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ABSTRACT

Here we present ComPPI, a cellular compartment-
specific database of proteins and their interactions
enabling an extensive, compartmentalized protein–
protein interaction network analysis (URL: http://
ComPPI.LinkGroup.hu). ComPPI enables the user
to filter biologically unlikely interactions, where the
two interacting proteins have no common subcel-
lular localizations and to predict novel properties,
such as compartment-specific biological functions.
ComPPI is an integrated database covering four
species (S. cerevisiae, C. elegans, D. melanogaster
and H. sapiens). The compilation of nine protein–
protein interaction and eight subcellular localization
data sets had four curation steps including a man-
ually built, comprehensive hierarchical structure of
>1600 subcellular localizations. ComPPI provides
confidence scores for protein subcellular localiza-
tions and protein–protein interactions. ComPPI has
user-friendly search options for individual proteins
giving their subcellular localization, their interac-
tions and the likelihood of their interactions consid-
ering the subcellular localization of their interacting
partners. Download options of search results, whole-
proteomes, organelle-specific interactomes and sub-
cellular localization data are available on its website.
Due to its novel features, ComPPI is useful for the
analysis of experimental results in biochemistry and
molecular biology, as well as for proteome-wide stud-
ies in bioinformatics and network science helping
cellular biology, medicine and drug design.

INTRODUCTION

Biological processes are separated in the cellular and sub-
cellular space, which helps their precise regulation. Com-
partmentalization of signalling pathways is a key regulator
of several main biochemical processes, such as the nuclear
translocation-mediated activation of transcription factors
(1). Several proteins are located in more than one subcel-
lular localizations. As an example, IGFBP-2 is a predomi-
nantly extracellular protein with a key role in insulin growth
factor signalling (2), while its translocation into the nucleus
results in vascular endothelial growth factor-mediated an-
giogenesis (3). Another important example is the HIF-1
Alpha with translocation from the cytosol to the nucleus,
where it acts as a transcription factor involved in the main-
tenance of cellular oxygen homeostasis (4) (Supplementary
Figure S1). Their shuttling between these localizations is
a key regulatory mechanism, which implicates the impor-
tance of improving the systems level analysis of compart-
mentalized biological processes.

Protein–protein interaction data are one of the most valu-
able sources for proteome-wide analysis (5), especially to
understand human diseases on the systems-level (6) and
to help network-related drug design (7). However, protein–
protein interaction databases often contain data with low
overlap (8), and are designed using different protocols (9),
therefore, their integration is needed to improve our com-
prehensive knowledge (10). Low-throughput data sets of-
ten use several different protein naming conventions caus-
ing difficulties in data analysis and integration. Manual cu-
ration of data yields a large improvement of data quality
(11).

Interaction data often contain interactions, where the
two interacting proteins have no common subcellular lo-
calizations (12). These interactions could be biophysically
possible, but biologically unlikely (13). Thus, these interac-
tions cause data bias that leads to deteriorated reliability
in interactome-based studies (14), especially those involv-
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ing subcellular localization-specific cellular processes (15).
Unfortunately, subcellular localization data are incomplete.
Despite the need of experimentally verified subcellular lo-
calizations for reliable compartmentalization-based inter-
actome filtering (16), only computationally predicted sub-
cellular localization information is available for a large part
of the proteome. Moreover, subcellular localization data are
redundant, often poorly structured and miss to highlight
the reliability of data (17).

Existing analysis tools involving subcellular localizations
offer the download of filtered interactomes for a subset of
proteins (like MatrixDB (18)). Several databases use only
Gene Ontology (GO (19)) cellular component terms as the
source of the subcellular localization data (such as HitPre-
dict (20) or Cytoscape BiNGO plugin (21)), while GO still
contains data inconsistency despite its highly structured an-
notations (22). Cytoscape Cerebral plugin (23) generates a
view of the interactome separated into layers according to
their subcellular localization. In different data sets the sub-
cellular localization structure is not uniform, which makes
their comparisons often difficult.

ComPPI-based interactomes introduced here provide a
broader coverage (Supplementary Tables S1 and S2), us-
ing several curation steps in data integration. ComPPI of-
fers highly structured subcellular localization data sup-
plemented with Localization and Interaction confidence
Scores, all presented with user-friendly options. As a key
feature ComPPI allows the construction of high-confidence
data sets, where potentially biologically unlikely interac-
tions in which the interacting partners are not localized in
the same cellular compartment, have been deleted. As our
examples will show, this gives novel options of interactome
analysis and also suggests potentially new subcellular local-
izations and localization-based functions.

DESCRIPTION OF THE DATABASE

Overview of ComPPI

Our goal by constructing ComPPI was to provide a reli-
able subcellular compartment-based protein–protein inter-
action database for the analysis of biological processes on
the subcellular level. A key feature of ComPPI is that it al-
lows the filtering of localization-based biologically unlikely
interactions resulting in localization-wise more reliable in-
teraction data. During the integration of 17 databases to
build up ComPPI, we used the following four curation steps
to improve data quality (Figure 1). (i) Source databases
were selected by comparing them to a large number of
other potential databases and their data content was man-
ually reviewed. (ii) Subcellular localization data were con-
sistently structured to a hierarchical subcellular localization
tree (Supplementary Figure S2) containing more than 1600
individual sublocalizations. (iii) We developed an algorithm
to map different protein naming conventions to UniProt ac-
cession numbers (24,25). (iv) Finally, a manual follow-up by
six independent experts was performed in order to revise the
data content searching for data inconsistence and false en-
tries, and to test the functions of the web interface (Supple-
mentary Table S3).

ComPPI database includes comprehensive and inte-
grated data of four species (Saccharomyces cerevisiae,

Figure 1. Flowchart of ComPPI construction highlighting the four cura-
tion steps. Constructing the ComPPI database we first checked the data
content of 24 possible input databases for false entries, data inconsistence
and compatible data structure in order to minimize the bias in ComPPI
coming from the input sources (1). As a consequence we selected nine
protein–protein interaction (BioGRID (29), CCSB (30), DiP (31), DroID
(26), HPRD (27), IntAct (32), MatrixDB (18), MINT (33) and MIPS (28))
and eight subcellular localization databases (eSLDB (37), GO (19), Hu-
man Proteinpedia (34), LOCATE (38), MatrixDB (18), OrganelleDB (39),
PA-GOSUB (36) and The Human Protein Atlas (35)) in order to inte-
grate them into the ComPPI data set. The subcellular localization struc-
ture was manually annotated creating a hierarchic, non-redundant subcel-
lular localization tree using >1600 GO cellular component terms (19) for
the standardization of the different data resolution and naming conven-
tions (2). All input databases were connected to the ComPPI core database
with newly built interfaces in order to improve data consistency, to al-
low easy extensibility with new databases and to incorporate automatic
database updates. As part of the curation steps the filtering efficiency of
our newly built interfaces were tested on 200 random proteins for every in-
put databases, and the interfaces were accepted only when all the requested
false-entries and data content errors were filtered, in order to establish
a more reliable content (Supplementary Table S3). During data integra-
tion, different protein naming conventions were mapped to the most reli-
able protein name. In this process we used publicly available mapping ta-
bles (UniProt (24) and HPRD (27)). For 30% of protein names we applied
manually built mapping tables with the help of online ID cross-reference
services (PICR (25) and Synergizer (http://llama.mshri.on.ca/synergizer/
translate/)) (3). After data integration Localization and Interaction Scores
were calculated (for detailed description see Figure 2). As an illustration we
show the example of Figure 2 with two interacting proteins (nodes A and B
corresponding to HSP 90-alpha A2 and Survivin, respectively) with shared
cytosolic and nuclear localizations (light blue and orange). Node B has an
additional membrane (yellow) subcellular localization and an extracellular
localization (green). Numbers in the circles of nodes A and B refer to their
Localization Scores. The Interaction Score of nodes A and B is 0.99 (see
Figure 2 for details). The integrated ComPPI data set was manually revised
by six independent experts (4). During the revision two of the six experts
tested our database on 200 random proteins each to ensure high-quality
control requirements, and searched for exact matches between the entries
in the input sources and the ComPPI data set. All the experts searched for
false entries, data inconsistency, protein name mapping errors in the down-
loadable data and tested the operation of the online services as well. After
the revision we updated our source databases, their interfaces, the subcellu-
lar localization tree and the algorithm generating the downloadable data,
in order to acquire all the changes proposed during the tests. As the final
result, the webpage http://ComPPI.LinkGroup.hu is available for search
and download options in order to extract the biological information in a
user-friendly way.

Caenorhabditis elegans, Drosophila melanogaster and Homo
sapiens) cataloguing 125 757 proteins, their 791 059 interac-
tions and 195 815 major subcellular localizations in its cur-
rent, 1.1 version. The proteome-wide data set contains lo-
calizations for five main subcellular organelles (nucleus, mi-
tochondrion, cytosol, secretory-pathway, membrane) and
the extracellular compartment. Importantly, 60% of the
ComPPI entries have high resolution cellular localization
data assigning them to one or several of >1600 GO cellular
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component terms (19) associating these proteins with dis-
tinct subcellular compartments.

Design and implementation

Both protein–protein interaction and subcellular localiza-
tion data are incorporated to ComPPI automatically using
their own interface to bridge the difference in data structure
(Supplementary Table S3). New interfaces can be added
without limitations. The incoming data are merged to form
a consistent internal data pool using a comprehensive pro-
tein name mapping algorithm, in order to deal with the re-
dundancy in the input data sets (http://comppi.linkgroup.
hu/help/naming conventions). The website and the down-
loadable contents are generated from this integrated inter-
nal data pool. All curated parts are stored in separate, yet
interconnected containers to maintain persistency between
ComPPI releases.

The website follows the hierarchical model-view-
controller design pattern to ensure the separation of the
data layer from the business logic and the user interface.
Each functional unit is implemented as a module to further
support easy maintenance and extensibility. Protein search
algorithms have been extensively optimized, and the served
content is cached to ensure quick response times even on
low-end infrastructure. Due to these features ComPPI can
be easily run on a general laptop or desktop computer.

The downloadable data sets are pre-generated and vali-
dated automatically and manually in every release to ful-
fill our high quality control requirements (Figure 1). The
Python script that generates these data sets also contains
basic tools for data retrieval and manipulation in a network-
oriented manner, which enables the user to perform bioin-
formatics analysis on the interactome using the open source
code and also gives space for further improvement.

End-user documentation is available at the website as tu-
torials, detailed descriptions and location-specific tooltips.
All components of ComPPI and the underlying software
stack are open source. The source code is available in a
revision controlled repository at http://bificomp2.sote.hu:
22422/comppi/summary.

Third-party tools and technologies were selected with
open accessibility and scientific reproducibility in mind in-
cluding the Ubuntu Linux 14.04 operating system (http:
//ubuntu.com/), the nginx HTTP server (http://nginx.org/),
the MySQL 5 Community Edition database server (http:
//www.mysql.com/), the git version control system (http:
//git-scm.com/), the PHP 5 scripting language (https://php.
net/), the Symfony 2 PHP framework (http://symfony.com/),
the jQuery JavaScript framework (http://jquery.com/), the
D3.js JavaScript library for network visualization (http:
//d3js.org/) and the Python3 scripting language (https://
python.org/).

Database content and access

Input databases. The low overlap of protein–protein inter-
action and subcellular localization databases (11) prompted
us to integrate several source databases in order to im-
prove data coverage and quality (Supplementary Figure S3
and Supplementary Table S2). In this process we used pub-

licly downloadable license-free data sources, preferably con-
taining proteome-wide data sets. Protein–protein interac-
tion data were selected to contain only physical interactions
with experimental evidence coming from high-throughput,
as well as low-throughput techniques. We incorporated the
widely used species-specific (DroID (26), HPRD (27), Ma-
trixDB (18) and MIPS (28)) and general (BioGRID (29),
CCSB (30), DiP (31), IntAct (32) and MINT (33)) protein–
protein interaction databases having high data quality, up-
date frequency and freely downloadable latest releases for
academic research.

Subcellular localization data can be obtained from ex-
perimental evidence or using predictions. Several source
databases contained only experimentally verified subcellu-
lar localization entries (such as Human Proteinpedia (34)
and the Human Protein Atlas (HPA) (35)). Other source
data had only computationally predicted information (such
as PA-GOSUB (36)). Several data sources had integrated
data structure (such as eSLDB (37), GO (19), LOCATE
(38), MatrixDB (18), OrganelleDB (39)) containing data of
both experimental and predicted origin. During the selec-
tion of the proteome-wide predicted subcellular localiza-
tion databases with downloadable content we focused on
the use of prediction algorithms with combined methods
using robust machine learning tools validated on highly re-
liable training sets.

ComPPI data set. The availability of the data sources dif-
fers between various species. As an example ComPPI con-
tains eight protein–protein interaction and eight subcellular
localization databases for human proteins (Supplementary
Figure S3). Database integration was based on protein ID
mapping to the most reliable naming convention available,
primarily to UniProt Swiss-Prot accession numbers (11).
The 4 curation steps (Figure 1) allow the users to access
interaction and localization data at a single resource hav-
ing a higher coverage and reliability than the incorporated
databases.

The ComPPI database contains three types of predefined
data sets: (i) the compartmentalized interactome catalogues
of those protein–protein interactions, where the interacting
proteins have at least one common subcellular localization,
(ii) the integrated protein–protein interaction data set which
can be customized by the four species included and (iii) the
subcellular localization data set, which is one of the biggest
existing subcellular localization resource with a comprehen-
sive structure for interactome analysis. All downloadable
ComPPI resources are license free and publicly available for
academic and industrial research.

Search and download features

Search features. The internally hyper-linked web applica-
tion of ComPPI enables even those users, who have no
bioinformatics expertise, to search for the interactions of in-
dividual proteins. Search options (http://comppi.linkgroup.
hu/protein search) are available for protein names with au-
tocomplete function giving their subcellular localization,
their interactions and the likelihood of their interactions
considering the subcellular localization of the interacting
partners. Using the Advanced Settings of the Search page
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the user is able to filter the list of the possible query pro-
teins for species, subcellular localizations and/or localiza-
tion probability. These settings can be set for the interactors
of the query protein too and are adjustable with the Custom
Settings on the Results page, which allows the filtering of the
interactors for subcellular localizations, localization prob-
ability and interaction score. The properties of the query
protein and its interactors are available for download. Af-
ter filtration only those interactions are exported that ful-
fill the custom filtering requirements set by the user. Net-
work visualization of the whole or filtered first-neighbour
interactome of the query protein is also available, where
the width of the edges corresponds to the Interaction Score
of the given interaction. These options together provide a
user-friendly web interface for data mining for both non-
experts and computational biologists. A Direct Search op-
tion is also available via URL, which gives the opportunity
to interconnect the ComPPI database with other resources,
or to generate multiple searches for data mining.

Download options. All ComPPI data are available for
download at the website. Predefined data sets can be cus-
tomized by the user to contain only data for a requested
species or localization: (i) Compartmentalized interactomes
have interactions, where the two interacting protein-nodes
have at least one common subcellular localization. These in-
teractomes can be filtered to species besides subcellular lo-
calizations. (ii) Integrated protein–protein interaction data
sets contain all the interactions, and can be customized to
the four species included. (iii) Integrated subcellular local-
ization data sets contain proteins together with their local-
ization data. The user can select species and localizations
to customize these data sets. (iv) The current and previ-
ous releases of the full database can also be downloaded. A
detailed help and a tutorial for the Search and Download
functions are both available.

Output. ComPPI output data provide lists of interactions,
interaction scores of the interacting proteins and localiza-
tions with localization scores. Moreover, the user receives
the PubMed IDs and references of the source databases
for both the interactions and subcellular localizations, and
the additional information (if available) of the data type.
The user-defined interactomes as results of the Basic or Ad-
vanced Search options and the predefined data sets on the
Downloads page are available for download in plain text
format to ensure convenient data handling. The complete
current and previous releases of the database are download-
able in SQL format to provide full access to all the data in
ComPPI.

Localization and interaction scores

Subcellular localization structure. Subcellular localization
data are coming from different source databases, contain-
ing localizations having experimental evidence (in the fol-
lowings: experimental), coming from unknown sources (un-
known) or predictions (predicted; Figure 2). Experimental
data usually have high resolution, where the exact localiza-
tion of the protein is often defined, such as the nuclear pore
complex for Nup107 (40). Predicted localizations have usu-
ally low resolution. As an example nuclear localization can

be predicted from the existence of a nuclear localization sig-
nal in the amino acid sequence (41) without any experimen-
tal evidence.

Because of the incongruity in the resolution of the lo-
calization data and the different naming conventions be-
tween the source databases, we standardized the subcellu-
lar localization data using GO cellular component terms
(19). In order to solve the problem of the unequivocally
mapped GO terms (Figure 3) we created a manually built,
non-redundant, hierarchical localization tree (Supplemen-
tary Figure S2). With the help of this we clustered the >1600
GO cellular component terms to six major compartments
(cytosol, nucleus, mitochondrion, secretory-pathway, mem-
brane, extracellular) (Supplementary Table S4). This new
structure allows ComPPI to store all localization entries
from different sources and to assign the proteins efficiently
to six major compartments (Figure 3 and Supplementary
Figure S4).

Localization and interaction scores. The ComPPI Local-
ization Score is a novel measure to score the probabil-
ity of a localization for a given protein. The Localiza-
tion Score depends on the subcellular localization evidence
type (experimental, unknown, predicted) and the number
of sources (Figure 2). The Interaction Score characterizes
the probability of the subcellular localization of a protein–
protein interaction, and is based on the consensus of the
compartment-specific Localization Scores of the interacting
proteins. With the help of the scoring algorithm ComPPI
provides a novel localization probability describing how
likely it is that the protein exists in the given subcellu-
lar compartment, and gives the opportunity to build high-
confidence interactomes based on the distribution of the in-
teraction scores (Supplementary Figure S5).

Localization Scores are calculated using probabilistic dis-
junction (marked with operator V) among the different lo-
calization evidence types and the number of ComPPI local-
ization data entries of the respective evidence type (Equa-
tion (1), see top panel of Figure 2 for details)

ϕLocX = Vres pLocX (1)

where ϕLocX and pLocX are the Localization Score and the
localization evidence type (experimental, unknown or pre-
dicted) for protein X and localization Loc, respectively,
while res is the number of available ComPPI localization
data entries for protein X.

As the first step of Interaction Score calculation,
compartment-specific Interaction Scores are obtained by
multiplying the Localization Scores of the two interactors
for each of the six major compartments. Finally, the Inter-
action Score is calculated as the probabilistic disjunction
(marked with operator V) of the Compartment-specific In-
teraction Scores of all major localizations available for the
interacting pair from the maximal number of six major lo-
calizations (Equation (2), see bottom panel of Figure 2 for
details)

ϕInt = V6
i=1ϕLocA ∗ ϕLocB (2)

where ϕInt is the Interaction Score, while ϕLocA and ϕLocB
are the Compartment-specific Localization Scores of inter-
acting proteins A and B, respectively.
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Figure 2. Calculation of the subcellular localization-based ComPPI scores. We illustrate the Localization Score calculation steps on the examples of Heat
Shock Protein (HSP) 90-apha A2 and Survivin. HSP 90-alpha A2 has two major subcellular localizations, while Survivin has four (ϕnucleusA, ϕcytoA and
ϕextracellularB, ϕmembraneB, ϕnucleusB, ϕcytoB, respectively). Localizations were manually categorized into major localizations before the calculation (see the
text in section ‘Subcellular Localization Structure’ for details). (A) A Localization Score (such as �cytoA) is calculated for every available major subcellular
localization for both HSP 90-alpha A2 and Survivin based on the available localization evidence types and the number of the respective localization data
entries (corresponding to pLocX and Vrec of Equation (1)). The Localization Score calculation uses the optimized localization evidence type weights of
0.8, 0.7 and 0.3 for experimental, predicted or unknown localization evidence types, respectively. (For details of the weight optimization procedure see
section ‘Score Optimization’ of the main text and Supplementary Figure S6.) The Localization Score (i.e. the likelihood for the respective protein to
belong to a major compartment) is represented by the probabilistic disjunction among the different localization evidence types and the number of ComPPI
localization data entries of the respective evidence type (Equation (1)). (B) Calculation of the Interaction Score (ϕInt) is based on the Localization Scores of
the interacting proteins. First, Compartment-specific Interaction Scores (such as ϕcytoInt) are calculated as pair-wise products of the relevant Localization
Scores of the two interacting proteins (HSP 90-alpha A2 and Survivin). The final Interaction Score (ϕInt) is calculated as the probabilistic disjunction of
the Compartment-specific Interaction Scores of all major localizations available for the interacting pair of proteins (in the example four major localizations
for HSP 90-alpha A2 and Survivin) from the maximal number of six major localizations (Equation (2)).
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Figure 3. Advantages of ComPPI subcellular localization structure. The
subcellular localization structure of ComPPI is based on a manually cu-
rated, non-redundant subcellular localization tree extracted from GO data
(19) containing more than 1600 GO cellular component terms (Supple-
mentary Figure S2). On Figure 3 an example of the redundancy in the GO
cellular component tree structure is shown, where the ‘nuclear pore’ cellu-
lar component can be found under several branches in the tree, such as in
the ‘nucleus’ -> ‘nuclear envelope’ -> ‘nuclear pore’ or the ‘membrane’ ->
‘membrane part’ -> ‘intrinsic component of the membrane’ -> ‘integral
component of the membrane’ -> ‘pore complex’ pathways (highlighted in
red). Because of the need of the mapping of high-resolution subcellular lo-
calization data into major cellular components (Supplementary Table S4) a
localization tree with a non-redundant structure was built. In our example,
it can be seen that with the help of this structure the ‘nuclear pore’ derives
unequivocally from the ‘nuclear envelope’ term (highlighted in green).

Score optimization. As mentioned before the ComPPI lo-
calization evidence type can be experimental, unknown or
predicted. ComPPI characterizes each of these localiza-
tion evidence types by a parameter called the evidence type
weight to achieve a unified scoring system applicable to the
diverse data sources. To obtain these evidence type weights
we performed their data-driven optimization. Based on the
fact that experimentally validated entries are the most re-
liable, while localization entries coming from unknown or
predicted origin are less reliable, we set the following order
of evidence type weights: experimental > predicted AND
experimental > unknown as the two requirements of the
optimization process. We chose the HPA database (35) con-
taining only experimentally verified subcellular localiza-
tions in order to build a positive control data set, where the
interactors have at least one common localization accord-
ing to HPA. Our goal was to find a specific ratio of the ex-
perimental, unknown and predicted evidence type weights
that maximizes the number of high confidence interactions
in the positive control data set (HPA) and simultaneously
maximizes the number of low confidence interactions in the
ComPPI data set not containing HPA data. These ensure
that the quality of data marked as high confidence will have
a good match to the quality of experimentally verified data.

All combinations of the experimental, unknown and pre-
dicted evidence type weights were set up from 0 to 1 with
0.1 increments. The kernel density of the interactions were
calculated with all these settings (with a bandwidth of 0.01),
which gave us the ratio of interactions belonging to a given
confidence level compared to the distribution of all the in-
teractions. Finally, the 285 possible kernel density solutions
were tested to find the parameter combination that maxi-
mizes the number of both the low and high confidence inter-
actions as described above. This resulted in 0.8, 0.7 and 0.3
as the relative evidence type weights for experimental, pre-
dicted and unknown data types, respectively (Supplemen-
tary Figure S6). Note that this optimization is driven by the
reliability of the subcellular localization data, and was not
tested using gold standard protein–protein interaction data
sets, therefore the Interaction Score reflects the reliability of
the interaction in a subcellular localization-dependent but
not in an interactome-dependent manner.

Application examples

Merging of subcellular localization and interactome
data provides several application opportunities: (i) the
filtration of localization-based biologically unlikely
interactions––where the two interacting proteins have no
common localization and (ii) the prediction of possible new
localizations and localization-based biological functions
(15). Both are important features of ComPPI as illustrated
by an example in this section.

ComPPI-based interaction filtering. First, we made a sys-
tematic search for an example, which highlights the impor-
tance of the removal of localization-based biologically un-
likely interactions looking for key hubs and bridges, where
interaction structure changed the most after the filtering
step. Here we calculated the degree distribution of the whole
human interactome and the high-confidence interactome
(containing 23 265/19 386 proteins and their 385 481/260
829 interactions, respectively) where from the latter biolog-
ically unlikely interactions with no common subcellular lo-
calizations have already been removed. We also calculated
the distribution of the betweenness centrality in the two
data sets. After these procedures we manually reviewed the
first 20 proteins from the UniProt Swiss-Prot subset (15 258
proteins out of 19 386) with the highest differences in degree
and centrality measures (Supplementary Table S5). Enoyl-
CoA hydratase (crotonase) had the largest absolute change
of degree among the top 20 proteins, thus we selected cro-
tonase as our illustrative example (Figure 4). Crotonase
catalyses the second step in the beta-oxidation pathway of
fatty acid metabolism (42), and is a key member of the cro-
tonase protein superfamily (43). Beta-oxidation takes place
primarily in the mitochondrion (44). Crotonase has only a
mitochondrial ComPPI localization with experimental evi-
dence, which is in agreement with its cellular function.

Crotonase has 71 interacting partners in the integrated
data set, of which only 8 is present in the mitochondrion,
and only 5 have an interaction score equal or higher than
0.8. After the manual review of crotonase neighbours, it
turned out that only one of the 8 mitochondrial interactors
(mitochondrial Hsp70, (45)) has experimental evidence for
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Figure 4. Advantages of the ComPPI data set to filter biologically unlikely
interactions and to predict compartment-specific, new properties and func-
tions. The figure shows the interactions of crotonase (enoyl-CoA hydratase,
UniProt ID: P30084), involved in fatty acid catabolism having a mitochon-
drial localization, and its first neighbours supported with experimental
evidence before and after filtering to mitochondrial localization. Interac-
tions with an Interaction Score below 0.80 are shown with dashed lines. On
one hand, out of the original 71 neighbours of crotonase only 8 remain as
mitochondrial interacting partners with a significantly higher average In-
teraction Score than the whole first-neighbour network, which highlights
the importance of compartment-specific filtering in the detection of high-
confidence interactors in a subcellular localization-dependent manner. On
the other hand, the blue circle of the upper left side of the figure shows
those cytosolic crotonase interacting partners, which are involved in apop-
tosis, a recently discovered function of crotonase (45–47). Thus, the very
same example also reveals a potential new function of crotonase, which
partially involves its unexpected cytosolic localization, which was recently
verified experimentally (46).

mitochondrial localization. Mitochondrial localization of
the other 7 interactors is not based on strong evidence, while
63 out of 71 interactors have no known mitochondrial local-
ization at all. Figure 4 shows the interactome of crotonase
and its 71 first neighbours containing 428 edges. In the mito-
chondrial interaction subset only 13 edges remained, while
the high-confidence part contains only 10 interactions (Fig-
ure 4). Second neighbours of crotonase contain 82% of the
interactome, and their network contains 14 803 nodes and
319 305 edges. The filtered mitochondrial network of the
second neighbours is much smaller, having only 2107 nodes
and 8381 interactions.

ComPPI-based prediction of new or non-conventional func-
tions. Importantly, 52 out of the 71 interactors, and more
specifically, 7 out of the 8 mitochondrial interacting part-
ners of crotonase have cytosolic localization with a lo-
calization probability over 0.95. This indicates that cro-
tonase may have a cytosolic localization as well. Indeed,
crotonase was shown to be overexpressed and localized in
the cytosol in hepatocarcinoma cells, where it contributes
to lymphatic metastatis (46). GO (19) biological process
term enrichment analysis of the mitochondrial crotonase
interacting partners using BiNGO (21) revealed that be-
sides the known function of the crotonase in ‘catabolic pro-
cess’ the ‘negative regulation of apoptosis’ and related terms
were also significantly enriched (Supplementary Table S6).
In agreement with this, previous studies showed that cro-
tonase is overexpressed in several cancer types (47), and
the knockdown of crotonase decreased cell viability and en-
hanced cisplatin-induced apoptosis in hepatocellular carci-
noma (48). The anti-apoptotic effect of crotonase also ex-
ists in breast cancer, where its down-regulation potentiates
PP2-induced apoptosis (49).

These findings may implicate that the high ratio of ‘bi-
ologically unlikely’ interactions may also be a result of
a transient and dynamic cytosolic subcellular localization
of crotonase, where the enzyme may be involved in cur-
rently not widely crotonase-associated biological processes,
such as the inhibition of apoptosis. Importantly, these
compartment-specific crotonase functions may be applied
as potential therapeutic targets in the treatment of hepato-
cellular carcinoma or breast cancer.

In summary, the crotonase example shows the utility
of ComPPI both (i) to filter low-confidence interactions
concentrating on high-confidence subcellular localizations
and (ii) to predict unknown biological functions in previ-
ously unknown or non-conventional subcellular localiza-
tions. Another example of ComPPI-based prediction of po-
tential, novel functions besides crotonase, is Monopolar
Spindle 1 protein (MPS1) having a centromere-associated
cytosolic localization (50). We identified a number of rela-
tively undiscovered MPS1 functions related to the ComPPI
analysis of nuclear MPS1 interactome as detailed in Sup-
plementary Figure S7 and Supplementary Table S6.

CONCLUSIONS AND FUTURE DIRECTIONS

In summary, ComPPI provides a unique data set for the
analysis of protein–protein interaction networks at the sub-
cellular level. The assembly of the integrated ComPPI
database with manual curation protocols (Figure 1) pro-
vides an improvement of both coverage and data quality.
ComPPI subcellular localization data have a novel struc-
ture in order to incorporate localizations from different
data sources (Figure 3 and Supplementary Figure S4),
and to reveal compartment-specific biological functions
based on the analysis of the interactomes extended with
high-resolution localization data in a hierarchical struc-
ture. With the use of the optimized Localization and In-
teraction Scores (Figure 2) high-confidence interactomes
could be created for further investigation in the field of
compartment-specific biological processes (15).
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Comparison of integrated protein–protein interaction
data and the compartmentalized interactome allow the fil-
tering of biologically unlikely interactions, where the inter-
acting partners have no common subcellular localization.
Our examples (Figure 4 and Supplementary Figure S7) il-
lustrate that besides filtering, ComPPI has a strong predic-
tive power to find new localizations of the proteins based
on the underlying network or to suggest new compartment-
specific biological functions. The comprehensive data set for
four species gives the opportunity to analyse evolutionary
aspects of the compartmentalization, such as the prediction
of subcellular localization ortologes (‘localogs’).

The web interface of ComPPI (http://ComPPI.
LinkGroup.hu) provides user-friendly search and down-
load options. Besides the basic Search feature to explore
and download the interactions of individual proteins,
Advanced Settings could be applied to both query proteins
and their interactors. Interactome-wide studies could be
applied using the downloadable compartment-specific
interactomes or the integrated protein–protein interaction
data set, while the integrated subcellular localization data
set is also available on the webpage for further analyses.

ComPPI is available at http://ComPPI.LinkGroup.hu,
and has an open source code, which allows further improve-
ment and the construction of ‘ComPPI-based databases’.
ComPPI is a community-annotated resource, which will
be continuously enriched by a user community of experts
helped by a public issue-tracking system and by feedbacks
from the core-team, and will be updated and upgraded an-
nually for minimum 5 years.

We plan to resolve current ComPPI limitations, such as
the relatively low amount (29% of total) of experimental
subcellular localization entries with the incorporation of
newly available experimental data. Future plans include the
development of improved gold standard-based Localiza-
tion and network neighbourhood-based Interaction Scores,
as well as further advanced download and search options,
such as advanced localization-based network visualization
and extended number of output formats.

In summary, the ComPPI-based interactomes introduced
here provide a broader coverage, offer highly structured
subcellular localization data, as well as offer Localization
and Interaction confidence Scores, all in a user-friendly
manner. Importantly, ComPPI enables the user to filter bi-
ologically unlikely interactions, where the two interacting
proteins have no common subcellular localizations, and to
predict novel subcellular localization as well as localization-
based properties, such as compartment-specific biological
functions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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