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ABSTRACT  As the spike proteins of Semliki Forest virus (SFV) pass from their site of synthesis
in the endoplasmic reticulum (ER) to the cell surface, they must be concentrated and freed
from endogenous proteins. To determine the magnitude of this sorting process we have
measured the density of spike proteins in membranes of the intracellular transport pathway.
In this first paper, using stereological procedures, we have estimated the surface areas of the
ER, Golgi complex, and plasma membrane of infected and mock-infected baby hamster kidney
cells. First, we estimated the mean cell volume in absolute units. This was done using a novel
in situ method which is described in detail. Infection by SFV was found to have no effect on
any of the parameters measured. In the accompanying paper (Quinn, P., G. Griffiths, and G.
Warren, 1984, /. Cell Biol., 2142-2147) these stereological estimates were combined with
biochemical estimates of the amount of spike proteins in ER, Golgi complex, and plasma
membrane to determine the density in the membranes of these compartments.

Most, if not all, of the spanning membrane proteins of the
endoplasmic reticulum (ER)', Golgi complex, lysosomes, and
plasma membrane originate from the same compartment, the
rough ER (7, 17, 21). The mechanisms by which these mem-
brane proteins, all inserted co-translationally into the rough
ER membrane, become concentrated and sorted faithfully to
their correct target organelles are far from understood. At
present this sorting or selection process can only be described
in qualitative terms. One can for example conclude that the
concentration of plasma membrane protein precursors in ER
and Golgi complex is far lower than it is in the plasma
membrane itself, but the available data is just not sufficient
to express these concentrations in quantitative terms (13, 15).

As a model for the biogenesis of plasma membrane proteins,
we have used the spike glycoproteins of Semliki Forest virus
(SFV). After viral infection, the cellular machinery for protein
synthesis and intracellular transport is entirely devoted to the
making and transporting of large quantities of a few specific
viral proteins, making both biochemical and morphological
studies relatively easy. In a previous study we have followed
the pathway and kinetics of intracellular transport of the two

! Abbreviations used in this paper: BHK, baby hamster kidney; ER,
endoplasmic reticulum; SFV, Semliki Forest virus.
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membrane-spanning glycoproteins (E1 and p62) of this virus
in baby hamster kidney (BHK) cells by a combination of
biochemical and immunocytochemical techniques (8-10, 19).
Our results showed that the viral membrane proteins move
sequentially from the rough ER through the stacks of Golgi
cisternae to the plasma membrane. Furthermore, the immu-
nocytochemical data indicated that the viral membrane pro-
teins were found uniformly throughout the rough ER and
Golgi membranes but at the plasma membrane, they were
mostly restricted and concentrated in those regions where
virus budding had occurred.

The aim of this, and the accompanying paper (20) was to
determine the density of the spike proteins in the ER and
Golgi membranes using a combination of morphological and
biochemical techniques. The stereological approach, the topic
of this first paper, provided us with estimates of the absolute
surface areas of these compartments per average BHK cell.
The biochemical approach, which is dealt with in the second
paper, allowed us to estimate the total number of SFV spike
protein molecules in the total fraction of ER and Golgi
membranes per average BHK cell. Since our reference unit
was the same for both studies it is simple to estimate the
densities (number of molecules per unit surface area of mem-
brane) of these glycoproteins in the ER and Golgi membranes.
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Stereological methods have been used to quantitate the
same cell compartments in hepatocytes (26) and exocrine
pancreas cells (1). In these studies the volume and surface
densities of interest could be expressed in absolute units by
reference to the total volume of the respective organs. For
BHK cells, which grow in culture, we developed a novel
approach that allowed us to estimate the mean cell volume in
situ. This parameter was then used as our reference frame to
determine the absolute quantities of the relevant compart-
ments. Having obtained this, the volume densities of cyto-
plasm per cell followed by Golgi complex and ER volumes
per volume of cytoplasm were determined. Finally the surface
densities of ER, Golgi complex, and plasma membrane were
estimated with respect to the volume of the respective com-
partment. These estimates were made on both infected and
mock-infected cells.

METHODS AND RESULTS

Cells: BHK-21 cells were grown and infected with SFV as described
previously (8) and used 6 h after infection. When pellets of cells were required,
50 ug/ml proteinase K in PBS at 0°C was used to remove the monolayer from
the dish, a procedure taking ~5 min (8). The cells were then sedimented by
centrifugation for 1 min at 4,000 g.

The procedure for preparing cells for embedding and subsequent morpho-
metric analysis was to plate out identical numbers of cells into dishes and to
monitor the growth until the cells were confluent. This was, a density between
2.3-and 2.6 X 10° cells/cm?. Ten of these dishes were used to count the number
of cells (see below) and the remaining two were used for stereological analysis
after fixation with glutaraldehyde. Fixation was found to have no effect on cell
density.

Light Microscope Preparation: Estimation of Number of

Cells per Surface Area of Dish:  To estimate the number of cells per
surface area of petri dish, we used light microscopy. The best procedure we
found for doing this was to use a fluorescent dye that binds DNA and clearly
delineates the nuclei. Hoechst dye number 33258 (1 mg/ml in PBS) was added
to the monolayer in 5-cm petri dishes, and incubated for 10 min at 37°C. The
cells were then viewed and photographed directly on the plate using a Zeiss
light microscope equipped with a blue filter and a x 6.3 objective lens. The
images were enlarged photographically approximately 10 times.

Electron Microscopic Preparation: Cells, either as monolayer or
pellet, were fixed for 30 min with 1% glutaraldehyde in 0.1 M PIPES buffer,
pH 7.0 containing 5% (wt/vol) sucrose. This and all subsequent steps were
carried out at room temperature, The preparations were washed three times
(10 min total} with 0.1 M PIPES buffer, pH 7.0 containing 10% (wt/vol)
sucrose. The tissues were then treated for 15 min with 2% OsOy4 in 0.1 M
sodium cacodylate, pH 7.0 containing 0.2% potassium ferricyanide and 5%
(wt/vol) sucrose. After brief rinses in 0.1 M cacodylate buffer pH 7.0, 1% tannic
acid in this buffer was added and left for 30 min followed by a 10-min rinse in
1% sodium sulfate in the same buffer (22). Ethanol dehydration commenced
with 70% ethanol and took a total of 15-20 min. Monolayers were removed
as a sheet using propylene oxide that, unlike ethanol, dissolves the plastic of
the dish. In detail, at the 100% ethanol stage, increasing amounts of propylene
oxide were added to the dish, with the simuitaneous and gradual removal of
the ethanol with a pipette. The monolayer was scratched into small squares (2-
3 mm?) using a scalpel, and aided by vigorous pipetting, the pieces of monolayer
sheet came off the petri dish when the propylene oxide concentration became
high enough. When thin sections of these embedded monolayers were examined
in cross-section, it was apparent that a thin, electron-dense film of plastic always
came off with the cells (Figs. 2 and 3). This enabled the top and bottom of the
monolayer to be easily determined and also allowed us to relate the volume of
the cell to the surface of the dish and hence to estimate the mean volume of
the cell (see below). After the propylene oxide step the pieces of monolayer
were pelleted at 13,000 g for 5 min and flat embedded in an Epon 812 mixture
in such a way that the sheets were perpendicular to the cutting direction. This
could easily be confirmed when the blocks were trimmed. Usually three to four
such pieces of monolayer would be present in any one section (see Fig, 2). Care
was taken to ensure that any piece that was not perpendicular (+ 15°) was not
sectioned. Silver-grey sections, estimated to be ~40 nm thick by the fold-
procedure (23), were cut using a Reichert OMU3 ultramicrotome. These were
mounted on 100 mesh copper grids having carbon-coated formvar films and
were contrasted for 2-3 min with lead citrate solution. Cytochemical localiza-
tion of glucose 6 phosphatase was carried out as described previously (10).
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Stereological Analysis

Estimation of Mean Cell Volume: In a morphometric analysis
each parameter is obtained as the ratio of two measurements, one estimating
the size of the abjects investigated, the other the size of the space in which they
are contained (reference space). In most biological applications the organ
volume is the primary reference space all subsequent parameter estimates are
related to, whereas in cell cultures the mean cell volume seems to be the natural
primary reference space. If the reference space does not remain constant under
the experimental conditions, or if parameter estimates are to be obtained in
absolute quantities, the volume of the reference space must be determined
before tissue is processed for analysis. When dealing with organs, this is easily
done by fluid displacement; for BHK-cell cultures growing in a monolayer,
however, we had to devise an aiternative approach to estimate the mean volume
of a BHK-cell, #co). BHK-cells grow as a monolayer on the surface of a plastic
petri plate. As mentioned in Materials and Methods, our electron microscopic
preparation technique is such that during the propylene oxide dehydration
stage, a thin layer of the plastic is removed along with the cell monolayer (Fig.
2). This allows us to obtain ¥¢o) by

s = L@ _ V(@) N

O

where V(co)/S(do) is cell volume, V(co), per unit area of petri dish surface,
S(do), as obtained from electron micrographs of sectioned cell cultures (Fig. 3).
This variable can also be viewed as representing the mean thickness of cells in
the petri dish. N(c)/S(do) is the number of cells, N(co), per unit area of petri
dish surface, S(db), as obtained from the light microscopic analysis of the in
situ cells. Note that the parenthesis ¢ and d refers to the structural sets of cell
and dish, respectively, whereas the subscript 0 denotes that these quantities
were obtained on sampling level 0 (Fig. 1).

Estimation of Cell Number per Dish Surface: For the estima-
tion of Mco)/S(do) in a typical experiment, each of ten-6-cm petri dishes of
cells, all identically plated, were subsampled by systematic quadrats, in a similar
fashion as that shown by Cruz-Orive (6). Within each quadrat, the “forbidden
line” unbiased counting rule was used (11). A total of 1,000-1,200 cell projec-
tions were counted for each plate. The standard error was typically found to be
<10% of the estimated mean in each treatment. A calibration marker was
photographed along with each roll of film and the magnification was measured
accordingly. We could hence calculate the number of cells per square centimeter
of dish surface.

Estimation of Cell Volume per Dish Surface:  V(co)/S(do) was
estimated for control, mock-infected, and SFV-infected cells as ratio of sums
over quadrats as follows:

Vico) _ Alco)
S(do) ~ B(do) @
Ae) = § Pic) M2, 3)
and o
Bidy = 5-5° 3 K- M, @

where A(c,)/B(dy) is the cell profile area, A(co), per boundary length of petri
dish trace, B(dp) (24). This is an unbiased estimate of ¥(co)/S(db) because the
section plane is not isotropically oriented with the surface (dp) of the petri dish.
In fact the sections were taken in such a way that the two planes would be
approximately perpendicular to each other (within 15°) as described above. For
a mathematical justification see reference 25 (equation 6.32).

In Eqs. 3 and 4, P(c,) is the number of test points inside BHK-cells in the
i™ quadrat; I(d,) is the number of intersections of test line with the petri dish
trace in the i™ quadrat; Mf; is the magnification of the i** quadrat; m is the total
number of quadrats subsampled from five petri dishes; and p,, L, a, are the
constants characterizing the fundamental figure of the test system (5).

Note that Egs. 3 and 4 and the formulae in the Appendix deal with
magnification corrections properly and allow one to handle the stereological
data obtained via arbitrary, different coherent-test-systems (5). In Weibel’s (25)
nomenclature p = 1, @ = k,d? and / = kid for the “coarse” points of a
multipurpose test system.

Calculation of the Standard Errors of the Estimators:  For all
stereological variables the standard error of the estimates (SE) were calculated
by pooling data from all quadrats of each treatment and by applying formulas
for the standard error of ratios (4). The tissue within each micrograph (quadrat)
was, therefore, taken as the primary sampling unit. This seems to be justified



when dealing with cultures of a single cell line. SE, hence denotes the variability
among quadrats (cells). To test the significance of differences the Students t-
test for independent samples was used; the level of statistical significance was
set at the 5% level.

Sampling Model for BHK-cells: A multilevel sampling design was
used to estimate the subcellular composition of BHK-cells (6). The cells were
conceptually broken down as foliows:

BHK-cell O cytoplasm O ER and Golgi volume
(o) (a) ()
(5)
D ER a%d Golgi membranes,
C3

where A D B means A contains B. The ratios of main interest were V(c,;) and
S(dc;), where ¥ denotes volume, S surface area, and the boundary of the set c;.
These quantities thus read “volume of ER and Golgi” and “surface area of ER
and Golgi membranes.” A schematic representation of the sampling method
used is shown in Fig. 1.

Sampling Protocol:  To estimate the cell volume to petri-dish surface
ratio, the sections were cut essentially perpendicular to the petri dish surface.
It was assumed that the distribution of the relevant second and third level
quantities was isotropic, uniform, and random with respect to the section plane.
This assumption does not hold for the orientation of the plasma membrane
however, which shows anisotropy with respect to the section plane. Hence, this
parameter was estimated in cell pellets obtained after removing the cells from
the petri-dish (Fig. 7).

One section was taken from each of five randomly chosen blocks from each
treatment. In each of these sections (mounted on 100-mesh copper grids), 1 to
4 long ribbons of cells were present (Fig. 2). Each section was subsampled by
systemic quadrats (SQ; 16) as follows: Beginning with an arbitrary window of
the copper grid, each window was scanned to determine whether BHKcells
(the reference space, ¢o) intersected the left grid bar. When the reference space
complied with the a priori sampling rule the section was translated until the
electron microscope screen was tangential to the grid bar and the cell in the
center of the quadrat. A micrograph at a final magnification X 7,200 was then
taken with a Philips electron microscope 400 on 35-mm film (level I; Fig. 2).
The actual magnification was assessed with the aid of a calibration grid of
parallel lines (1/2,160 mm apart). Without moving the section a second
micrograph was then taken at a final magnification of X 22,000 (level 1I).
Finally for level III (final magnification X 108,000), the section was systemati-
cally translated to the left and two micrographs were obtained from the nearest
region containing ER including nuclear envelope, (Fig. 5) and a separate region
containing Golgi (Fig. 6). Figs. 3, 4, and 5 are meant to provide a pictorial

impression of the sampling procedure in that they show increasing magnifica-
tion of the same cell.

Estimation of Parameters: To efficiently estimate the surface area
of Golgi and ER membranes, BHK-cells were analyzed at three different levels
of magnification as follows:

Vie) Viey) S(dcs)
Vico) V(c1) V(e

where #(co) was obtained as described in a previous section. The first level
quantity V(c)/V(co)-volume of cytoplasm per BHK-cell volume was estimated
at a total magnification of X 7,200; the complete formula is given in the
appendix. The second level quantities V(c,)/V(c:), volumes of ER and Golgi
per volume of BHK-cell cytoplasm, were estimated at a final magnification of
% 22,000. The third level quantities S(dcs)/ V(c2), surface area of ER and Golgi
membranes per volume of ER and Golgi-apparatus, were estimated at a final
magnification of X 108,000. The estimation of cell volume per unit area of
petri dish surface was carried out as described in an earlier section. S(co)/ V{(co),
BHK-cell surface area per unit cell volume (level IIb) was estimated in BHK-
cell suspensions after centrifugation (Fig. 7) to avoid bias due to the anisotropic
arrangement of BHK-cell membranes when growing in a monolayer (Fig. 2).
This estimate was obtained at a final magnification of X 22,000.

Correction of Bias Due to Section Compression: We did not
correct for the effects of section compression, as no suitable circular profiles
were available in BHK-cells. Section compression would not be expected to
affect volume density estimates, but it might in theory lead to over-estimation
of the surface density estimated by as much as 20% (2).

In a recent study, however, we have found that compression is unlikely to
be significant in our sections (Griffiths, G., A. McDowall, R. Back, and J.
Dubochet, manuscript in preparation). Chinese hamster ovary (CHO) cells
grown in suspension are spherical. These were embedded in the same Epon
mixture as used in this study. By reference to knife-marks, the direction of
cutting could be ascertained. Careful measurements from micrographs indicated
that there was no significant net compression occurring to the circular cell
profile.

Correction of Resolution Effects: The estimation of stereological
parameters on ultrathin sections is affected by the magnification at which the
analysis is carried out (18). In general, more structural elements can be detected
at higher magnifications up to a “critical magnification” at and beyond that by
which stable structural estimates are obtained. In BHK-cells the cytoplasmic
organelles can be identified much more easily and at lower magnifications than
in liver cells because BHK-cells have a less dense cytoplasmic composition
(Figs. 2 and 3). To find out whether we could detect ER reliably at x 22,000,
we measured the volume density of ER on sections in which the ER was
specifically stained with glucose-6-phosphatase (Figs. 8 and 9) (see reference

5(3cs) = ¥(co)- 6)

BHK~cell monolayer (co)

EM x 7200 ~p-Level I
fTTTT T s T T R
¢ |
' 1 1 )
v B(e) #V(c ) Cytoplasm Nuclei
[} I
R S ICH) () |
)
: EM {x 22000 . » Level IT Figure 1 Schematic representa-
"""""""""""""""" tion of the sampling method that
was used (for details, see text, Ma-
Spaces terials and Methods). N(co)/S(do),
.) number of cells per unit area of dish
2 surface; v(co), mean cell volume;
V(co)/S(dy), cell volume per surface
EM | x 108000, Level III petri dish; LM., light microscopy;
EM, electron microscopy.
membranes
( c3)
—_ER
__. Golgi
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Ficure 2 BHK cells fixed in situ. Four strips of cells are shown with the adjoining plastic from the culture plate (arrows). Bar, 2
pm. X 6,000.

10). We obtained parameter estimates for the volume density of ER (as well as
surface density at X 108,000 magnification) from cytochemically treated sec-
tions that were not significantly different from those of untreated sections
(results not shown). The volume density of the Golgi apparatus was also
measured at X 22,000. The “Golgi stacks” can easily be identified at relatively
low magnification because of their characteristic membrane pattern. They are
similar in that respect to mitochondria for which it has been shown that the
estimate of the surface density of their outer membranes and hence also their
volume is not significantly affected by the magnification (18). The magnifica-
tion of 108,000 in stage III used for the estimation of surface density both of
ER and Golgi membranes was judged sufficiently high to allow for stable
estimates of these variables. In liver cells where the conditions to properly
allocate these membranes are more difficult, a magnification of 130,000 was
required (18).

Correction of Bias Due to Section Thickness: As the stereo-
logical formulas are strictly valid only for infinitely thin sections one has to use
corrections when using tissue sections with a finite section thickness (“Holmes
effect,” 12). Corrections for section thickness may be quite considerable when
the structures to be analyzed are of the same order of magnitude or smaller
than the section thickness (for a review see reference 24, chapter 4). We
calculated the correction factors for section thickness both for volume and
surface densities of ER and Golgi stacks. The measurements of the characteristic
dimensions required for these calculations were done on 40 selected profiles of
both ER and Golgi at a final magnification of 108,000 according to Weibel
and Paumgartner (27). We assumed both structures to be “discrete”, not
“interpenetrating” and applied formulae 4.71 and 4.72, respectively, according
to Weibel (25, chapter 4). The estimates of the characteristic dimensions as
well as the correction factors are contained in Table I.

FiIGUREs 3-6 Figs. 3-5 are micrographs of one mock-infected BHK cell in situ. The small arrow in Fig. 4 indicates the plastic
from the dish. The larger arrows in Figs. 3-5 point to the same Golgi stack, which is magnified in Fig. 5. Arrowheads in Figs. 4
and 5 point to the rough endoplasmic reticulum whose luminal content appears more electron dense than Golgi content and
can usually be easily distinguished, even at low magnification. The tannic acid treatment makes membranes distinct but ribosomes
less distinct. Fig. 6 shows part of the rough ER from a cell adjacent to that in Figs. 3-5 and at the same magnification as Fig. 5
(level 3). The small arrows indicate ribosomes whose structure is characteristically very poorly constrasted (or destroyed) by the
tannic acid treatment. X 6,000 (Fig. 3); X 17,600 (Fig. 4); X 103,000 (Figs. 5 and 6).
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Ficure 7 BHK cell infected with SFV and fixed as a pellet after proteinase K treatment. Small arrows indicate budded virions
on the surface of the cell. The large arrow indicates a Golgi stack. Arrowhead points to cisternae of the rough ER. X 15,500.

SUMMARY OF RESULTS

A summary of the estimates obtained is given in Table II.
These relative values are converted to absolute values in Table
III after correcting for section thickness. With respect to the
in situ cells, there was no significant difference between mock-
infected and infected cells with the exception of the number
of cells which is slightly reduced after infection (Table ).

The infected cells in the pellet, which were only necessary
here for estimating the plasma membrane surface area showed
significantly higher rates for both volume of cytoplasm per
volume cell as well as surface of Golgi per volume of golgi
and a significantly lower value for the volume of Golgi per
volume cell (Table II). Presumably these differences reflect
changes caused by the proteinase treatment and/or centrifu-
gation process prior to fixation.

DISCUSSION

We have estimated the surface area of the membranes of
endoplasmic reticulum, the Golgi complex, and the plasma
membrane. Qur stereological rationale was to calculate the
mean cell volume for the in situ cells by taking advantage of
the fact that their plastic support film is visible in the Epon
sections. This fact was critical in enabling us to obtain our
estimates of organelle surface areas in absolute units. This
approach has the advantage that unlike many other tech-
niques for estimating cell volume (e.g., reference 3), it makes
no assumptions about the overall shape of the cells. In prin-
ciple, the technique could be used for any tissue culture cell
that grows on a flat plastic substrate and hence may have
general applicability in stereological studies of tissue culture
cells.

Having estimated mean cell volume it was then a straight-
forward stereological problem toestimate the volume- and
surface densities of ER and Golgi. For the plasma membrane,
however, because of the potential error due to isotropic sec-
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tioning of the monolayer, we chose a different strategy. This
involved removing the monolayer with proteinase K on ice
and then sedimenting the cells prior to fixation. By sectioning
this pellet, which was assumed to be completely anisotropic,
the surface to volume ratio of the cells could be easily esti-
mated. Since we had no independent method for estimating
mean cell volume of these cells, we had to assume that this
parameter did not change during the proteinase treatment
and centrifugation procedure. This may not be a valid as-
sumption and any difference in absolute cell volume caused
by this procedure (e.g., uptake, or loss of water) could effect
a corresponding error in all the absolute volume and surface
estimates for these cells, including of course the surface area
of the plasma membrane. Indeed, the significant differences
between the volume of cytoplasm per volume of these cells
from the pellet with the in situ cells may reflect a real
difference in mean cell volume. We are presently trying to
develop an alternative technique for independently estimating
the mean cell volume of BHK-cells after centrifugation to
overcome this problem.

Fortunately, the above reservations do not apply to the two
organelles which are most interesting for the subsequent bio-
chemical analysis, the ER, and Golgi complex. For both these
organelles, the potential errors rest with the problem of iden-
tification. The ER is often contiguous with the Golgi stacks
and the only clear difference between the two organelles is a
slight contrast difference with our contrasting procedure (see
Fig. 5). That the estimate of ER volume- and surface-densities
from cells treated cytochemically for glucose-6-phosphatase,
an ER-marker, was the same as untreated cells was therefore
reassuring. For the Golgi complex our measurements relate
to Golgi stacks plus vesicular profiles in close proximity to
the stack. Precisely where the Golgi zone begins and ends is
admittedly subjective: future analysis should concentrate on
using specific markers for different compartments of the Golgi
complex.



Ficures 8 and 9 Mock-infected BHK cells treated cytochemically for glucose-6-Pase. In Fig. 8, which is from the perinuclear
region, the ER (arrowhead) and nuclear envelope is fairly uniformly contrasted with the lead reaction product but the Golgi stacks
(large arrows) have characteristically only spotty reaction product. The reactive cisternae, which are usually found in close vicinity
of the Golgi stacks (double arrows), are here interpreted (and measured) as ER. In Fig. 9, a part of the cell away from the cell
body, which has always more ER (arrowhead) than the perinuclear region, is shown after the cytochemical reaction. X 40,000.
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TABLE |
Derivation of Correction Factors for Section Thickness Effect

ER cisternae Golgi cisternae  Golgi stack

Model structure disk disk disk

d, nm (= SD) 34+64 26 £ 4.3 199 + 44
D, nm 1,500 800 800

= DJd 44 31 4
Section thickness

t, nm (£ SD) 405+ 2.3 40.5 2.3 40.5 2.3
g=t/d 1.19 1.56 0.20
Correction factors

K (W) 0.62 — 0.87
K. (Sv) 0.95 0.91 —

For explanation of symbols see Weibel (24).

There were no significant differences between the values
obtained for mock-infected and SFV-infected cells, showing
that 6 h infection does not alter the size of these major
compartments. These estimates for membrane surface areas
of the major compartments known to be involved in intra-
cellular transport now provide a basis for estimating spike
protein densities, which is dealt with in the accompanying
paper (20).

APPENDIX

Complete stereological formulas used to calculate the relevant parameters at
the sampling levels I-III:

LEVEL |
a n
=LY P(c)-M2
Vic) = D 2‘.’ @) )
Ve a5 piey M
D=1
LEVEL Ila
az m
—=. Y P(c)-M™?
V(cs) iy igl (c2) )
V m
@45 ple)-mi?
D1 i=1
LEVEL I1b
a d
2.25 % Idc,)- M
Steey _ 21, 2 10 o
el 8% by i
I i=1
LEVEL III
a o -
2.2 Y I(dcs) M
S(dcs) _ [ En (6cs) (10)
V(CZ) @ Z Pi(Cz)'M—z
D3 i=1
where

P, and I; are the number of points and intersections, respectively counted in
the i*" quadrat. M, is the precise magnification of micrograph of the i** quadrat.
(Precise values for each level are given in the text) m is the number of
micrographs (24; in all levels) and a, /, and p are constants characterizing test
systems (5, 24). Subscript 1 to constants a, /, and p indicates test system D64,
coarse lattice, total number of test points per micrograph is 64; subscript 2 to
constants g, /, p indicates test system D64, fine lattice for points on ER and
Golgi; total number of test points 1024; Subscript 3 to constants g, /, p indicates
test system C64, the fine lattice of lines was used; total number of test points
576; S and ¥, surface and volume, respectively.
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S[{pm,c)
mm™'
890 * 35

5.go,c)
ral notation used in the method

33,500 * 1,560
ER, and Golgi, respectively, per unit cell volume;

27,300% £ 1,260
28,400 % 1,000

mm™’

Sder,c)
53,600 + 1,260
55,600 + 4,000

54,800 * 5,750

Vi(go,c)
0.0350 + 0.009
0.0290 + 0.005
0.0190% + 0.004

(er,c}), Vi(go,c), volumes of cytoplasm,
ytoplasm; conversely 30% is made up of nucleus.

are conventional letter notations (25) for the more gene

Viler,c)
0.1400 % 0.0158
0.1330 + 0.00125
0.1450 + 0.0104

TABLE 1]
Estimation of Relative Values

Vilcy,c)
0.7240 +0.028

0.7740° + 0.014

N(co)/S(do), number of cells per unit area of dish surface; V(c,)/S(dy), volume of cells per unit area of dish surface; V,(cy,c), V.
Sder,c), 5.(go,c), S{pm,c), surface of ER, Golgi, and plasma membrane, respectively per unit cell volume. Note that these

and appendix.
* These volume ratios can be converted to percent. Hence, V,/Veen 0.7 means that 70% of the volume of the cell consists of ¢

0.7280* £ 0.029

V(co)/S(do)
cm
8.76 X 1073+ 5x 10™*
ganelle.
, and 0.1% level, respectively, from other values in the same column by student’s t test.

+2.1%x10* 1.014x 102 +45x%x10™*

N(co)/S(do)
cm™
2.3 X 10°% +1.8 x 10*

2.6 X 10°

Treatment
Units
BHK-control
mock-infected
monolayer
BHK-SFV mono-

layer

BHK-SFV pellet
* Values indicate surface for every cubic millimeter of volume of the or

S Significantly different at 5




TAsLE Il
Average Cell Estimates

Surface area of

Volume Surface area of  plasma mem-
Treatment Volume cell Volume ER Golgi Surface area of ER Colgi brane
pm? pm? um® um? um? um?
BHK mock-infected monolayer 3,900 % 360 246 £ 29 85+ 23 20,200 %= 2,600 2,440 + 640
BHK-SFV monolayer 3,809 * 400 227 £ 25 69+ 17 19,400 + 2,200 2,050 + 500
BHK-SFV free cells (pellet) 3,809 « 400 264 + 19 48 £ 11¢ 22,170 = 2,000 1,670 £ 450¢ 3,400 = 350

* This is assumed to be the same as for the monolayer.

* Significantly different at 5, and 0.1% level, respectively, from other values in the same column by students t test (23 degrees of freedom).
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