distribution implied that AltRs were
universally distributed across all domains of life and appeared to be present in both mono-
derm and diderm bacteria. This contrasted with heliorhodopsins, which are restricted to
monoderms (9, 24).

Giant viruses encoded H-type Alt-rhodopsins. Multiple, phylogenetically distinct
lineages of rhodopsins (including HeRs) revealed signs of widespread convergent evo-
lution, which was evident from the dispersed distribution of non-R type rhodopsins.
For example, H-type AltRs (n = 214), which were the most common novel type, did not
form a phylogenetically coherent lineage but seemed to have emerged independently
in multiple lineages (indicated with yellow arrows in Fig. 1). Additionally, we observed
multiple closely related clades of Type-1 rhodopsins accommodating both classical
rhodopsins (with Arg82) and H-type AltRs (Fig. 1, indicated by a star). Clustering of AltR
encoding contigs and transcript (wherever available), based on shared gene content,
also revealed the same major group (n = 47, indicated by a star in Fig. 1). However,
their taxonomic origin remained unclear. By analyzing flanking genes near these H-
type rhodopsins within these contigs, we could identify typically eukaryotic genes,
such as the mRNA capping enzyme (mRNAc) and DNA-dependent RNA polymerase
subunits (RNAPL) (See Fig. S1). Such genes, however, are also encoded by giant viruses
(25). Further scanning of these contigs using ViralRecall (26) convincingly identified
them as belonging to the broad class of nucleocytoplasmic large DNA viruses
(NCLDVs) with all contigs showing at least one positive hit to known viral proteins.
Among contigs $5 kb (n = 34) a total of 25 encoded at least one hallmark NCLDV
marker gene with the longest contig (L969, ;116 Kbp) harboring 5 distinct markers
(see also Tables S1 and S2). All AltRs in this cluster had the Arg82 replaced by histidine
(H-Type) and display a DxxxK motif in TM7. A more detailed view of gene context vari-
ability in the vicinity (5 kbp upstream and downstream) of selected NCLDV H-type
AltRs is provided in Fig. S1.

The phylogenetic border between Type-1 and Type-3 rhodopsins. The phyloge-
netic tree presented in Fig. 1 provided a tantalizing glimpse into the evolution of rho-
dopsins at large. We sought to examine the sequences closest related to HeRs in more
detail to shed light on their presently mysterious evolutionary history as recent works
with large numbers of rhodopsin sequences have either considered them as outgroups
(27), had insufficient support for the HeR clade (1) or excluded them altogether (6).

Several clades in the tree display high statistical support suggesting they were well-
resolved (Fig. 1, n = 2199 sequences). Moreover, it also appeared clear that Type-1 rhodop-
sin diversity far exceeded HeR diversity because HeRs were restricted to a single, albeit
highly coherent clade. The topology also indicated that HeRs were a recent innovation
and that Type-1 rhodopsins were ancestral. Additionally, HeRs appear to currently be most
closely related to two distinct clades of Type-1 rhodopsins (R-type) originating from eukar-
yotes, one from Dinoflagellates (TM3 motifs ETK, ETS, ETC, or unusual TM7 motif NxxxK)
and the other from Colpodellida, (Chromera velia, unusual TM3 motif QTQ, TM7 motif
DxxxK), both Alveolates. Notably, several HeRs also shared TM3 motifs similar to the ones
present in dinoflagellate rhodopsins, e.g., ESV, ETI, or ESL. The dinoflagellate sequences
have been described before (4) and characterized as weak pumps of unknown selectivity
(6). Their relatedness to HeRs, however, had not been reported. The next closest clade to
these are inward pumping Schizorhodopsins (SzRs) found mainly in Asgard archaea and
CPR bacteria (8, 28, 29).

Upon closer examination, some of these unusual dinoflagellate rhodopsins (e.g., NCBI
accession no. CAE6957589.1; Type-1, R-type, TM3 motif ETK, and TM7 motif NxxxK)
appeared to have an extremely long C-terminal region (;500 aa) that returned no clear
hits to any known sequence domain (except the N-terminal rhodopsin domain). We per-
formed multiple iterations of structural modeling for this sequence (both entire and in
multiple parts) to identify putative domains using Alphafold2 (30). The modeling results
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indicated that the C terminus (intracellular) of the rhodopsin domain was connected to a
compact helical domain (modeled with high IDDT scores by AlphaFold2). To identify simi-
lar structures, we used this predicted model as a query for structure based-searches with
VAST (31). This search identified similar structural motifs in archaeal elongation initiation
factor 2 (PDB accession no. 3CW2, domain 2 in alpha subunit) (32), SAM domains (sterile
alpha motif) in Yan and Mae proteins that are known to dimerize (33), and SAM domains
in proteins CNK and HYP that are known to dimerize as well (PDB accession no. 3BS5) (34).
Additionally, distal to the SAM-like domain, there was a flexible linker region (modeled
with low support) followed by a second domain composed of multiple helical segments,
which also had low modeling support but distant similarities to four-alpha helix bundle
domains. The SAM-like domain, the linker, and the four-alpha helix bundle domain were
all located in the cytoplasm with no transmembrane helices predicted in this domain (see
Fig. 2). The SAM-like domain may likely be useful in the dimerization of such rhodopsins (35)
and along with the downstream domains facilitate the transmission of the conformational
change in the rhodopsin domain to initiate a signaling cascade. Several dinoflagellate rho-
dopsins, which showed no or low photocurrents (6) and were coupled to additional domains
in the cytoplasm (like the one shown here), were indeed evocative of heliorhodopsins that
showed no transport activity and may be coupled to additional domains themselves (9).

To examine the relatedness between heliorhodopsins and dinoflagellate rhodop-
sins in greater detail, we expanded our search to include additional eukaryotic
genomes from dinoflagellates, fungi, etc (from Ensembl and NCBI). Thus, we recon-
structed the phylogenetic tree using a subset of the initial sequences while also,
including additional sequences closely related to HeRs (Fig. 3). Remarkably, our
expanded search led us to identify another unusual Type-1 AltR from the dinoflagellate
Symbiodinium natans (Q-type, TM3 motif QNL, and unusual TM7 motif TxxxK) that
stood out as the phylogenetically closest Type-1 rhodopsin to Type-3 HeRs. The TxxxK

FIG 2 Comparison of known and predicted structural domains in C-terminal of selected dinoflagellate Type-1 rhodopsins. (A) Reference structure of a SAM
domain, PDB accession no. 3BS5, (B) predicted structure of SAM domain from dinoflagellate rhodopsin sequence NCBI accession no. CAE6957589 (c)
superimposition of (A and B), and (D) Predicted domain architecture of the entire protein (E) reference structure of a PAS domain, PDB accession no. 4HOI,
(F) predicted structure of the PAS domain from the dinoflagellate Alt-rhodopsin (NCBI accession no. CAE7343182), (G) superimposition of (D and E), and
(H) predicted domain architecture of the entire protein.
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Patescibacteria HeRs TM3_RWxxx TM7_SxxxK R-TYPE ESX

TPX33123.1 TM3_RWESL TM7_SLFSK R-TYPE ESL Synchytrium microbalum

RH-23may17-C415590-cds2 TM3_RWETL TM7_SLVTK R-TYPE ETL FRESHWATER_MG-(unknown)

KNC46964.1 TM3_RWAPL TM7_SLMAK R-TYPE APL Thecamonas trahens ATCC_50062

CAMPEP_0175160224 TM3_RWETI_TM7_SLLSK_R-TYPE ETI TAX_ID_136419_D1-MMETSP Cercozoa

CEVN01151500-cds1 TM3_RWETL TM7_SLVSK R-TYPE ETL GCA_001179605.1-MARINE_MG-(unknown)

Actinobacteria HeRs TM3_RWExx TM7_SxxxK R-TYPE ESX

RE-9nov16-C260004-cds1 TM3_RPETL TM7_SIAAK R-TYPE ETL FRESHWATER_MG-(unknown)

CAE8683992.1 TM3_RWESL TM7_SLSAK R-TYPE ESL Polarella glacialis 

WP_010542476 TM3_RWESL TM7_SLVAK R-TYPE ESL Dietzia alimentaria

NCLDV HeRs TM3_RWETx TM7_SxxxK R-TYPE ETX

Viral (likely) HeRs TM3_RWExx TM7_SFxxK R-TYPE ETX

CS-Sed10-C201071-cds1 TM3_RWESL TM7_SLVAK R-TYPE ESL MORN-HeR p_Firmicutes

CESZ01090691-cds3 TM3_RWETI TM7_SLVSK R-TYPE ETI GCA_001371355.1-MARINE_MG-(unknown)

MAG_00160_000000001259-cds429 TM3_RWETI_TM7_SFVAK_R-TYPE ETI Florenciella-(MARINE_EUK)

CSBr16-27987-cds2 TM3_RWETV TM7_SFSSK R-TYPE ETV HALOALKALIPHILIC_BRINE_MG_NCLDV

Eukaryota-Dinoflagellata TYPE-1 TM3_RPETx TM7_NxxxK R-TYPE ETX

Asgardarchaeota HeRs TM3_RWESx TM7_SxxxK R-TYPE ESX

KNC47618.1 TM3_RWESL TM7_SLVAK R-TYPE ESL Thecamonas trahens ATCC_50062

Eukaryota-Colpodellida TYPE-1 TM3_RxQTQ TM7_DLxSK R-TYPE QTQ

Viral (likely) HeRs TM3_xYESV TM7_SxxxK H/N-TYPES ESV

ERR3587123-C42588-cds1 TM3_RYATQ TM7_DVTSK R-TYPE ATQ MARINE_MT-(unknown)

CENJ01104695-cds2 TM3_RWETV TM7_SFVSK R-TYPE ETV GCA_001039885.1-MARINE_MG_NCLDV

CENJ01172671-cds2 TM3_RWETI TM7_SVLSK R-TYPE ETI GCA_001039885.1-MARINE_MG-(unknown)

Prokaryotic HeRs TM3_RWxxx TM7_SxxxK R-TYPE ESX

A0A5C0XPL4_PYRFU TM3_RWETI TM7_SFVSK R-TYPE ETI Pyrococcus furiosus

CAE7343154.1 TM3_QYENL TM7_TFGAK Q-TYPE ENL Symbiodinium natans

T3-Sed10-C179835-cds1 TM3_RWESL TM7_SLVAK R-TYPE ESL MORN-HeR p_Firmicutes

CAE7343182.1 TM3_QYENL TM7_TFGAK Q-TYPE ENL Symbiodinium natans

SRR10955843-C200861-cds3 TM3_RWETA TM7_SLLSK R-TYPE ETA FRESHWATER_MG-(unknown)

KOO28456.1 TM3_RWESI TM7_SLFAK R-TYPE ESI Chrysochromulina tobinii (Eukaryota)

Eukaryotes HeRs TM3_RWExx R-TYPE

CAMPEP_0180302652 TM3_RHSTQ_TM7_DVFSK_R-TYPE STQ TAXID_697907_CCMP2293_MMETSP Cryptophyta sp. CCMP2293 

3300028569-13-C159-cds3 TM3_HFESA TM7_SLCAK H-TYPE ESA p_Myxococcota g_SCUS01

CAE8628491.1 TM3_RWESL TM7_SLSAK R-TYPE ESL Polarella glacialis

Unknown (marine metagenome) HeRs TM3_RxETA TM7_SxxxK R-TYPE ETA

SRR10955558-C185438-cds1 TM3_RWETI TM7_SVFAK R-TYPE_ETI FRESHWATER_MG-(unknown)

ZSoct5m-G104_00718 TM3_RWESG TM7_SLVAK R-TYPE ESG p_Chloroflexota - Limnocylindria

Schizorhdodopsins (Asgardarchaeota + Patescibacteria)

SRR10955151-C116763-cds2 TM3_HYESA TM7_SALAK H-TYPE ESA FRESHWATER_MG-(unknown)

CS-Sed10-C56250-cds4 TM3_RWESL TM7_SLVAK R-TYPE ESL MORN-HeR p_Firmicutes
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sequences indicate (i) sequence ID, (ii) conserved motifs found within the TM3 region of the rhodopsin, (iii) conserved motifs found within the
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sequence if known. Red, reference sequences, all others are queries; red branches and triangles, eukaryotes; blue, prokaryotes; light gray,
sequences retrieved from viruses (or likely viral origin); black lines and empty triangles, sequences of unknown taxonomy; dark-gray triangle,
outgroup (Schizorhodopsins). Relevant TM3 motifs generated by ancestral sequences reconstruction are indicated using arrows. MG and MT were
used as abbreviations for metagenome and metatranscriptome.
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motif in TM7 presented by this sequence was also reminiscent of the SxxxK motif
found in HeRs. This sequence (NCBI accession no. CAE7343182.1) was 532 aa long and
contained a rhodopsin domain in the first half of the protein. However, the other part
of the protein contained no recognizable domains. We further modeled this C-terminal
part using AlphaFold2 and obtained a predicted structural model with high iDDT
scores (.80). Structure-based searches using VAST suggested close similarities to the
PAS domain (See Fig. 2). Additional structure comparisons by TM-align (36) confirmed
the same fold (TM-score .0.5; root mean square deviation (rmsd), 3.22). Notably, the
PAS domain from this AltR presented an additional loop (Fig. 2). PAS domains are
known to be associated with sensory proteins (37), and in several cases, may bind a
wide variety of ligands, e.g., heme, hydroxycinnamic acid (38). The PAS domain fold
was also found in the LOV domain that was known to bind the flavin mononucleotide
(FMN) chromophore acting as a blue light sensor. Remarkably, the VAST search we per-
formed also detected structural similarities to a LOV domain (PDB accession no. 3SW2)
(39). The ligand, (if any) that would bind to this PAS domain was unclear but the close
similarities to sensory LOV domains reiterate the possible sensory activity of this dino-
flagellate rhodopsin. Both rhodopsin sequences that stand as phylogenetic neighbors
contained motifs similar to HeRs along with additional domains possibly involved in
signaling (or as yet unknown activity), which was consistent with the inference that
channeling ions was perhaps not their function.

A eukaryotic origin for heliorhodopsins. We recently argued, based on phyloge-
netic evidence, that Type-1 rhodopsins were likely the more ancient rhodopsins and HeRs
were a comparatively recent innovation (9). Additionally, ancestral reconstruction of Type-
1 rhodopsin sequences has suggested that DTE proton pumps most likely represent the
ancestral form of Type-1 rhodopsins (27). We performed ancestral reconstruction at multi-
ple nodes in the HeR phylogeny that singled out the ETx motif as ancestral to all HeRs (see
Materials and Methods for details). Additional similar ancestral motifs for different clades
of HeRs were indicated in Fig. 3. The overall close phylogenetic relatedness and the similar-
ities in the motifs (ESx, ETx) led us to posit that HeRs likely originated from such eukaryotic
rhodopsins and were subsequently captured by giant viruses as well. The acquisition of
HeRs by prokaryotes and their subsequent diversification in monoderms appeared to have
been a later event. This unusual evolutionary trajectory of HeRs (prokaryote to eukaryote
being the more common direction) (40), coupled with their fusions/co-occurrences with
multiple sensory domains also suggested that HeR was cast in an enabling role as a flexi-
ble scaffold allowing innovation in cellular signaling in response to light.

With the diverse array of new rhodopsin sequences and more intermediate sequences
sampled, it has become possible to tease out real evolutionary relationships. The diversity
of AltRs reiterated the enormous plasticity in the rhodopsin scaffold that continued to sur-
prise us even nearly 5 decades after its discovery (13). Specific activities of such new
sequences must be examined individually as even with many structures the entire set of
axioms that govern activity remain out of bounds. Even if the activity is understood, the
functional role in the organism is unclear. The recent advent of improved methods for pro-
tein structure prediction is expected to boost hypothesis generation and structure-aided
design. However, given the sheer diversity of both rhodopsins and the organisms that
express them, the general lack of molecular tools outside classical model organisms, an
enormous effort will still be required in the development of specific assays to finally cut
the gordian knot of function for most rhodopsins.

MATERIALS ANDMETHODS
Sequence data and initial analyses. We used a comprehensive collection of publicly available

sequences, including the entire Genome Taxonomy Database (GTDB) (Release 95) (41), Uniprot (42), and
ca. 50K Genomes from Earth’s Microbiomes (GEM) catalog (43). We also used publicly available metage-
nomic data from diverse data sets from all over the world, e.g., freshwater metagenomes and metatran-
scriptomes from multiple European freshwater sites like Rimov Reservoir, Jiricka Pond, Lake Zurich, Lake
Constance, Lake Thun (9, 44–47), Lake Tanganyika in Tanzania (48), Lake Baikal in Russia (49), Amadorio
and Tous Reservoirs in Spain (50, 51), Lake Mendota in the USA (52), Amazon River (53) in Brazil, the
brackish Caspian Sea (54), marine metagenomic data from GEOTRACES (55), metagenomes and
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metatranscriptomes from TARA Oceans Expeditions (56), metagenomes from brackish sediments (8),
metagenomes and metatranscriptomes from haloalkaliphilic brine and sediments (57–59), and eukaryo-
tic culture transcriptomes from the MMETSP database (60). Metagenomic/metatranscriptomic sequences
were downloaded and processed with BBMap tools available from https://github.com/BioInfoTools/
BBMap/. Briefly, the bbduk.sh script from the BBmap project was used to remove low-quality reads
(qtrim = rl trimq = 18), phiX and p-Fosil2 control reads as well as Illumina adapters (k= 21 ref=adapterfile
ordered cardinality). Cleaned reads were assembled de novo with MEGAHIT v1.2.9 (61) using default
parameters with a custom k-mer list: 29, 49, 69, 89, 109, 119, 129, and 149. All sequences in this work
were named or retained existing names that allowed tracing them to their original data sets. We
also collected reference rhodopsin sequences from a wide variety of previously published sources
(1, 4, 5, 8, 22, 62–65).

Rhodopsin identification. Gene prediction on assembled data sets was performed using Prodigal
v2.6.3 (66). Candidate rhodopsin sequences were scanned using hmmsearch (67) against existing PFAM
models for Type-1 rhodopsins (PF01036), heliorhodopsins (PF18761), and a new HMM built from an
alignment of known Type-1 and Type-3 rhodopsins (see FigShare Data at https://figshare.com/s/
f2d7b1065930bf350c2f). All sequences were compared to a database of reference rhodopsins to collect
homologous sequences using MMseqs2 (68) and multiple alignments were built for each candidate
sequence with mafft (–localpair) (69). These alignments were used as input to Polyphobius for the pre-
diction of putative transmembrane helices (70). Only sequences with seven transmembrane helices and
a lysine (K) residue in TM7 were retained.

Gene context analysis. Protein coding genes from all collected contigs harboring Alt-rhodopsins
(n = 349) were predicted de novo by Prodigal v2.6.3 (66) in metagenomic mode (–p meta). Inferred pro-
tein sequences were annotated using a local installation of Interproscan (71) and by scanning them
against the Protein Families (PFAM v.31) database with the Perl script pfam_scan.pl (available from ftp://
ftp.ebi.ac.uk/pub/databases/Pfam/Tools). Annotation was also performed by scanning proteins with
hmmsearch (67) against the COGs (clusters of orthologous groups) (72) and TIGRFAMs (73) HMM data-
bases (E value # 1e-3). BlastKOALA (74) was used to assign KO numbers to predicted orthologous pro-
teins. To facilitate gene-context analysis for Alt-rhodopsins, the collection of contigs was clustered based
on shared homologous proteins (i.e., requiring a minimum of 2 shared genes between any 2 members).
For this purpose, all predicted proteins were clustered together using MMseqs2 (68) in easy-cluster
mode (–cluster-mode 1 –c 0.5 –s 7.5) to identify homologs. Protein clustering information was further
used to group contigs based on shared gene content. Contig clusters were plotted using Gcluster (75)
with default parameters and showing consensus gene annotation generated as previously described.
Manual curation of plotted clusters involved removal of contigs with less than 5 genes and collapsing of
nearly identical ones while recording their number.

Taxonomic classification of contigs. Taxonomy was assigned to protein-coding genes we previ-
ously predicted within rhodopsin-encoding contigs by screening them with MMseqs2 (68) (“search”
option, default parameters) against the annotated proteomes from the Genome Taxonomy Database
(GTDB; release 95) (41). We followed a very conservative approach to pinpoint the taxonomic origin of
these contigs, considering only those of at least 5 kb in length, and a minimum of 60% of genes giving
best hits to the same phylum. Shorter contigs were retained as unclassified.

Phylogenetic trees of rhodopsins. The tree shown in Fig. 1 contains 2199 sequences of which 694
were reference rhodopsin sequences and the remaining 1505 were identified from our scan. These 1505
sequences were chosen as representatives of the total 6478 rhodopsin sequences identified in our scan.
We chose to cluster all identified sequences at a 90% level of identity using MMseqs2 (easy-cluster) to
include only representative ones in the tree. Additionally, all rhodopsin sequences .350 aa were
excluded. Multiple alignments were performed using mafft (69) and a maximum likelihood tree was
made using iqtree2 (76) with automatic model selection performed by ModelFinder (77), and 1000 itera-
tions of ultrafast bootstrapping with 1000 rounds of SH-aLRT testing (-alrt 1000 -B 1000) (78).

The tree shown in Fig. 3 contains 834 sequences of which 226 were reference rhodopsins and 608 were
identified from our scan. This reduced set of rhodopsins was obtained from the initial collection of 2201
sequences following clustering at 70% identity using MMseqs2. Sequences were aligned using PASTA (79)
(default parameters) and tree construction performed by iqtree2 (v 2.1.2) with the same parameters used for
the original tree. Phylogenetic tree pruning meant to highlight the Type-1/HeR split and manual annotations
of the subtree were carried out in FigTree v 1.4.3 (https://github.com/rambaut/figtree/).

Domain predictions and structural analyses. Sequence-based domain predictions were carried out
using Pfam (80), the Conserved Domain Database (81), HMMER (82), and HHPred (83). Structure prediction
and domain definitions for selected sequences were performed using Alphafold2 (30) provided via
ColabFold (84). Protein structures were visualized using ChimeraX (85). Structure-based searches were carried
out using VAST (31). Transmembrane helix predictions were performed using Polyphobius (70) and supple-
mented wherever necessary with additional predictions from TOPCONS (86) and Phobius (87).

Identification of NCLDV contigs. Rhodopsin-encoding contigs of at least 5 kb (n = 485) were
scanned with ViralRecall (26) to identify signatures of putative nucleocytoplasmic large DNA viruses
(NCLDVs). The minimum number of viral hits to be reported by ViralRecall was reduced to 1 (-g 1) from
the default value of 4 hits. We further classified contigs according to ViralRecall scores into four catego-
ries: NCLDV_high ($5), NCLDV_medium (,5, $2), NCLDV_low (,2, .0), and non_NCLDV (,0) (results
shown in Tables S1 and S2).

Ancestral sequence reconstruction. The evolutionary history of TM3 amino acid motifs from col-
lected rhodopsins was inferred by ancestral sequence reconstruction (ASR) (88). In brief, the rhodopsin
alignment generated for the reduced rhodopsin tree (n = 834 sequences; available at https://figshare
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.com/s/f2d7b1065930bf350c2f) was used as input in iqtree2 (v 2.1.2) with the –asr option specified and
best model previously chosen according to the Bayesian information criterion (BIC) (–perturb 0.2 –nstop
500 -B 1000 -m LG1I1G4 –alrt 1000 -asr). Results were filtered to keep only ancestral sequence positions
with a probability cutoff$0.4. TM3 motifs were identified in final ASR sequences by comparison to refer-
ences and were indicated for 8 nodes in the phylogenetic tree shown in Fig. 3.

Data availability. All sequences used in this work, including reference sequences and derived data
such as alignments and phylogenetic trees, have been deposited at FigShare at https://figshare.com/s/
f2d7b1065930bf350c2f and are publicly available for download as of the date of publication.
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Supplemental material is available online only.
FIG S1, EPS file, 2.3 MB.
TABLE S1, XLSX file, 0.4 MB.
TABLE S2, XLSX file, 0.1 MB.
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