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Thewear behaviour of total knee arthroplasty (TKA) is dominated by twowearmechanisms: the abrasivewear and the delamination
of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The
addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour
and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene
(UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending
stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented
knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with
5.62 ± 0.53mg/million cycles falling within the limit of previous reports for established wear test methods.

1. Introduction

During the last decade the wear reduction of TKA was
documented with wear tests simulating level walking [1].
Most of these tests have shown abrasive wear of the gliding
components, also termed tibial inserts or articular surfaces.
In contrast to clinical results a second wear phenomenon,
delamination, occurred less frequently in simulations [2–4].
Delamination and cracks are fatigue failures of the gliding
surfaces due to a combination of material aging and high
stress concentration. Several test configurations have been
proposed to generate delamination on TKA gliding compo-
nents [5–11], but all of these attempts have the disadvantage
of not having a homogeneous source of physiological loading
data, requiring the application of several estimations. Never-
theless, new bearing materials for TKA should be analyzed
for delamination susceptibility.

One possibility to reduce the risk of delamination for new
bearing materials is to stabilize the mechanical properties by
the prevention of aging. In regard to aging resistance, the
addition of vitamin E has offered promising perspectives [12–
14]. Aging of UHMWPE is related to a chemical reaction
cascade between themacromolecules and oxygen. Irradiation
processes from sterilisation or crosslinking generate free
bonds (radicals) on the molecules. These bonds react with
oxygen. One possible result of these reaction cascades can be
a chain scission of themacromolecules leading tomechanical
property degradation. Vitamin E can donate hydrogen to
react with the free bonds and interrupt this reaction cascade.

Accelerated aging had no influence on thewear behaviour
in a reciprocating unidirectional wear test [15] or a knee
simulator study applying level walking [16] on UHMWPE
stabilized with vitamin E. Stable mechanical properties after
artificial aging [17] up to 4 weeks were reported [18, 19]. Most
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of the previous studies were conducted on highly crosslinked
(>50 kGy) UHMWPE blended or diffusion treated with
vitamin E. To the authors’ knowledge vitamin E blended
conventional UHWMPE irradiated with ∼30 kGy for sterili-
sation has not been tested for reduced delamination risk after
artificial aging.

2. Objective

The objective of our study was the application of highly
demanding daily patient activities on a cruciate retaining
knee design to evaluate the influence of artificial aging on the
wear behavior of gliding components made from Vitamin E
blended UHMWPE.

3. Materials and Methods

The wear test was performed on medium size Columbus CR
TKA (Aesculap AG Tuttlingen, Germany) with the thinnest
available gliding surface. Femoral components size F4 Left
articulated against Vitamin E blended and artificially aged
ultra high molecular weight polyethylene gliding compo-
nents size T3. The gliding components were 10mm high and
fixed on a tibia tray. Femoral components and tibia trays
made out of CoCr29Mo alloy were used. UHMWPE bulk
was compression molded GUR 1020 resin blended with 0.1%
vitamin E. For sterilization the gliding components were
irradiated with 30 ± 2 kGy. Artificially aging was applied
according to ASTM F2003-2 [17] afterwards for two week.
An Oxidation Index of 0.1 was detected after this treatment.
Prior to wear testing the gliding components were soaked in
test lubricant at 37∘C for 70 days to avoid influence from fluid
absorption during the wear test. Hydration of nonsoaked
specimens during the initial test interval can affect the wear
result [20].

The simulation was performed on a load controlled 4
station knee wear simulator (EndoLab Thansau, Germany)
capable of reproducing loads and movement of highly
demanding daily activities. As reported previously the rela-
tive error (1.8% to 13.3%) for the loading components (flexion,
axial load, internal-external torque, and anterior-posterior
load) of the different activities results in a sufficient standard
deviation of the resulting movements [8, 21]. In this setup
the axial load, the flexion angle, the anterior-posterior load,
and the internal-external torque are controlled; all other
degrees of freedom are unrestrained. The neutral position
is adjusted by self-alignment of the TKA during axial load
in full extension (0∘ flexion). The load distribution was
adapted from ISO 14243-1:2009(E) with 60% load medial
and 40% load lateral for all activities. The simulation of
the surrounding structures in an anterior cruciate ligament
scarified knee was also adapted from ISO 14243-1:2009(E).
The posterior tibia shift was restrained with 44N/mm, the
anterior tibia shift with 9.3N/mm, and the internal-external
rotation with 0.15Nm/∘. To avoid luxation there was no gap
between the specimens and the restraining system.

The applied profiles (Figure 1) were derived from flexion
angle and load data of 8 subjects with implanted devices

reported previously by Bergmann et al. [22]. These profiles
are normalized to a patient weight of 100 kg as reported
in the same study (“High100” loads) and converted to the
coordinate system described in ISO 14243-1:2009(E) [23].
For walking, stair ascent and stair descent the cycle time
was 1 s (1Hz) [24] and, for the remaining high flexion
activities, the cycle time was set to 2 s (0.5Hz) [25]. The
load profiles were applied in a loop consisting of 5 frames,
4000 cycles of stair descent, 4000 cycles of stair ascent, 200
cycles of deep squatting, 1000 cycles of level walking, and
finally 800 cycles of sitting and rising from a chair. At the
end of each frame the end of the load profile was directly
applied to the start of the load profile in the next frame. The
loop was repeated 500 times during the test. The enhanced
application of high flexion activities compared to the outcome
of studies of patient activities [24, 26] enabled a simulation of
approximately 30 years in an average patient. The described
procedure was previously applied in a wear test with highly
demanding activities [8].The load profiles and themovement
of the TKA were recorded at a sampling rate of 500Hz every
5000 cycles. Based on these records the patterns of load and
motion are evaluated. In addition to the entire load profiles
the maximum and minimum values for anterior-posterior
displacement and internal-external rotation were recorded
every 500 cycles.These datawere used to calculate the average
range of motion.

The tests were run in new born calf serum diluted with
deionized water to a protein content of 20 g/l at 37∘C [23].
The lubricant was stabilizedwith ethylene diamine tetraacetic
acid (EDTA) to avoid precipitation of calcium phosphate
andAmphotericin B to avoidmicrobiological contamination.
The lubricant was changed every 500,000 test cycles. An
axial loaded, soaked control specimen was used to detect
lubricant absorption during the test [23]. After 0.5, 1.0,
2.0, 3.0, 4.0, and 5.0 million test cycles the wear of the
specimens was detected gravimetrically with an analytical
balance (CPA225D, Sartorius Göttingen, Germany) with an
accuracy of 0.01mg. The wear rate was calculated according
to ISO 14243-2:2009(E) [27] respecting air buoyancy. At the
same intervals the bearing surfaces were inspected optically.
To evaluate the geometrical changes during the test the
specimens were scanned before and after the test with a 3D
measuring machine with a resolution of less than 3.5𝜇m
(UMM850, Zeiss Oberkochen, Germany). At each scan a
minimum of 7500 points on an equidistant grid covering the
bearing areas of the gliding components were recorded. The
scans were superimposed and the geometrical changes were
calculated (Holos NT 2.4.12, Zeiss Oberkochen, Germany).
The results are displayed in pseudocolors in a plane transver-
sal view.

4. Results

An average wear rate of 5.62 ± 0.53 (standard deviation)
mg/million cycles was detected for the vitamin E treated and
artificially aged gliding components. The total weight loss
after simulating 5 million cycles of high demanding activities
was 26.60, 30.26, and 29.17mg for the three individual
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Figure 1: Axial load, flexion angle, anterior-posterior load, and internal-external torque applied during the simulation of knee bend, stair
ascent and descent, sitting and rising from a chair, and level walking. The coordinate system from ISO 14243-1:2009(E) is applied [23]. First
peak of the axial load for level walking, stair ascent and descent (coincident with contralateral foot lift). Increased axial load for knee bend
corresponds to descent. Minimum axial load for sitting and rising from a chair indicates resting on the chair after sit-down. The timeframe
was adapted from previously published data [59].

specimens. The weight increase of the soak control during
this time was 6.88mg. The diagram of the weight measure-
ment (Figure 2) shows a stable slope from the beginning
throughout the duration of the test.

Burnishing was the dominant wear pattern observed on
the gliding surfaces. Striated pattern was observed mainly in
medial-lateral orientation. Until the end of the test no crack
formation, pitting, or delamination was observed. On the
posterior distal surface themachiningmarks disappeared and
the color changed (Figure 3).

Geometrical changes (Figure 4) show that the penetration
on the worn specimens 1–3 was mainly dorsal on the lateral
bearing, and central on themedial bearing. Penetration depth
up to 0.3mm occurred. The soak control revealed plastic
deformation up to 0.1mm due to compressive loads only.

Examples of the kinematic pattern extracted from the
data recorded during the testing period up to 0.5 mil-
lion cycles for anterior-posterior displacement and internal-
external rotation are shown in Figure 5. For the activities
with a frequency of 0.5Hz the nominal and actual values are
in good analogy. The activities with a frequency of 1.0Hz
have a higher deviation between nominal and actual values
with partly high frequent noise. Nevertheless, this noise is
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Figure 2: Gravimetric wear of the gliding surfaces during 5 million
cycles of highly demanding activities.

not transformed in movement due to the inert mass of the
simulator and the actual values are still in an acceptable range
as reported previously [8]. There is a good correspondence
between the direction of the applied load or torque and
the direction of movement for level walking, stair descent,
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(a) (b)

(c) (d)

Figure 3: Proximal (a) and distal (b) surface of specimen 3 after 5 million cycles of highly demanding activities. (a) Worn areas on the
proximal surface are framed; arrows indicate the region where striated patterns occurred. (b)The framed areas on the distal surface displayed
a colour change and the machining marks disappeared. (c) Worn area on the dorsal lateral bearing with a polished transition between the
machining marks and the striated patterns; region is indicated by the arrows in picture (a). (d) Magnification from (c) with striated patterns;
scaling is 1mm in all pictures.

stair ascent, and sitting rising from a chair. The anterior-
posterior displacement for all activities during the test ranged
from 4mm to 5mm. The internal-external rotation ranged
from 6∘ to 7∘ except for the simulation of stair ascent,
which has less than half the rotation of all other activities.
This is confirmed by the evaluation of the minimum and
maximum values for anterior-posterior displacement and
internal-external rotation for each activity during the testing
period (Figure 6).

5. Discussion

Our objective was to evaluate the wear behavior of vitamin
E treated TKR gliding components after artificial aging. This
evaluation was based on a simulation of different patient
activities with loading profiles recorded with instrumented
TKA [22].The crucial advantage of such data is the consistent
source compared to previous studies with a similar objective
[9, 21, 28].

In this study the gliding components had an average wear
rate of 5.62 ± 0.53mg/million cycles equivalent to 6.01 ±
0.50mm3/million cycles assuming amaterial density of 0.935
[29] and a cumulative wear after 5 million cycles of 28.68
± 1.88mg (30.67 ± 2.00mm3). This wear rate falls within

the range of reports for clinically well-established CR TKA
(Figure 7) [1, 10, 11, 16, 18, 30–50]. Compared to a previous test
on conventional gliding surface material of the same design
with the simulation of level walking only [1] the wear rate
increased by a factor of 2.6.

Previous studies intended to evaluate the wear behavior
of vitamin E treated UHMWPE simulated level walking only.
Nevertheless, the wear rates reported in these studies are in
a range comparable to the results of our test which includes
more high demand daily activities.

Teramura et al. [51] reported with 27.4mm3 a cumulated
wear after 5 million simulated gait cycles for nonradiated
GUR 1050 with 0.3 wt% vitamin E. In this test the dis-
placement controlled load profile from ISO 14243-3:2004(E)
[52] was adapted. A later study, Haider et al., tested dif-
ferent designs of crosslinked GUR 1020 after a diffusion
treatment with vitamin E. Wear rates of 2.70mg/million
cycles, 5.98mg/million cycles, and 3.06mg/million cycles are
reported for a large size of a PS and CR design and a small
size of the same CR design [18]. In this study ISO 14243-
1:2009(E) [23] was applied. Artificial aging of the gliding
components according to ASTM F2003 [17] was conducted
before wear testing a crosslinked UHMWPE containing
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Figure 4: Geometrical changes after 5 million cycles of highly demanding activities, scale: red > 0.05mm and purple < 0.30mm.

vitamin E by Vaidya et al. [53]. They reported a wear rate
of 1.9 ± 1.9mg/million cycles. The wear behavior of 100 kGy
crosslinked material soak treated in vitamin E was evaluated
with and without artificial aging by Micheli et al. [16]. In this
study a wear rate of 2.4 ± 0.5mg/million cycles was reported
for the unagedmaterial and 2.5± 0.8mg/million cycles for the
artificially aged material. Similar to our results none of the
vitamin E specimens from the previous studies have shown
structural failure. The ability to generate structural fatigue
(like cracks or delamination) with the current test protocol
was demonstrated in a pilot study. There, a conventional
UHMWPE showed delamination within the first million test
cycles after it was initially aged for 3weekswith the conditions
described in ASTM F2003 [17]. This confirms previous wear
test results for conventional Gamma sterilized UHMWPE
after accelerated ageing [7]. Nevertheless, a recent report
about wear tests with a simplified test setup indicates that

shelf aging can have a severe influence on the delamination
behavior compared to the accelerated aging according to
the current standard [54]. The observed wear patterns on
the proximal bearings are in good agreement with previous
reports [55, 56]. The reason for the change in the colour
on the distal surface of the gliding component can only be
hypothesized at the moment. A possible explanation is given
by Costa et al. and Serro et al. [57, 58]. They describe how
substances from the lubricant can be absorbed on the surface
and diffuse into the bulk material.

The geometrical changes show central penetration on the
medial side and posterior penetration on the lateral side.This
indicates that the main penetration occurred during internal
rotation of the tibia. Furthermore, the penetration areas on
specimen 3 and the soak control are more pronounced on the
medial side reflecting the medially shifted load distribution
during the test. Due to axial loading the soak control has
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Figure 5: Patterns of anterior-posterior displacement with applied load and internal-external rotational with applied torque for the different
activities at 0.5 million cycles. The coordinate system from ISO 14243-1:2009(E) is applied [23]. The time frame corresponds to Figure 1.
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Figure 7: Overview of wear rates reported in the literature for
clinically established CR knee implants. All results were obtained
on conventional UHMWPE. Different symbols in a row indicate
individual results in the same study. Dark symbols indicate different
implant design; framed symbols indicate test modification (includ-
ing aging) in the study.

a deformation of ∼0.07mm on the lateral side and ∼0.1mm
on the medial side. This means that up to 30% of the
penetration depth can be related to plastic deformation.

The internal rotation of the tibia during loading is con-
firmed by the kinematic analysis. Internal rotation occurred
for all activities. Stair ascent rotation was limited by the
form fit between femur and gliding surface in extension.
The anterior-posterior displacement is aligned in the same
direction as the applied anterior-posterior load. The range of
motion for level walking is increased compared to a previous
report [1] due to reduced stiffness of the restraining system
for internal-external rotation but the anterior-posterior dis-
placement is comparable for the two studies (4.8 ± 0.8mm
[1] versus 4.7 ± 0.4mm).

6. Conclusions

Even with the simulated application of daily activities which
exceeded the loading limit and period of currently standard-
ized testing criteria, as well as further chemical treatment
by artificial aging, the tested material has a wear rate within
the limits of currently established materials and shows no
indication of structural failure.
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