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Abstract

Diet can affect a spectrum of biological processes ranging from behavior to cellular metabolism. Yet, the precise role of an
individual dietary constituent can be a difficult variable to isolate experimentally. A chemically defined food (CDF) permits
the systematic evaluation of individual macro- and micronutrients. In addition, CDF facilitates the direct comparison of data
obtained independently from different laboratories. Here, we report the development and characterization of a CDF for
Drosophila. We show that CDF can support the long-term culture of laboratory strains and demonstrate that this
formulation has utility in isolating macronutrient from caloric density requirements in studies of development, longevity
and reproduction.
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Introduction

Organisms must acquire nutrients from food to meet the

energetic and metabolic requirements necessary for life. Deficiency

or overabundance of dietary nutrients is a key physiological

variable influencing developmental, homeostatic and disease

processes [1–6]. Understanding how nutrient-dependent physio-

logical status can influence cellular processes has been the subject

of intensive investigation. For example, in Drosophila, dietary

manipulation has been shown to broadly affect global transcrip-

tional programs, as well as specific cellular processes such as the

expansion of stem and progenitor cell lineages, maintenance of

stem cell niches, development, regeneration, reproduction and

longevity [7–18].

While these recent studies in Drosophila underscore the

importance of diet-induced changes on cellular function, they

have all employed standard complex (undefined) media as a means

to manipulate dietary nutrients. Complex media is composed of

ingredients of biological origin (e.g. yeast, cornmeal, molasses).

Such ingredients are essentially nutrient composites that have

different profiles depending on where and when they are sourced.

Thus, an important limitation of the complex diet is that its

composition is variable and difficult to precisely manipulate [19].

While diluting or excluding components of a complex media

permits gross nutrient manipulation, it also introduces the

confounding variable of altering caloric density (content).

A powerful tool to decipher the effects of diet is the use of

chemically defined food (CDF) media, which consists entirely of

purified compounds [20–22]. Notably, CDFs have only been fully

developed in a limited number of experimental model organisms

[23–25]. Such diets permit the systematic evaluation of individual

macro- or micronutrients and facilitate the interpretation and

replication of experimental data obtained independently by

different investigators [26,27]. In addition, use of CDF permits

caloric density to be more tightly controlled.

Classic studies in Drosophila have determined the nutritional and

metabolic requirements for the developing larvae. Essential

components of the media include proteins, carbohydrates, lipids,

nucleic acid, vitamins and salts [28–30]. Together, these studies

provided a basis for establishing the first chemically defined media

for larval culture [31]. In contrast, the dietary requirements for

adults have been largely neglected since adults are capable of

surviving on an energy source alone (e.g. sucrose) and because it

has been assumed that nutritional requirements are similar during

all stages of life. In this regard it is worth noting that certain

nutritional requirements between larvae and adults can differ by

two or three orders of magnitude [32,33].

More recently, CDF recipes have been reported for adult

Drosophila [17,34]. However, previous formulations have been

technically flawed [34,35] or characterized only under a narrow

set of conditions [17]. Consequently, the overall use and utility of

CDF in Drosophila has remained rather limited. Here, we describe

an open-source CDF suitable for long-term culture (.30

generations) of Drosophila laboratory strains. The effects of this

CDF were analyzed at different stages of the Drosophila life cycle

and compared to standard complex media. Finally, we used the

CDF to directly test the requirement of individual dietary

macronutrients on Drosophila development, reproduction and

longevity.

Materials and Methods

Fly Strains
w1118 flies were used for all feeding assays performed in this

study. All experiments were performed at 25 degrees Celsius unless

otherwise noted.
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Development of Chemically Defined Food (CDF)
CDF was formulated by optimizing the macro- and micronu-

trient components from several existing studies [17,34–36]. The

concentration of amino acids, ribonucleotides, metals and vitamins

was based on the work of Troen et al. [34,35]. We modified the

amino acid composition of Troen et al. [34] to include amino

acids that were previously excluded (see File S1). Both the

composition and concentration of carbohydrates and lipids was

based on the work of Grandison et al. [17]. The amino acid to

carbohydrate energy ratio was set at 1:4, a proportion shown to

optimize overall fitness by Lee et al. [36]. CDF lipid levels were set

at 2%. This value was chosen by surveying a series of standard

recipes on the Bloomington Stock Center website (http://flystocks.

bio.indiana.edu/Fly_Work/media-recipes/media-recipes.htm)

with different lipid compositions and selecting the lipid level

associated with best stock propagation (see File S1). Thus, the ratio

of food energy per mass in CDF for amino acids, carbohydrates

and lipids is 1:4: 0.1, respectively. To derive the caloric density of

Table 1. Recipes for 400 K-cal/Liter chemically defined food (CDF400K) and regular food (RF).

Recipe for 400 K-cal/Liter chemically defined food (CDF400K).

Ingredients gram/Liter Ingredients gram/Liter

Amino Acids 19.61 Vitamins, Minerals, and Nucleic Acids 3.20

L-arginine HCl 1.67 Vitamin B12 (0.1% in mannitol) 0.01880

L-histidine HCl-H2O 0.47 Biotin 0.00002

L-isoleucine 0.81 p-Aminobenzoic Acid 0.00200

L-leucine 1.32 Inositol 0.04200

L-lysine HCl 2.78 Niacin 0.01000

L-methionine 0.58 Calcium Pantothenate 0.00599

L-phenylalanine 0.94 Folic Acid 0.00599

L-threonine 0.90 Pyridoxine HCl 0.00300

L-tryptophan 0.74 Riboflavin 0.00241

L-valine 1.28 Thiamin HCl 0.00151

L-alanine 1.11 Choline Bitartrate 0.03600

L-asparagine 0.53 Vitamin A Palmitate (500,000 IU/g) 0.00270

L-aspartic acid 0.53 Vitamin E, DL-alpha tocopheryl acetate

L-cystine 0.43 (500 IU/g) 0.03300

L-glutamic acid 1.20 Vitamin D3, cholecalciferol (500,000 IU/g) 0.00067

L-glutamine 1.20 Vitamin K, MSB complex 0.00051

Glycine 0.43 Zinc Carbonate 0.01820

L-proline 0.90 Cupric Carbonate 0.00850

L-serine 0.98 Chromium Potassium Sulfate, dodecahydrate 0.00540

L-tyrosine 0.81 Potassium Phosphate, dibasic 0.60598

Potassium Phosphate, monobasic 0.60598

Carbohydrates 78.43 Calcium Chloride 0.01291

Sucrose 63.68 Ferrous Sulfate, heptahydrate 0.01291

Glucose 5.93 Magnesium Sulfate, heptahydrate 0.24599

Lactose 4.92 Manganese Sulfate, monohydrate 0.00979

Trehalose 3.91 Sodium Chloride 0.01291

RNA 0.99991

Lipids 0.87 DNA 0.49996

Cholesterol 0.08

Lecithin 0.79 Agarose 10.00

Recipe for regular food (RF).

Ingredients gram/Liter

Yeast 35.00

Yellow cornmeal 80.00

Dextrose 50.00

10% p-Hydroxy-benzoic acid methyl ester

in 95% ethanol (ml) 27.00

Agar 9.00

doi:10.1371/journal.pone.0067308.t001
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CDF, we first estimated the caloric density from a series of

standard complex food recipes referenced on the Bloomington

stock center website. These fell in a range between 275–991 K-

cal/L (see File S1). Troen et al. suggested that 300–400 K-cal/L

was an optimal caloric density [34,35]. We therefore focused on

testing media with caloric density in the range of 100–500 K-cal/

L (see File S1).

Preparation of Chemically Defined Food
To simplify production of CDF we first created a series of three

powered master mixes; essential amino acid mix (TD.10473); non-

essential amino acid mix (TD.110036); and basal mix (TD.10475).

See Table 1 and File S1 for additional details. These custom

reagent mixes can be obtained from Harlan Laboratories, Inc., IN,

US using the TD reference numbers indicated. Two additional

stock solutions were prepared (see File S1): 1) 5X carbohydrate

mix (autoclaved and stored at 4uC) and 2) A freshly prepared

100X slurry of lipid vortexed into water until no solids are visible.

Commercial sources for all ingredients above are listed in File S1.

To assemble CDF, the appropriate amount of agarose and

sugar (5X carbohydrate mix) are combined into a final volume of

water (see File S1). This mixture is gently brought to a boil using a

microwave to minimize evaporation. Once the solution cools to

65uC amino acid mixes (TD.10473 and TD.110036), basal mix

Figure 1. Experimental design. (A) General scheme for the feeding assays performed. Flies were grown and aged on regular food (RF) before
shifting to chemically defined food (CDF). (B) Assays performed on adult flies. Body weight, survival, and egg-lay were measured after adult flies were
shifted to chemically defined food. (C) Assays performed on developing flies. Larval development and survival were measured after newly hatched 1st

instar larvae were shifted onto chemically defined food.
doi:10.1371/journal.pone.0067308.g001
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(TD.10475), and lipid (100X stock) are added. The final solution is

stirred without heating for an additional 5–10 minutes before

aliquoting into vials. Plugged, boxed and wrapped vials are stable

for 1 month at 4uC.

Feeding Assays in Adult Flies
Newly eclosed adult flies were collected every 12 hours without

CO2 anesthesia. 3 days later, 10 pairs of male and female flies

were sorted into a fresh vial and aged for 3 additional days on

regular food (RF; Table 1) before initiating the shift to

experimental food. We began scoring values for survival, body

weight, and egg-lay 12 hrs after the initial transfer onto

experimental food. The 10 pairs of flies were transferred into

fresh food vials of the appropriate type every other day during the

course of an experiment.

Measurements of Adult Body Weight and Egg-lay
Adult body weight was determined by performing two

independent measurements of adult flies in a microcentrifuge

tube using a precision balance then recording the average value.

Average weight at each time point was normalized to initial

average body weight. 12 hour egg-lay was determined every other

day by counting the number of eggs present in a vial three times,

recording the average value and then normalizing to the average

number of living females present in the vial during consecutive

time points. The accumulated egg-lay was calculated by summing

average egg-lay values to a given time point. Flies used in both the

survival and egg-laying studies were never anesthetized using CO2.

Feeding Assays in Larvae
Newly eclosed adult flies were collected every 12 hours and

grown on RF vials for 6 days before transferring into an egg-

collecting bottle with grape juice plate. 24 hour egg-lays were

collected on grape juice plates. Egg-lay plates were then inspected

at two independent times over a 30 minute period to ensure all

hatched larvae were completely removed. Individuals hatching

within next 30 minute interval were then collected and 20–25

newly hatched 1st instar larvae were transferred into experimental

food vials to measure their development and viability. The time

required for larval development was scored every 12 hours by

Figure 2. The effect of CDF on adult survival. (A) Survival of adult
female flies cultured on chemically defined food as a function of caloric
density. Comparison of all survival curves by long-rank (Mantel-Cox) test
shows no statistical difference (n = 40; p$0.1053 for all). (B) Survival of
adult male flies cultured on chemically defined food as a function of
caloric density. Paired comparison of survival curves between RF to
other CDFs shows that the life span of males is only significantly
reduced on 100 K-cal/L CDF (n = 40; p,0.0001) and slightly reduced on
500 K-cal/L CDF (n = 40, p = 0.0489). See Table S1 for additional details.
doi:10.1371/journal.pone.0067308.g002

Figure 3. The effect of CDF on adult weight. (A) Average body
weight of adult female flies cultured on chemically defined food as a
function of caloric density. At day 7, only flies on 400 and 500 K-cal/L
CDFs have less body weight than on RF (Mann Whitney test; n = 4,
p = 0.0286 for both; see Table S2B for details). At day 13 and 21, the
body weights of flies cultured on CDFs are not statistically different
from flies cultured on RF. (B) Average body weight of adult male flies on
chemically defined food as a function of caloric density. The body
weights of flies cultured on all CDFs are not significantly different from
flies cultured on RF at day 7, 13, and 21 (Mann Whitney test; n = 4,
p$0.1143 for all; see Table S2C for additional details).
doi:10.1371/journal.pone.0067308.g003
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counting the number of pupae present; each pupa was marked on

the vial wall and followed to determine the time to eclosion.

Trans-generational Feeding Assays
10 pairs of adult flies were collected and aged as described

above. Flies were transferred into experimental vials at day 6 and

into new vials 2 days later. For the second (and subsequent)

generations, we collected 10–15 pairs of adult flies that eclosed

within 3 days and transferred them into a fresh vial. Measurement

of generation time was the same as described above.

Temperature Shift experiments
10 pairs of adult flies were collected and aged as described

above, then transferred into experimental vials and shifted to 18 or

29 degrees Celsius.

Quantifying Effects of Dietary Macronutrients on Egg-lay
10 pairs of w1118 flies were collected and aged for 6 days as

described above and then transferred into new experimental food

every day. Viability of adult flies and egg-lay was scored every 12

hours for 7 days. All CDF deficient media were compensated with

remaining macronutrients, while maintaining proportional ener-

getic contributions (see File S1). For example, amino acid

deprivation CDF is compensated to 400 K-cal/L by adding extra

sugar solution and fat mixture at a 4:0.1 ratio.

Statistics
Statistical analysis was performed using GraphPad Prism

software Version 5.0d (GraphPad Software, Inc., CA, USA).

Fisher’s exact tests were carried out using the online calculator

from GraphPad Prism software homepage. Each statistical method

used and corresponding p-values are listed in the Supplemental

Tables. In all figure legends, *, **, *** indicate a p value ,0.0500,

,0.0100, ,0.0010, respectively.

Results and Discussion

In order to develop a chemically defined food (CDF) for

Drosophila two general aspects of the media required optimization,

dietary composition and caloric density (see Materials and

Methods). Our goal was to synthesize a recipe that would

functionally substitute for standard laboratory media. However,

commonly used food recipes vary widely in their composition (e.g.

http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/

Figure 4. The effect of CDF on adult female egg-laying. Chemically defined food extends the egg-laying ability of adult female flies. (A)
Average egg-lay in 12 hours of adult female flies on chemically defined food as a function of caloric density. Females fed on CDF show an increase in
both maximal egg-lay and reproductive lifespan (n = 4). B) Maximal 12-hour egg-lay on chemically defined food. CDF100K–400K enhances the maximal
egg-laying ability compared to RF (Mann Whitney test; n = 4, p = 0.2454 for CDF500K and 0.0286 for others). (C) Number of days a female is capable of
producing more than one egg per day. CDF100K–400K extends the reproductive lifespan compared to RF (Mann Whitney test; n = 4, p = 0.1441 for
CDF500K and #0.0294 for others). (D) Total lifetime egg-lay per female on chemically defined food. Females lay more eggs on CDF100K–400K than on RF
(Mann Whitney test; n = 4, p = 0.0571 for CDF500K and 0.0286 for others). See Table S3 for additional details.
doi:10.1371/journal.pone.0067308.g004
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media-recipes.htm). As a basis for comparison, we arbitrarily chose

one standard Drosophila complex media, which we refer to here as

regular food (RF; Table 1; see File S1). We combined a series of

simple feeding assays with an iterative approach to empirically

determine the effect of successive CDF formulations on broad

indicators of organismal fitness including longevity, body weight

and egg-laying ability, developmental time and trans-generation

viability (Fig. 1). Table 1 summarizes the complete list of

individual components in the final CDF recipe characterized in

this study.

CDF is Sufficient to Support the Culture of Adult
Drosophila

Adult longevity. We first compared the viability of wild type

(white1118) flies on both RF and CDF. On RF media, median

survival values ranged from 35–41 days under our laboratory

culture conditions (Table S1). Similar values were measured on

CDF where median survival ranged from 33–44 days. Gender

specific analysis showed that CDF in the range of 100–500 K-cal/

L did not significantly affect life span of adult female flies when

compared to RF (p.0.1053; Fig. 2A; Table S1). In contrast, adult

males were found to be more sensitive to changes in caloric

density, showing shorter life span on CDF100K and CDF500K

(p,0.0001 and 0.0489 respectively) (Fig. 2B; Table S1). These

results suggest that CDF formulated at a caloric density of between

200–400 K-cal/L is optimal to support the co-culture of adult

male and female flies.

Adult weight. We next determined the extent to which CDF

diets affect adult body weight. On standard RF media, both male

and female body weight was observed to gradually increase over

time (Fig. S1A, Table S2A). We note that young flies exhibited

little variation in measured weight, however this variation

increased markedly in females with advancing age (Fig. S1A;

Table S2A). This variation in weight in aged female flies may be

related in part to dietary effects on egg-laying (see below). A similar

trend was observed when we monitored changes in body weight in

adult flies fed a CDF (Fig. S1B, C; Table S2B, C). When we

compared the effect of RF and CDF on the weight of young flies at

defined time points, no significant differences were detected, with

the exception of 400 K-cal/L and 500 K-cal/L diets on day 7

females (Fig. 3A, B; Table S2B, C). Thus, CDF diets were not

associated with significant changes in overall adult body weight

compared to standard RF media.

Female egg-lay. Finally, we wished to determine if CDF diets

affect female egg-laying ability. To quantify this effect, we first

scored the number of eggs laid per female over the course of adult

life (Fig. 4A; Table S3). This analysis showed that females fed a RF

diet lay a maximum of 1261.8 eggs in 12 hours, whereas females

fed a CDF have a maximum egg-lay as high as 24.661.9 (Fig. 4B;

Table S3). We next examined whether CDF could influence the

female reproductive life span. To quantify this phenotype we

calculated the time to reproductive quiescence defined as the

number of days a female can lay more than a single egg per day.

Females fed a RF diet remain reproductively active period for

21.062.4 days (Fig. 4C). Females fed a CDF diet showed an

increase in reproductive longevity at all caloric densities tested

with averages of 35.060.8, 42.562.1, 40.561.0, 36.062.1,

30.063.5 days on CDF100K, CDF200K, CDF300K, CDF400K,

CDF500K respectively (Fig. 4C; Table S3). Finally, to calculate

total lifetime egg-lay we summed each independent 12-hour count

over the duration of the experiment. Females fed a RF diet lay a

lifetime average of 62.7610.1 eggs (Fig. 4D). In contrast, females

fed a CDF diet showed an increase in reproductive activity at all

caloric densities tested with lifetime averages of 182.0614.1,

220.0636.9, 230.7623.1; 169.469.8; 118.6614.3 eggs on

CDF100K, CDF200K, CDF300K, CDF400K, CDF500K respectively

(Fig. 4D; Table S3). Thus, CDF diets were associated with an

increase in the rate of egg-lay, reproductive longevity and total

reproductive capacity of females.

In summary, the effects of a chemically defined food were

compared to a standard Drosophila media. Gross measures of adult

homeostasis were similar on RF and CDF, although in some cases

male and female measurements diverged, suggesting distinct

dietary requirements. Finally, this analysis directly demonstrates

that caloric density affects measures of adult longevity, body

weight and egg-lay.

CDF is Sufficient to Support the Culture of Developing
Drosophila

To determine if CDF was sufficient to support early growth of

Drosophila, we compared the developmental rate and survival of

larvae reared on either RF or CDF. Embryos were collected from

adults cultured on RF (Fig. 1A, C). Following hatching, larvae

were either maintained on RF or transferred to a CDF. We first

determined if CDF affects the time necessary to complete larval

Figure 5. The effect of CDF on larval development and survival.
(A) Days required for first instar larvae to eclose on chemically defined
food. Larvae grown on CDFs show statistically significant developmen-
tal delay (Mann Whitney test; n $65, p,0.0001 for all; see Table S4A for
details). (B) Eclosion rates for first instar larvae cultured on chemically
defined food. Larvae on CDF200K–400K show no statistical difference in
survival compared to RF (one-tailed Fisher’s exact test; n $65,
p$0.0544 for all; see Table S4B for details), but lower survival is
observed on CDF100K and CDF500K (p = 0.0025 and 0.0202 respectively).
doi:10.1371/journal.pone.0067308.g005
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development by scoring the number of larvae that reached

pupation and/or eclosion every 12 hours, following a timed egg-

lay. These studies showed that without exception CDF diets were

associated with a significant developmental delay (Fig. 5A). The

average time to eclosion was 8.6 days on RF, while time to

eclosion on CDF ranged from 13.2–15 days depending on the

caloric density of the media (Table S4A). Temporal analysis

revealed that most, if not all, of this effect occurred during the

larval stages of development (Fig. S2A).

We then determined if the observed developmental delay was

associated with lethality during development. To assess this, we

measured the survival rate of embryos from hatching to eclosion

on both RF and CDF media. The average survival rate on RF was

89.765.2 percent, whereas percent survival on CDF ranged from

70.367.3–92.361.5 depending on the caloric density of the media

(Fig. 5B). Survival on CDF200–400K trended lower but did not

significantly differ from survival on RF (Table S4B). Temporal

analysis indicated that for those diets associated with significantly

lower survival rates (i.e. CDF100K and CDF500K) death occurred

largely during the pupal period (Fig. S2B). Taken together these

studies indicate that CDF can also support Drosophila development.

While CDF is associated with a significant developmental delay, a

caloric density 400 K-cal/L was associated with the shortest

developmental delay and lowest lethality.

CDF is Sufficient to Support Long-term Culture of
Drosophila

A stringent test of a CDF is the ability to support trans-

generational propagation of individual cultures, as incomplete

diets ultimately lead to a lack of viability on deficient media. To

test the ability of CDF to support long-term culture we monitored

both the number of successive generations and generation times of

cultures grown on either RF or CDF (Fig. 6). Our studies show

that CDF was sufficient to support trans-generational growth for

10 successive generations. This was most clearly the case for CDF

formulated at higher caloric densities (i.e. 300–500 K-cal/L); CDF

at 100 K-cal/L ultimately failed to support growth. Generation

times for flies cultured on a particular diet were not observed to

change from one generation to the next. As described above most

of the developmental delay observed in a given generation is

attributable to effects on larval development. Subsequent to these

studies, cultures have been continuously propagated for up to 30

generations (Table 2), although generation times were not

quantified after the 10th generation. We also noted that CDF is

capable of supporting culture growth at common experimental

conditions of both 18 and 29 degrees Celsius (Table 2). Taken

together, these experiments demonstrate that CDF is sufficient to

support long-term culture of Drosophila strains under experimen-

tally relevant conditions. Table 2 summarizes our observations

concerning the culture of Drosophila on RF and CDF of different

caloric densities.

Table 2. Summary: chemically defined food versus regular food.

Parameters CDF100K CDF200K CDF300K CDF400K CDF500K

Female

Survival n.s. n.s. n.s. n.s. n.s.

Body weight n.s. n.s. n.s. n.s. n.s.

Lifetime egg-lay 2.9 fold increase 3.5 fold increase 3.7 fold increase 2.7 fold increase n.s.

Male

Survival 6 days shorter n.s. n.s. n.s. 2 days shorter

Body weight n.s. n.s. n.s. n.s. n.s.

Larvae

Survival 19.3% decrease n.s. n.s. n.s. 16.3% decrease

Growth 6.05 days delayed 4.25 days delayed 4.25 days delayed 4.14 days delayed 4.31 days delayed

Pupation period 0.43 days delayed 0.38 days delayed 0.47 days delayed 0.42 days delayed 0.52 days delayed

Transgeneration

Generation time 5.6 days delayed 5.2 days delayed 3.6 days delayed 2.6 days delayed 2.8 days delayed

Growth @ 29uC + + + + +

Growth @ 18uC 2 a +/2 a + a + +

Generation # 6 .30 .30 .30 .30

n.s.: not statistically significant; +: vigorous culture growth; +/2: poor culture growth; -: fail to support culture; a vials often have fungi/bacterial growth.
doi:10.1371/journal.pone.0067308.t002

Figure 6. CDF is sufficient to support long-term culture of
Drosophila strains. Generation number as a function of caloric density.
CDFs over 200 K-cal/L successfully support trans-generational propa-
gation of Drosophila strains.
doi:10.1371/journal.pone.0067308.g006
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CDF can be used to Distinguish Nutritional Requirements
from Caloric Requirements in Drosophila

We wished to determine the effect of individual macronutrients

(amino acids, carbohydrates and fat) on developmental and

homeostatic processes, independent of any potential effects of

altered caloric density. Of the caloric densities tested in the

experiments described above, CDF formulated at 400 K-cal/L

consistently led to measures that were most similar to RF media

over a rage of different assays. Thus we selected CDF at 400 K-

cal/L for use in these ‘‘drop-out’’ studies. Holding caloric density

constant, we examined the effect of deficits in each of the three

macronutrients in our assays of adult survival, female egg-lay and

larval development. Note that in the ‘‘drop-out’’ studies described

here, caloric density that would have been lost from the diet by

eliminating amino acids (for example) is compensated by

augmenting both carbohydrates and fat, while holding the overall

proportions of remaining macronutrients constant (see Materials

and Methods; File S1).

We first compared the effects of serially eliminating each

macronutrient from CDF on adult survival. In both males and

females, dietary amino acids, carbohydrates, and fats were all

found to be required for adult survival (Fig. 7A, B; Table S5A).

The median survival of adult females deprived of amino acids

(CDF400K2AA), carbohydrates (CDF400K2Carb), or fat

(CDF400K2Fat) is 20.5, 4.0, and 26.0 days respectively. In adult

males, median survival was, 19.0, 2.5, and 35.0 days on

CDF400K2AA, CDF400K2Carb, and CDF400K2Fat. These studies

demonstrate that under experimental conditions where caloric

density is held constant (i.e. 400 K-cal/L), dietary carbohydrates

play the most important role in adult longevity, followed by amino

acids and then fat. Although adult male flies are more sensitive to

dietary carbohydrate deprivation than females, they are less

sensitive to fat deprivation. Thus, nutritional requirements for the

survival of adult flies differ between genders.

Figure 7. The effects of macronutrient deficiency on adult survival, female egg-lay and larval development. (A) Survival of adult female
flies on chemically defined food (CDF) formulated at a caloric density of 400 K-cal/L and lacking either amino acids (AA), carbohydrates (Carb) or fats.
Comparison of survival curves among all groups by long-rank (Mantel-Cox) test shows that life span is significantly reduced under each of the
deprivation conditions (n = 40, p#0.0002 for all; see Table S5A for details). (B) Survival of adult male flies on chemically defined food formulated at a
caloric density of 400 K-cal/L and lacking either amino acids, carbohydrates or fats. Comparison of all survival curves in male flies shows the life span
of males is significantly reduced on tested deprivation conditions (n = 40, p#0.0241 for all; see Table S5A for details). (C) Total egg-lay per viable
female on chemically defined food lacking either amino acids, carbohydrates or fats. Females lay fewer eggs on CDF lacking either amino acids or
carbohydrates (Mann Whitney test; n = 4, p = 0.0286 for both), but not fat (p = 0.7715; see Table S5B for additional details). (D) Larval development on
chemically defined food lacking either amino acids, carbohydrates or fats. Larvae fed on CDF lacking amino acids show growth arrest at 1st instar
stage. Larvae fed on CDF lacking carbohydrates show high lethality in 2nd instar stage, but escapers can progress to adulthood (see text). Larvae fed
on fat deprived CDF show growth arrest at 2nd instar stage. CDF: CDF400K; - AA: amino acid deprived CDF400K; - Carb: carbohydrate deprived CDF400K: -
Fat: fat deprived CDF400K; Dashed line indicates lethality.
doi:10.1371/journal.pone.0067308.g007
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We next compared the effects of serially eliminating each

macronutrient from CDF on female egg-laying ability. In these

studies we scored the number of eggs laid per female every 12

hours for 7 consecutive days. We found that female egg-lay was

differentially sensitive to macronutrient deprivation (Fig. 7C;

Table S5B). For example, total egg-lay of female flies fed either

CDF or CDF lacking fat did not significantly differ (81.863.6,

80.765.1, respectively). However, females fed CDF lacking either

amino acids or carbohydrates produced significantly fewer eggs

(18.762.5, 28.363.0, respectively). Thus, under experimental

conditions in which caloric density is held constant (i.e. 400 K-cal/

L), both amino acids and carbohydrates are necessary for

maintaining female egg-laying ability, while fat is dispensable.

Finally we tested the effects of serially eliminating macronutri-

ents from CDF on developmental progression. In these studies we

scored the time required to progress through larval and pupal

stages. We found that post-embryonic development was differen-

tially sensitive to the type of macronutrient deprivation (Fig. 7D).

Not surprisingly, significant lethality and developmental delay was

found to be associated with macronutrient deficits. For example,

only a small fraction (less than 2%) of larvae grown on CDF

lacking carbohydrates grew to adulthood, and were delayed in

their development. Even more extreme requirements were

observed with deficits in amino acids and fat. Larvae grown on

either amino acid or fat deprived CDF showed developmental

arrest and died 7 days after egg-lay. Thus, under experimental

conditions in which caloric density is held constant (i.e. 400 K-cal/

L) carbohydrates, amino acids and fat are all necessary for larval

development.

In summary, we have developed a chemically defined food

(CDF) for the analysis of macro- and micronutrients in Drosophila.

We have characterized the effects of this diet on both develop-

mental and homeostatic processes and show that CDF can

functionally substitute for standard media in a number of

independent assays. While CDF is sufficient to support the long-

term culture of Drosophila strains, it is associated with a significant

delay in larval development. Replacement of dietary protein with

amino acid mixes has previously been shown to prolong larval

development and in some insects disrupt osmotic balance during

development [37,38]. Therefore, additional modifications are

necessary to optimize CDF for larval growth. Importantly, we

demonstrate that CDF allows the effects of macronutrient and

caloric density requirements to be distinguished experimentally.

The CDF recipe described here should, in principle, permit the

systematic experimental manipulation of individual nutrients

within the diet (i.e. single essential amino acids). Similarly, this

recipe can easily be used to test the effects of augmenting macro-

or micronutrient composition or overall caloric density in the

range above 500 K-cal/L. In Drosophila, methods to manipulate

gene function at the single cell level can combine powerfully with

the ability to manipulate specific dietary components leading to

new insights into the way in which nutrient availability affects

developmental, homeostatic and disease processes.

Supporting Information

Figure S1 Effect of CDF on adult weight. (A) Average body

weight of adult flies cultured on regular food (RF) as a function of

age. Females gain 5.762.2 (Mean6SE), 14.963.9, 21.267.8% of

body weight at day 21, 27, 35 respectively (Mann Whitney test;

n = 4 except at day 35; p$0.1288 for all; see Table S2A for

additional details). Males lose 7.062.8 and 1.362.0% of body

weight by day 21 (n = 4, p = 0.0289) and day 27 respectively, then

gain 2.565.9% of body weight by day 35 (n = 4, p = 0.4754). (B)

Average body weight of adult female flies cultured on chemically

defined food (CDF) as a function of caloric density. In the first

week on CDF, females first lose about 10% of their initial body

weight which is recovered by day 5. Females gain 21.267.8,

10.165.7, 4.762.6, 13.362.0, 8.164.2 and 12.465.1% of body

weight after 35 days on RF, CDF100K, CDF200K, CDF300K,

CDF400K and CDF500K respectively (Mann Whitney test; n = 4,

p$0.1143 for all; see Table S2B for details). Females on CDF

show a similar trend of increasing body weight as they age on RF

(Friedman test; n = 4, p#0.0006 for all; see Table S2D for details).

(C) Average body weight of adult male flies cultured on chemically

defined food as a function of caloric density. Males gain 2.565.9,

7.863.4, 10.261.2, 14.062.0, 11.263.2 and 12.765.6% of body

weight changes after 35 days on RF, CDF100K, CDF200K,

CDF300K, CDF400K and CDF500K respectively (Mann Whitney

test; n = 4, p$0.200 for all; see Table S2C for details). Male flies

on CDFs show an increasing trend in body weight compared to

males aged on RF (Friedman test; n = 4, p#0.0116 for all; see

Table S2D for details).

(TIF)

Figure S2 Effect of CDF on larval development and
survival. (A) Days required for larvae to complete different stages

of development when cultured on chemically defined food. All

larvae grown on CDFs show a statistically significant develop-

mental delay (Mann Whitney test; n $65, p,0.0001 for all; see

Table S4A for details). (B) Survival rates for larvae cultured on

chemically defined food by stage. Larvae cultured on CDF200K–

400K show no statistical difference in survival compared to RF

(one-tailed Fisher’s exact test; n .65, p$0.0544 for all; see Table

S4B for additional details); significant differences in survival are

observed on CDF100K and CDF500K (p = 0.0025 and 0.0202

respectively).

(TIF)

Table S1 Longevity of adult flies on CDF.

(PDF)

Table S2 Body weight of adult flies on RF or CDF.

(PDF)

Table S3 Effect of CDF on egg-lay.

(PDF)

Table S4 Larval development and survival on CDF.

(PDF)

Table S5 Effect of macro-nutrient deprivation on adult
longevity and egg-lay.

(PDF)

File S1 Summary of food recipes used in this study.

(XLSX)
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