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ABSTRACT 

Vitamin D, a secosteroid hormone, appears to have significant beneficial effects on various physiological systems, 

including the musculoskeletal system. Vitamin D assists in the regulation of numerous critical biological functions 

and physiological processes in humans, including inflammation, oxidative stress, and mitochondrial respiration, 

and is also linked to cardiac diseases. It is also reported that vitamin D plays a central role in molecular and cellular 

mechanisms, which reduce oxidative stress, and tissue damage and regulate cellular health. On the other side, 

hypovitaminosis D reduces mitochondrial activity and increases oxidative stress and inflammation in the body. 

Hypervitaminosis D increases the prevalence and severity of cellular damage. It has also been reported that vitamin 

D is involved in many functions of the reproductive system in human and critically play an important role in the 

reproductive tissues of women and men. Its role is very well defined, starting from female menarche to menopause, 
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pregnancy, and lactation, and finally in male fertility. Hence, the appropriate amount of vitamin D is necessary to 

maintain the normal function of cell organelles. Based on recent studies, it is understood that vitamin D is involved 

in the biological activities of mitochondria in cells, especially in cardiomyocytes. In this review, we emphasized 

the role of vitamin D in mitochondrial respiration, which could significantly influence heart health and human 

reproduction.  

 

Keywords: Vitamin D, mitochondrial dysfunction, oxidative stress, cell damage, inflammation, cardiac diseases 

 

 

INTRODUCTION 

Vitamin D is fat-soluble, linked to bone 

metabolism, and is well-known for its essen-

tial role in bones and skeletal muscle health 

(Halfon et al., 2015). Vitamin D is present in 

bread, milk, fatty fish, mushrooms, and die-

tary supplements. As we know that there are 

two main forms of dietary or supplemental 

vitamin D. These are vitamin D2 and D3. Vit-

amin D2 is derived from plants, while vitamin 

D3 comes from animals (fatty fish or sheep's 

lanolin). Both the forms are significant for 

overall vitamin D levels. The biological roles 

of vitamin D are very well defined. Cholecal-

ciferol (known as vitamin D3) is bound to se-

rum vitamin D-binding protein (DBP). For 

the biological activation of vitamin D, two-

step enzymatic pathways are necessary. These 

are involving 25-hydroxylase of the liver and 

1α-hydroxylase (CYP27B1) of the kidney and 

extra-renal tissues. The majority of the func-

tions are mediated by the VD receptor (VDR), 

which is a ligand-dependent transcription fac-

tor. This transcription factor is primarily lo-

calized in the nuclei of target cells. VDR 

works as a mediator for the genomic action of 

the biologically active hormone calcitriol 

(1,25(OH)2D3). Calcitriol is an active form of 

vitamin D, which is produced by the hydrox-

ylation of 25(OH)D in kidneys under the reg-

ulation of parathyroid hormone (PTH) and se-

rum calcium. This form acts as an inducer for 

the transcription of more than 900 genes 

(Minghetti and Norman, 1988). VDR receptor 

is widely distributed over various tissues and 

organs including skeletal muscles, parathy-

roid glands, and the reproductive tissues. This 

indicates that various metabolic processes are 

regulated by VDR, significantly (Kinuta et 

al., 2000) as shown in Figure 1. 

Vitamin D levels of 50 nmol/L were 

found to be insufficient in various clinical in-

vestigations and were linked to muscular at-

rophy and faintness (Tagliafico et al., 2010; 

Van Langenberg et al., 2014). When exposed 

to ultraviolet B rays, the human skin converts 

7-dehydrocholesterol to vitamin D (Jäpelt and 

Jakobsen, 2013; Wacker and Holick, 2013). 

The CYP P450 gene family has been ex-

panded to include numerous genes that play 

pivotal roles in vitamin D activation and deg-

radation (CYP2R1, CYP27B1, and 

CYP24A1). Vitamin D initially hydroxylated 

in the liver predominantly by the CYP2R1 en-

zyme to produce 25-hydroxyvitamin D and 

then in the kidneys by another enzyme, 

CYP27B1, to produce 1α,25-dihydroxyvita-

min D, which is the hormonally active form 

(Griffin et al., 2003; Bouillon et al., 2008; 

Saponaro et al., 2020). 

Vitamin D is attached to its serum carrier, 

vitamin D binding protein (DBP) in the 

bloodstream. DBP is a highly polymorphic 

protein that has at least 120 different 

isoforms. Gc1f, Gc1s, and Gc2 are the three 

primary isoforms that have sparked the most 

interest. Their structural differences have an 

impact on DBP function, which is linked to a 

large number of clinical aspects. Studies con-

firm that polymorphism of specific DBP 

isoforms leads to a lower level of circulating 

DBP (Santos et al., 2019). Serum calcium lev-

els have been reported to be normal in patients 

with low levels of circulating DBP. The pri-

mary role of DBP is to keep a stable reservoir 

of circulating extracellular vitamin D metab-

olites in place. DBP is more effective in this 

role than albumin due to its stronger affinity 

for vitamin D metabolites, even though both 

DBP and albumin are filtered into urine and 

retrieved by megalin.  
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Figure 1: Vitamin D metabolism of human; an overview 

 

Under normal physiological conditions, 

1α,dihydroxyvitamin D binds to its nuclear 

receptor, the vitamin D receptor (VDR), and 

then to a retinoid X receptor (RXR), forming 

a VDR-RXR heterodimer that interacts with 

regulatory elements in the genome and regu-

lates the transcription (Haussler et al., 1997). 

VDR is a transcription factor that has been 

shown to influence the expression patterns of 

many genes (Khammissa et al., 2018). The in-

teraction of 1α,25-dihydroxyvitamin D with 

its intracellular receptors is also known to af-

fect vitamin D–dependent gene transcription 

and activation of vitamin D-responsive ele-

ments and trigger various second messenger 

systems (Gil et al., 2018). Vitamin D defi-

ciency raises the risk and severity of several 

diseases, including obesity, insulin resistance, 

type 2 diabetes, hypertension, pregnancy is-

sues, memory difficulties, osteoporosis, auto-

immune diseases, malignancies, and systemic 

inflammatory illnesses (Garcia-Bailo et al., 

2011; Berridge, 2017a; Szymczak-Pajor et al., 

2020).  

The Endocrine Society recommends a 

daily dose of 400 IU of vitamin D for children 
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aged 0 to one year and 600 IU for children 

aged one to eighteen years. The Society ad-

vises 1500-2000 IU for men and women over 

18 years old, including nursing and pregnant 

women whose newborns are not getting 

enough vitamin D (Endocrine Society, 2017). 

Vitamin D deficiency/insufficiency is a pub-

lic health problem because it is independently 

connected with a greater risk of all-cause 

mortality. Vitamin D3 therapy with a daily 

dose of 500 U reduced the frequency of res-

piratory infections by two-thirds in patients 

with 25-hydroxyvitamin D levels less than 20 

ng/ml, which typically leads to impaired ab-

sorption of vitamin D. Vitamin D sufficiency, 

a serum 25-hydroxyvitamin D level of at least 

30 ng/mL reduced the risk for adverse clinical 

outcomes in patients with COVID-19 infec-

tion (Maghbooli et al., 2020). Hypovitamino-

sis D was associated with a decline in muscu-

lar function and performance and increased 

disability (Berridge, 2017b; D’Amelio and 

Quacquarelli, 2020). Vitamin D supplementa-

tion has been shown to boost muscle strength 

and speed in aged people (Halfon et al., 2015; 

Berridge, 2017b). Vitamin D supplementa-

tion has been linked to a lower risk of falls due 

to direct effects on muscle cells (Ramasamy, 

2020; Wilson-Barnes et al., 2020). On the 

other hand, excessive vitamin D levels might 

have harmful effects, such as kidney stones, 

renal impairment, malignancy, and possibly 

some indications of cardiovascular disease 

(CVD), especially when combined with a 

high calcium intake (Brouwer-Brolsma et al., 

2013). 

The research focus on vitamin D has ex-

panded beyond its recognized classic bone 

health benefits, including diabetes and cardi-

ovascular, neurological, pulmonary, renal, 

and liver illnesses. Yet, several contradictory 

discoveries continue to emerge (Stokes and 

Lammert, 2016). However, some controver-

sies and uncertainties still exist in certain as-

pects related to a daily dose of vitamin D re-

quired in the general population to maintain 

normal levels of 25-hydroxyvitamin D, sup-

plementation for metabolic bone diseases, ul-

traviolet-B induced cutaneous production of 

vitamin D, regulation of 25-hydroxyvitamin 

D metabolites in the liver, the definition of 

hypervitaminosis of D, hypovitaminosis in 

acute illness, requirements of vitamin D dur-

ing reproduction, cellular and organ activities 

under vitamin D receptor influence, and pos-

sible links between vitamin D and major dis-

eases (Minisola et al., 2019; Giustina et al., 

2020). Keeping vitamin D levels in an optimal 

range allows it to improve several processes 

while avoiding the complications associated 

with overdose. The vitamin D fluctuation is 

widely associated with several diseases, in-

cluding cardiovascular diseases (Ohsawa et 

al., 2000; Brewer et al., 2011), cancer 

(Hammad et al., 2013; Weinstein et al., 2015), 

immune system disorders (Jeffery et al., 2015; 

Wang et al., 2017), diabetes (Al-Timimi and 

Ali, 2013), neuropsychiatric disorders (Kesby 

et al., 2011) and several other diseases. The 

central focus of this review is to explore the 

potential of vitamin D, its association with 

mitochondrial dysfunction, oxidative stress, 

cellular damage, inflammation, and immune 

system (Jeffery et al., 2015), calcium homeo-

stasis linked with vitamin D, and cardiac dis-

eases (Figure 2). 

 

ROLE OF VITAMIN D IN MITOCHON-

DRIAL FUNCTION/DYSFUNCTION 

Mitochondria are cell organelles with 

outer and inner membranes, though the inner 

membrane forms many folds known as cristae 

(Ashcroft et al., 2020). The intermembrane 

space refers to the space between the outer 

and inner membranes, while the matrix refers 

to the space within the inner membrane 

(Ashcroft et al., 2020). The mitochondria pro-

duce energy in the form of ATP. The reduc-

tion in ATP production is independent of 

changes in many parameters of mitochondrial 

machinery, including electron transport sys-

tem (ETS) complexes I-V, citrate synthase, 

and cytochrome C oxidase (Ashcroft et al., 

2020). After the step-by-step transmission of 

electrons, the mitochondrial matrix actively 

pumps hydrogen ions into the intermembrane 

space. ATP synthase returns protons from in-
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termembrane space to the mitochondrial ma-

trix by passing them across an electrochemi-

cal gradient process. ATP is synthesized by 

coupling proton translocation with phosphor-

ylation of ADP. 

 

 

Figure 2: Vitamin D and potential linkage with crit-
ical biological functions, cardiac and mitochon-
drial diseases 

 

In addition to impacting muscle mass and 

functionality, evidence suggests that vitamin 

D in skeletal muscles may influence mito-

chondrial activity. In the case of vitamin D 

deficiency, mitochondrial respiration dimin-

ishes with a reduction in nuclear mRNA and 

protein (Kim et al., 2014). When 1,25-dihy-

droxyvitamin D3 was administered to human 

primary myoblasts, mitochondrial activity 

improved, and the number of mRNAs encod-

ing mitochondrial proteins increased by al-

most 80 percent (Ryan et al., 2016). Vitamin 

D is needed to sustain the functioning of the 

mitochondrial respiratory chain (Consiglio et 

al., 2015). The synthesis of the uncoupling 

protein (UCP), which regulates thermogene-

sis on the internal mitochondrial membrane, 

is similarly affected by vitamin D (Abbas, 

2017). In particular, the synthesis of ATP is 

reduced because of the decrease in vitamin D-

dependent development of the electron 

transport chain complex I. Ashcroft et al., 

(2020) found that VDR is required to main-

tain mitochondrial respiration at an optimal 

level in myoblasts and myotubes (Ashcroft et 

al., 2020). The reduction in mitochondrial res-

piration in VDR-deleted myoblasts and myo-

tubes as a result of reduced ATP. Further, vit-

amin D has no effect on mitochondrial ETC 

subunit I–V, citrate synthase, or cytochrome-

c protein content in VDR-KD myoblasts and 

myotubes (Ashcroft et al., 2020). The de-

crease in maximum oxidant ability without 

any alterations in ETS I-V protein expression 

was reported in an in vivo study with mice de-

prived of vitamin D (Habib et al., 2020). 

Most of the vitamin D research in humans 

focuses on protein synthesis and breakdown. 

There is growing evidence that vitamin D 

supplementation improves mitochondrial 

density and function (Sinha et al., 2013; Rana 

et al., 2014). Vitamin D supplementation en-

hances the balance between synthesis and 

breakdown of muscle protein, as well as mi-

tochondrial density in an in vivo rat model 

study (Gogulothu et al., 2020). To accomplish 

the immediate and intensive energy demands 

during exercise, the muscle stores phospho-

creatinine (P-creatinine) (Bouillon and 

Verstuyf, 2013). P-creatinine is the muscle’s 

inorganic phosphate content. In vitamin D de-

ficient patients, P-creatinine levels were de-

creased. However, it was restored after vita-

min D treatment and exercise in randomized 

clinical trials (Wagner et al., 2013). The 

slower rate of energy generation in the mito-

chondria of skeletal muscle could lead to a 

loss of muscle strength and a fast feeling of 

exhaustion during moderate activity (Latham 

et al., 2021). P-creatinine is broken down dur-

ing muscle contraction and generates creatine. 

The P-creatinine system generates a lot of 

ATPs, which is crucial when metabolic de-

mand is high, such as during intense aerobic 

exercise, and other metabolic pathways can-

not keep up with the need. In essence, P-cre-
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atinine fosters the short-term high level of en-

ergy needed during intense exercise. Ye et al. 

(2001) observed a decrease in the P-creatinine 

/ATP ratio in a pig model of congestive heart 

failure (Ye et al., 2001). Further, research 

shows that P-creatinine system damage oc-

curs before contractile dysfunction, which re-

duces the energy reserve (Ingwall and Weiss, 

2004). Vitamin D could reverse P-creatinine 

fluctuation in contractile function by restoring 

mitochondrial function, and this could be a 

potential research target for further investiga-

tion. Furthermore, the activation of the vita-

min D receptor protein has been confirmed to 

increase serum creatinine. Concern regarding 

this fact is that while serum creatinine levels 

are increased, the glomerular filtration rate 

decreases. However, a study found results to 

the contrary. The short-term activation of vit-

amin D receptors increases serum creatinine 

levels along with overall creatinine produc-

tion and generates no detrimental effects on 

the glomerular filtration rate (Agarwal et al., 

2011).  

 

The role of vitamin D receptors in  

mitochondrial function 

The ubiquitous nature of VDR suggests 

the possibility of extensive impacts, prompt-

ing further research into the effects of vitamin 

D in several tissues in the human body 

(Omdahl et al., 2002). In genomic results, 

VDR activation in the nucleus leads to cellu-

lar differentiation and proliferation 

(Sirajudeen et al., 2019). Nongenomic effects 

leading to fast calcium influx within muscle 

cells could be attributed to a potential trans-

membrane receptor (Rebas et al., 2017). 

1,25-dihydroxyvitamin D controls the ox-

idative capacity by avoiding substantial 

changes in the density or amount of ETS pro-

tein. A recent study revealed that VDR knock-

down (VDR-KD) in myotubes of C2C12 en-

hances the synthesis of mitochondrial fusion 

protein optic atrophy 1 (OPA1), which has 

been proposed as a compensatory strategy for 

restoring mitochondrial function (Ashcroft et 

al., 2020). In mitochondria, OPA1 causes in-

ternal membrane fusion, resulting in im-

proved mitochondrial oxidative capacity 

(Kushnareva et al., 2013). The OPA1 protein 

expression was elevated with 1,25-dihy-

droxyvitamin D treatment in vitamin D defi-

cient mice with statin-induced myopathy and 

human skeletal muscle cells (Ryan et al., 

2016; Ren et al., 2020). Ricca et al. (2018) 

studied the in vitro function of mitochondria 

by silencing VDR and reported the enhanced 

respiratory activity in silenced cells that was 

associated with increased reactive oxygen 

generation (ROS). The absence of the recep-

tor eventually led to mitochondrial malfunc-

tion and cell death and slowed down cellular 

proliferation. These results indicate that VDR 

protects cells against excess breathing and 

ROS production that cause cell damage (as 

shown in Figure 3) (Ricca et al., 2018). 

 

 

Figure 3: Effect of deficiency of vitamin D3 caus-
ing protein degradation and muscle atrophy 
 
 

Furthermore, a similar study by Ricciardi 

et al. (2015) found that vitamin D and VDR 

signaling decreases mitochondrial respira-

tion, serving as an important regulator for 
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many essential bioenergetic metabolic path-

ways. The ability of vitamin D/VDR to regu-

late mitochondrial respiration allows the mi-

tochondria to adapt to various metabolic 

states that arise during times of cell growth, 

signaling, and proliferation (Silvagno and 

Pescarmona, 2017). To continue, the study 

conducted by Silvagno and Pescarmona 

(2017) found that KO VDR mice have shown 

deficient calcium absorption leading to hy-

pocalcemia, hypophosphatemia, secondary 

hyperparathyroidism, osteomalacia, and rick-

ets. The same study also identified VDR as a 

mitochondrial energy expenditure regulator 

due to the finding that VDR KO mice have 

shown higher basal energy expenditure rates 

and increased levels of energy up-coupling in 

the form of the electron transport chain in mi-

tochondria. Additionally, VDR KO mice 

were found to have a debilitating effect on the 

skin in regards to decreasing the efficiency of 

the barrier to a host of pathogens via disrup-

tion in the processes of lipid composition and 

secretion that help make the barrier effect. 

The VDR protein was discovered with 

two anti-VDR antibodies, and the mitochon-

drial VDR disappeared by the VDR gene si-

lencing in immortalized human keratinocytes 

(Consiglio et al., 2014). VDR localization in 

mitochondria needs a specific mitochondrial 

import mechanism involving the import of 

cholesterol or the export of cytochrome C 

(Silvagno et al., 2013). It's unclear how mito-

chondrial VDR affects gene expression, cat-

ion control, oxidative function, and tissue-

specific activity in platelets or muscles. It also 

regulates several other nuclear receptors in 

mitochondria including estrogens, glucocorti-

coids, and thyroid hormone receptors (Psarra 

et al., 2006). Mitochondria are generally 

acknowledged as having a function in form-

ing reactive nitrogen, reactive oxygen species 

(ROS), and antioxidants. The antioxidants' 

defense mechanisms were shown to be en-

hanced in rickets (Doǧan et al., 2012). Both 

metabolic and osteoporosis syndrome is asso-

ciated with oxidative stress (Manolagas, 

2010).  

The lack of VDR leads to a decrease in 

cell proliferation, which is highly required 

during the cells that acquired higher VDR in 

the G0 and G1 phases of the cell cycle than in 

the M phase (Consiglio et al., 2014). Consig-

lio et al. (2014) found that cancer cells with 

silenced VDR have decreased the rates of pro-

liferation, leading to the hypothesis that re-

duced VDR expression could be a possible 

cancer treatment. Silencing of VDR increased 

cytochrome C oxidase subunits II and IV tran-

script. VDR silencing inhibited the mevalo-

nate pathway and histone acetylation levels, 

which are acetyl CoA-dependent biosynthetic 

pathways (Consiglio et al., 2014). Inhibiting 

histone acetylation decreases gene transcrip-

tion levels, and since acetyl CoA is a key mol-

ecule in metabolism, various pathways have 

the potential to be affected by VDR. These 

findings suggest that VDR regulates the mito-

chondrial respiratory chain activity, the ace-

tyl-CoA pathway, the TCA cycle, and biosyn-

thetic pathways of cell development. 

Researchers investigated the significance 

of vitamin D in maintaining the in vivo activ-

ity of mitochondria by utilizing a known diet-

induced vitamin D deprivation model in mice 

C57BL/6J. The study with a diet-induced vit-

amin D deficiency model of mice(C57BL/6J) 

results in reduced mitochondrial respiration in 

skeletal muscle that could lead to muscle fa-

tigue and performance deficits (Ashcroft et 

al., 2021). Vitamin D (calcitriol) increases in-

tramyocellular lipid (IMCL) accumulation 

and oxygen consumption rate, which is driven 

by mitochondrial complex II in C2C12 myo-

tubes, and this increase is at least partially me-

diated by a protein, Perilipin 2 (PLIN2) 

(Schnell et al., 2019). Kolleritsch et al. (2020) 

reported that the low cardiac perilipin is 

linked to reduced mitochondrial fission and 

could be used to inhibit the emergence of lipo-

toxic cardiomyopathy (Kolleritsch et al., 

2020). An increase in myocardial lipid stor-

age and decreased cardiac performance were 

observed after myocardial infarction in peo-

ple with PLIN2 deficiency(Mardani et al., 

2019). 
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VITAMIN D, MITOCHONDRIA, AND 

CARDIAC DISEASES 

Cardiovascular diseases, including heart 

failure, aortic aneurysmal heart disease, pe-

ripheral artery disease, hypertension and ath-

erosclerosis, coronary artery disease, myocar-

dial infarction, hypertrophy, cardiomyopathy, 

and cardiac fibrosis, are significant causes of 

morbidity and mortality (Drazner, 2011; Rai 

and Agrawal, 2017; Elgendy et al., 2019). 

These illnesses are linked to low levels of vit-

amin D, and supplementing with vitamin D is 

an effective treatment option (Wang et al., 

2008). Myocardial infarction is the prominent 

cause of morbidity and mortality in the world. 

Lee et al., reported that vitamin D3 inhibits 

oxidative stress and regulates mitochondrial 

activity to reduce hypoxia/reoxygenation 

(H/R)-induced apoptosis in a mouse model 

(Lee et al., 2020). They also stated that vita-

min D3 exerts cardioprotective effects and re-

verted H/R-induced mitochondrial fission and 

mitophagy by inhibiting mitochondrial fis-

sion proteins, phosphorylated dynein-related 

protein 1 (pDrp1), and mitochondrial fission 

factor (Mff) (Lee et al., 2020). Mitochondrial 

fusion and fission are dynamic events, which 

play a significant role in mitochondrial and 

cellular quality control processes (Youle and 

Van Der Bliek, 2012). In mitochondrial fu-

sion, two small healthy mitochondria fuse and 

form a mitochondrion that can produce ATP 

for cellular function. In another way, the dam-

age to mitochondria by fission and mitophagy 

will be eliminated (Westermann 2010; Youle 

and Van Der Bliek 2012; Chidipi et al., 2021). 

Vitamin D receptors are expressed in the car-

diovascular system and activated by modulat-

ing the renin-angiotensin system, inflamma-

tion, and fibrosis against myocardial hyper-

trophy and hypertension (Gardner et al., 

2013). The renin-angiotensin-aldosterone 

system is especially susceptible to vitamin D 

since it negatively regulates renin and is cor-

related with a decrease in blood pressure and 

left ventricular hypertrophy. In a study by 

Carrara et al., patients with hypertension and 

vitamin D deficiency were given a weekly 

dose of cholecalciferol for two months. At the 

end of the study, all participants have de-

creased levels of plasma renin and aldoste-

rone (Carrara et al., 2014). These findings can 

potentially improve outcomes for patients 

with hypertension. Furthermore, a novel 

study by Tomaschitz et al., confirmed this by 

concluding that lower vitamin D levels corre-

late to an upregulation of the renin-angioten-

sin-aldosterone system, inevitably leading to 

hypertension (Tomaschitz et al., 2010). This 

provides evidence for vitamin D has a strong 

effect on both the cardiovascular and renal 

systems. To continue, Diez et al. tested a daily 

dose of 30 ng/kg of vitamin D in a modified 

VDR ischemia-reperfusion (I/R) rats model. 

They also found reversed ischemia-reperfu-

sion changes by restoring myocardial vitamin 

D receptor levels and prolonging action po-

tentials (Diez et al., 2015). Lack of VDR 

causes increased left ventricle (LV) mass and 

elevated levels of atrial natriuretic peptide 

coupled with an imbalance of homeostasis, 

and metalloproteases of heart and fibroblasts. 

These findings suggest that vitamin D defi-

ciency may be associated with vascular dys-

function, arterial steadiness, and enlargement 

of the LV. Sufficient or insufficient vitamin D 

levels may have a role in the development of 

cardiovascular disease (Khan et al., 2016). 

VITAL (VITamin D and OmegA-3 TriaL) 

and ViDA (Vitamin D Assessment) are two 

extensive, randomized control studies con-

ducted to study the effects of vitamin D sup-

plementation on CVD outcomes (Manson et 

al., 2012; Scragg, 2020). The VITAL is a ran-

domized clinical trial with 25,871 US subjects 

who found that daily dietary supplementation 

of vitamin D3 (2000 IU) or omega-3 fatty ac-

ids (1 gram) reduces the risk of cancer devel-

opment, heart disease, and stroke in people 

without previous history of these illnesses 

(Manson et al., 2012). ViDA study found that 

vitamin D supplementation does not affect the 

primary outcomes such as cardiovascular dis-

ease, acute respiratory infections, non-verte-

bral fractures, falls, and all cancers (Scragg, 

2020). 
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Effect of vitamin D on oxidative stress 

Increased ROS levels cause oxidative 

stress. During myocardial ischemia/reperfu-

sion (I/R), mitochondria generate ROS as a 

result of aerobic metabolism (Chouchani et 

al., 2014). Vitamin D3 can boost endothelial 

cell proliferation and suppress apoptosis via 

increasing endothelial nitric oxide synthase 

(eNOS) expression and nitric oxide (NO) pro-

duction (Molinari et al., 2013). The phosphor-

ylation of NOS in the heart is a crucial adjunct 

for myocardial perfusion following ischemia 

and myocardial contractility, oxygen con-

sumption, hypertrophic remodeling, apopto-

sis, and myocardial regeneration in cardiac 

cells (Ahmad et al., 2018; Farah et al., 2018).  

NOS also improves the anticoagulant and 

anti-thrombogenic capacity of vascular endo-

thelium, maintains vascular tone, and pre-

vents the proliferation of vascular cells 

(Rajendran et al., 2013). Nitric oxide controls 

various signaling molecules such as soluble 

guanylate (sGC), cytochrome C oxidase, and 

hemoglobin by binding it to iron heme in the 

metalloproteins (Tsai et al., 2012). The inter-

action of NO with heme of sGC in smooth 

muscle cells near the endothelium catalyzes 

guanosine triphosphate (GTP) into guanosine 

monophosphate (cGMP), which is the pri-

mary mechanism for the NO action (Tsai and 

Kass, 2009). Smooth muscle membrane hy-

perpolarization is regulated by cGMP-de-

pendent protein kinases, which limit cytosolic 

calcium flow by enhancing calcium-depend-

ent potassium opening and cell hyperpolariza-

tion (Koh et al., 1996). Hu et al. investigated 

the mechanisms involved in the inhibition of 

myocarditis by vitamin D in experimental au-

toimmune myocarditis (EAM) mice model 

(Hu et al., 2016). The treatment of vitamin D 

reverted left ventricular dysfunction (ejection 

fraction and fractional shortening), apoptosis, 

and autophagy (Hu et al., 2016). It is also 

known that vitamin D may improve heart 

function by suppressing inflammatory cardiac 

infiltrations, lowering apoptosis of cardiomy-

ocytes, and modulating autophagy (Hu et al., 

2016). Even though research has linked ROS 

to heart tissue damage, there is no cure at pre-

sent (Figure 4). Further studies may yield new 

therapeutic insights for I/R (Granger and 

Kvietys, 2015). Furthermore, vitamin D has 

the potential to combat oxidative stress not 

only in cardiac myocytes but also in photore-

ceptors of the eye. In a study conducted by 

Tohari et al., mouse cone cell lines were sub-

jected to oxidative stress and then given a vit-

amin D treatment (Tohari et al., 2016). The 

results showed that the oxidative stress in the 

cone cells was reversed and this finding has 

the potential to impact human patients with 

photoreceptor diseases.  

 

Figure 4: Vitamin D links mitochondrial dysfunction and the consequences on major biological pro-
cesses and functions. 
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Vitamin D and inflammation  

Vitamin D metabolites affect immune and 

inflammatory cell differentiation and produc-

tion of cytokines, which means vitamin D me-

tabolites play an essential role in the develop-

ment of atherosclerosis and other vascular in-

flammation-related disorders (Martens et al., 

2020). 25-hydroxyvitamin D and its active 

hormonal form, 1,25-dihydroxyvitamin D, 

are required for human physiological pro-

cesses, including reducing inflammation and 

intracellular oxidative stress. Vitamin D is a 

crucial regulator of systemic inflammation, 

oxidative stress, and mitochondrial respira-

tory function in humans, as well as the aging 

process (Bhatti et al., 2017). Vitamin D defi-

ciency and atherosclerosis are both common 

diseases and there is reason to believe that a 

correlation exists between the two. Athero-

sclerosis is characterized as a lipid storage 

disease known as vascular wall inflammation 

(Kim et al., 2008; Marchio et al., 2019; 

Wimalawansa, 2019). The lipids have been 

deposited, and T-cells and macrophages are 

accumulated due to the endothelium reaction 

(Mosser and Edwards, 2008; Gibson et al., 

2018). Reactive oxygen species are of central 

importance, which may lead to the oxidation 

of lipids, including low-density lipoproteins 

and polyunsaturated fatty acids, which are de-

posited in the vascular wall, and harm cellular 

components directly (Leopold and Loscalzo, 

2008; Rafieian-Kopaei et al., 2014). Nitric 

oxide, mentioned previously, serves a protec-

tive function in the endothelium. Interest-

ingly, vitamin D increases endothelial nitric 

oxide thereby helping to maintain the vascu-

lature and avoid atherosclerosis (Menezes et 

al., 2014). Vitamin D deficiency is common 

globally and seems to be implicated in several 

stages in the pathophysiology of atherosclero-

sis (Kassi et al., 2013; Latic and Erben, 2020). 

Atherosclerotic lesions are generated that 

may rupture and lead to vascular lumen 

blockage via the activity of multiple cytokines 

(Lusis, 2000; Badimon et al., 2012). Vitamin 

D suppresses the absorption of cholesterol by 

macrophages, and in the case of vitamin D de-

ficiency, macrophagic cholesterol uptake oc-

curs and is finally deposited into endothelial 

spaces, which promotes atherosclerosis 

(Pludowski et al., 2013; Cyprian et al., 2019). 

Diminished high-density lipoproteins and 

apolipoprotein A-1 ratios, that cause athero-

sclerosis, were combined with a deficiency in 

vitamin D (Weng et al., 2013). Vitamin D ef-

fectively reduces the intracellular NF-κB lev-

els to reduce atherosclerosis development 

(Legarth et al., 2019). Mitochondrial dysfunc-

tions were detected in atherosclerosis, includ-

ing downregulation of mitophagy similar to 

autophagy, which can eliminate the damaged 

part of the mitochondria (Yang et al., 2020; 

Poznyak et al., 2021) (Figure 4). However, it 

is unclear whether vitamin D regulates mito-

chondrial dysfunction in atherosclerosis de-

velopment (Mandarino et al., 2015; Poznyak 

et al., 2021). Moreover, VDR being found on 

various tissue types, including brain and pan-

creas tissue, links vitamin D and cardiovascu-

lar diseases such as atherosclerosis and hyper-

tension stronger (Menezes et al., 2014). In ad-

dition to the direct relationship between vita-

min D deficiency and heart disease, the defi-

ciency can indirectly exacerbate cardiac 

symptoms by interfering with endocrine pro-

cesses that impact cardiac function. One ex-

ample of this indirect link is the ability of vit-

amin D to decrease insulin resistance, which 

ultimately benefits patients with atherosclero-

sis and hypertension by decreasing the activ-

ity of lipoprotein lipase, leading to a decrease 

in the level of lipoproteins and LDLs in the 

blood (Menezes et al., 2014). 

 

Vitamin D and calcium homeostasis 

Vitamin D deficiency has been associated 

with an increased mortality rate, particularly 

cardiovascular mortality (Heath et al., 2019). 

The calciotropic hormones, including vitamin 

D, parathyroid hormone, and calcitonin, are 

responsible for maintaining calcium homeo-

stasis within normal ranges (Mundy and 

Guise, 1999). Vitamin D regulates intracellu-

lar calcium and ROS (Duchen, 2000). The 

fluctuation of intracellular calcium regulates 

mitochondrial calcium and health (Bagur and 
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Hajnóczky, 2017). Cardiac cell contractual 

characteristics are primarily regulated by the 

direct contact with the calcium, known as the 

calcium-induced calcium release mechanism 

(Eisner et al., 2017). The cardiac contractile 

proteins, actin, and myosin are regulated by 

the intracellular levels of calcium (Rüegg, 

1998; Kuo and Ehrlich, 2015). The extracel-

lular homeostasis of calcium influenced by 

vitamin D alters intracellular calcium and 

may impact heart cell contractility indirectly 

(Weber et al., 2008). Pfeifer et al. studied 

older women with vitamin D deficiency who 

were supplemented with calcium and 20 μg of 

vitamin D3 as a daily dose and found an in-

crease in serum 25-hydroxyvitamin D of 20 

nmol/l, a 9.3 % de-crease in systolic blood 

pressure, and a 5.4 % decrease in heart rate 

compared with those supplemented with cal-

cium alone (Pfeifer et al., 2001). They also 

concluded that vitamin D3 and calcium intake 

could contribute to the pathogenesis and pro-

gression of hypertension and cardiovascular 

disease in older women (Pfeifer et al., 2001). 

The alteration of intracellular calcium could 

affect the mitochondrial function via VDR. 

Vitamin D regulates mitochondrial calcium 

homeostasis. Mitochondrial calcium has addi-

tional vital functions, such as mitochondrial 

metabolic control, ATP generation, and cell 

death (Giorgi et al., 2012). Another clinical 

study with 3258 participants showed that se-

vere and moderate vitamin D deficiency (19.0 

and 33.3 nmol/l) leads to a higher rate of car-

diovascular death compared to the patients 

with normal levels (71.0 nmol/l) over 7 years 

(Murr et al., 2012). 

The endocrine hormone 1,25-dihy-

droxyvitamin D is produced in response to di-

etary calcium intake and physiologic states 

such as growth, aging, and menopause (Fleet, 

2017). Most of the molecular activities of 

1,25-dihydroxyvitamin D on calcium-regulat-

ing target tissues are mediated via transcrip-

tion regulated by the vitamin D receptor (Pike 

and Christakos, 2017). Calcium homeostasis 

may be controlled by blood calcium levels of 

the necessary ranges, vitamin D endocrine 

regulates the total calcium homeostasis of the 

body, and the regular dietary calcium intake 

helps regulate the metabolism of vitamin D 

(Fleet, 2017). The primary role of vitamin D 

is in regulating intestinal calcium absorption, 

urinary calcium excretion, and bone metabo-

lism. To achieve this goal, these regulatory 

events occur in coordination with numerous 

tissues, including the intestine, kidney, bone, 

and parathyroid gland (Fleet, 2017; Bhattarai 

et al., 2020). 

 

VITAMIN D AND REPRODUCTIVE 

HEALTH 

The link between vitamin D and human 

reproduction is precious. There are two types 

of effects covered under vitamin D levels and 

their effects on human organs. These are clas-

sical and non-classical effects (Figure 5). 

There are several reports available on the 

proven vital link between vitamin D levels 

and reproductive health in humans. 

 

Role in the female reproductive system 

The pivotal role of vitamin D is well stud-

ied in the female reproductive system. There 

are three important phases of reproductive 

women’s life span. These are menarche, ado-

lescence, reproductive period, and meno-

pause. Poor vitamin D status in the develop-

ing stage is a serious matter of concern as it is 

critical for optimal bone mineral status in the 

developing skeleton. Literature suggested that 

the Dietary Reference Intake (DRI) is very 

poorly distributed among growing girls. It 

was found that a total of 50 % of girls aged 

between 9–13 years and 32 % of girls aged 

between 14–18 years are only meeting the 

recommendation for vitamin D (200 IU/d or 5 

mg/d) (Moore et al., 2004). In adolescents, 

this deficiency leads to decreased absorption 

of dietary calcium which results in an altered 

form of the growth and poor mineralization of 

the skeleton. Sometimes this deficiency leads 

to the generation of secondary hyperparathy-

roidism, and a higher risk of developing bone 

abnormalities (Holick, 2004). Vitamin D 

plays a critical and potential role in the mod-

ulation of obesity, energy metabolism, and 
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Figure 5: Classical and non-classical effects of vitamin D on human health 

 

insulin secretion in adolescent stage of fe-

males (Skinner et al., 2003). Another aspect 

of vitamin D deficiency is linked with puberty 

which is a time of dramatic developmental 

changes in the body in a sequential manner to 

reach mature adult reproductive stages. It is 

well known that the timing of menarche gen-

erally depends on temperature, sun exposure, 

and socioeconomic status in society, but in 

some ways it is directly related to a geo-

graphic gradient of specific sun exposure hab-

its, ultimately leading to vitamin D status at 
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this stage. Hence, we can conclude that vita-

min D status is linked with menarche. Finally, 

vitamin D status could indirectly affect the 

timing of menarche through its effect on obe-

sity in developing girls. Some physiological 

and biochemical pathways might play an im-

portant role in secretion of adipose-derived 

hormones, but it is unclear whether these hor-

mones derived from adipose tissues could al-

ter in response to vitamin D supplementation 

or not (Yura et al., 2000; Maetani et al., 2009; 

Donoso et al., 2010). It was reported that In-

sulin-like growth factor-1 (IGF-I) may regu-

late the releasing of sex hormones. Vitamin D 

receptors have been shown in different parts 

of the brain including the hypothalamus thus 

it may be positively related to the age at men-

arche, and its insufficiency was associated 

with earlier menarche through neuroendo-

crine regulation of the gonadotropic axis 

(Zhen et al., 1997; Eyles et al., 2005; DiVall 

and Radovick, 2008; Breen et al., 2011; 

Villamor et al., 2011). 

It was reported that vitamin D regulates 

the expression of a large number of genes in-

volved in the reproductive tissues of the fe-

male reproductive system. Several tissues of 

the endocrine and reproductive system are 

having VDR. In females, vitamin D is criti-

cally involved in the physiological functions 

of ovarian follicles. It was studied that human 

ovaries contain granulosa cells. The nuclei 

and cytoplasm of these cells are abundantly 

containing vitamin D receptors. This indicates 

that vitamin D plays an important role in the 

female reproductive system (Thill et al., 

2009).Thus, we can say that vitamin D defi-

ciencies directly or indirectly play role in is-

sues of subfertility, endometriosis, polycysti-

covary syndrome (PCOS), preeclampsia, pre-

term delivery, gestational diabetes, and bacte-

rial vaginosis. Hence, optimal vitamin D lev-

els in the reproductive phase and throughout 

a woman’s life are always important. It was 

also reported that vitamin D induces some-

how the secretion of important hormones pro-

gesterone, estrone, and estradiol secretion in 

ovarian cells either independently or syner-

gistically with insulin. 

In the case of follicular development stud-

ies, it has been concluded that vitamin D 

might promote the differentiation and devel-

opment of human granulosa cells, thus play-

ing an important role in human follicular de-

velopment (Merhi et al., 2008, 2012, 2014; 

Merhi, 2009; Irani and Merhi, 2014). 

Most of the sex hormones are derived 

from cholesterol which works as the common 

precursor and can be obtained either through 

dietary supplements or de novo synthesized 

from acetyl CoA. The production process of 

these hormones is controlled by multiple en-

zymes. It was evident from published reports 

that the expression and activity of some of 

these enzymes were affected by vitamin D 

(Merhi et al., 2014). It was also found that in 

human ovarian cells, the production of vital 

hormones like progesterone, estrogen, es-

trone, and insulin-like growth factor-binding 

protein 1 has increased under the direct influ-

ence of vitamin D levels. It was also reported 

that 1,25-dihydroxyvitaminD3 strongly stim-

ulated the production of the hormones estro-

gen and progesterone in the human placenta 

(Barrera et al., 2007). 
It was reportedin the case of female rats 

that a low level of vitamin D leads to a 75 % 

decrease infertilitywhich further leads to 

complications in pregnancy. Sometimes, this 

deficiency may link with uterine hypoplasia 

and impaired folliculogenesis. Calcium ho-

meostasis is maintained by vitamin D suffi-

cient level in the reproductive phase which fi-

nally modulates the estrogen biosynthesis 

(Panda et al., 2001; Sun et al., 2010; Wojtusik 

and Johnson, 2012). Calcium repaired fertility 

was studied in the case of animals which was 

achieved by vitamin D and a diet supple-

mented (Johnson and DeLuca, 2001; 

Anagnostis et al., 2013). 

Pregnancy and lactation are two very pre-

cious stages for every female. It was reported 

that the active form of vitamin D was highly 

required to increase the intestinalabsorption 

of calcium and the mobilization of maternal 

bones. A total of approximately 30 g of cal-

cium is absorbed by human embryos. Skele-

ton contains 99 % of this calcium. Almost 150 
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mg/kg/day of calcium is transferred by pla-

centa during the last trimester of pregnancy 

(Kovacs, 2008). Vitamin D deficiency is 

prevalent among pregnant women. It was re-

ported during pregnancy stages, increase in 

the plasma vitamin D levels could contribute 

to the reductionin plasma calcium level and 

may result from increased metabolism of 

mothers or increased utilization of vitamin D 

by the fetus (Lerchbaum and Obermayer-

Pietsch, 2012). 

It was studied that maternal vitamin D 

levels and the prevalence of bacterial vagi-

nosis among pregnant women are directly 

linked with each other. Bacterial vaginosis 

has been reported to disrupt the normal bal-

ance of vaginal flora, leading to increased 

growth of anaerobic bacteria responsible for 

the secretion of inflammatory cytokines, pros-

taglandins, and phospho-lipase A2 (Allsworth 

and Peipert, 2007). 

Calcium status plays a very critical role in 

the initiation of labor and also plays a role in 

smooth muscle function in early labor. The 

level of serum calcium is generally regulated 

by vitamin D levels (Papandreou et al., 2004). 

Pregnant women with low levels (<37.5 

nmol/l) of 25(OH)D3 delivered more than 4 

times by cesarean section compared to 

women with 37.5 nmol/l or greater with nor-

mal delivery (Merewood et al., 2009). Vita-

min D is essential for the maintenance of cal-

cium homeostasis and a role in the initiation 

of early labor. Vaginal delivery was severely 

affected due to the poor maternal vitamin D 

status which might reduce the strength of the 

pelvic musculature in pregnant women 

(Scholl et al., 2012). Fetal development and 

programming in pregnant women is directly 

linked with 3000 genes that are stimulated by 

vitamin D levels (Kho et al., 2010). Mother 

and child health is linked with normal vitamin 

D levels. The deficiency during pregnancy of 

vitamin D leads to chronic diseases in later 

stages of child. Most of them are like wheez-

ing and asthma, schizophrenia, multiple scle-

rosis, type 1 diabetes mellitus, and insulin re-

sistance (Altschuler, 2001; Hyppönen et al., 

2001; Camargo et al., 2007; Devereux et al., 

2007; Zipitis and Akobeng 2008; Mirzaei et 

al., 2011). 

 

Vitamin D levels and their role in infertility 

Approximately 15 % of the couples are 

severly affected by infertility disorders due to 

poor level of vitamin D. These are due to the 

various problems like polycystic, ovary syn-

drome, endometriosis infertility, myoma in-

fertility, male infertility, premature ovary fail-

ure. These problems can be cured by main-

taining the normal levels of vitamin D. The 

literature demonstrates that low vitamin D 

levels very often lead to PCOS compared to 

women with normal levels (Li et al., 2011; 

Wehr et al., 2011). The deficiency is also 

linked with insulin resistance, obesity, and 

metabolic syndromes. These are commonly 

observed in PCOS which leads to ovulatory 

dysfunction (Hosseinpanah et al., 2014). 

Menstrual irregularity can be removed by 

proper supplementation of vitamin D. It might 

be critically involved in improvement of fol-

licular development, and pregnancy rate in 

women with PCOS (Rashidi et al., 2009; Ott 

et al., 2012). 

 

Role in male reproductive system 

Role of calcium is essential in the male re-

productive system. This is highly required 

and crucial for spermatogenesis, and sperm 

motility. It was found that there is a direct role 

of vitamin D in semen quality and spermato-

genesis which works as a modulator of cal-

cium metabolism. 

The basis of the interplay between vitamin 

D and reproduction lays on the presence of 

both. 

In the rat, vitamin D receptors (VDR) and 

1α-hydroxylase (CYP27B1) have been re-

ported to play important roles in various tis-

sues of both sexes, but particularly in the rat 

testis (Hirai et al., 2009). In case of human, it 

was reported that VDR are found in testis, ep-

ididymis, prostate, seminal vesicles, and 

Leydig cells. Although when it was compared 

with others, the expression level was found 

different, which was slightly higher in epidi-

dymis and seminal vesicles (Blomberg Jensen 
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et al., 2010). Cholesterol efflux in human 

sperm was regulated by vitamin D molecules 

which enhanced the sperm bioavailability. It 

was studied that cytoplasm of epithelial cells 

of the epididymis and ductal prostate epithe-

lium was encountered with vitamin D recep-

tors (Walters 1984). The key role of few en-

zymes is well established in the function of 

vitamin D in various tissues. These enzymes 

are located either in the endoplasmic reticu-

lum (ER) (e.g., CYP2R1) or in the mitochon-

dria (e.g., CYP27A1, CYP27B1, and 

CYP24A1) (Figure 6).

 

 

Figure 6: Vitamin D receptor (VDR) in both central and peripheral reproductive organs of both males 
and females 



EXCLI Journal 2022;21:967-990 – ISSN 1611-2156 

Received: April 09, 2022, accepted: June 24, 2022, published: July 20, 2022 

 

 

982 

Meanwhile, it was reported that CYP2R1 

and CYPB1 play a very important role in all 

tissues of the reproductive tract. CYPR1 gene 

expression might play some significant role in 

reducing testicular damage (Menegaz et al., 

2009). It was supported by literature that the 

number and motility of sperm was directly 

linked with the protective effect of vitamin D 

from oxidative stress and cellular toxicity 

(Kägi et al., 1988). Vitamin D plays a crucial 

role in the process of spermatogenesis and 

steroidogenesis through the induced expres-

sion of calcium-binding protein CaBP28k in 

the testis (Shahbazi et al., 2011). Recently, it 

was reported that severe hypo-spermatogene-

sis or idiopathic sertoli cell-only syndrome 

(SCOS) in males was directly linked with 

lower plasma 25(OH)D concentrations de-

spite the normal levels of total testosterone 

and estradiol (Aquila et al., 2009; Rittenberg 

et al., 2011). Thus, it was concluded by re-

searchers that sperm motility and progressive 

motilityis correlated with serum levels of 

25(OH)D. Vitamin D deficiency (<10 ng/ml) 

in males results in a lower proportion of mo-

tile, progressive motile, and morphological-

lynormal spermatozoa (Jensen et al., 2011). 

To evaluate the positive role of vitamin D 

supplementation in men’s infertility, further 

advanced investigations are highly antici-

pated. 

 

CONCLUSION 

There is significant evidence that lack of 

vitamin D contributes to the development of 

heart failure (Zittermann et al., 2006). Vita-

min D promotes mitochondrial homeostasis 

and prevents protein oxidation, lipid peroxi-

dation, and DNA damage caused by oxidative 

stress. Autophagy, mitochondrial malfunc-

tion, inflammation, oxidative stress, epige-

netic modifications, DNA abnormalities, and 

calcium and ROS signaling changes are all 

known to be regulated by vitamin D. The ex-

cess vitamin D may lead to calcification. 

Therefore, proper dosages of vitamin D are 

required to treat patients in clinics. In several 

patients, low blood levels of 25-hydroxyvita-

min D lead to increased mortality, especially 

sudden cardiac death and coronary illness. In 

this review, we emphasized the potential role 

of vitamin D in critical biological processes 

and the functions of explorations of the bio-

logical components in mitochondrial-associ-

ated cardiac diseases. 

In summary, vitamin D supplementation 

in humans plays a significant role in support-

ing mitochondrial health and regulating car-

diac disease progressions. Detailed mechani-

cal inquiries are necessary to light the mani-

festation of vitamin D in mitochondrial func-

tion and cardiac health. 
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