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The development of efficient heterogeneous catalytic system to convert plentiful biomass
to renewable bio-chemicals is urgent need. Titanate nanotubes-based materials obtained
from hydrothermal treatment have been reported as low-cost and efficient catalytic
materials in chemical syntheses for bio-based chemicals production with interesting
catalytic performance. This mini-review expressly revealed the significance and
potential of using titanate nanotubes based material as sustainable and
environmentally benign solid catalysts/supports for synthesis of various bio-based
chemicals, including glycerol-derived solketal, jet fuel range alkanes precursors,
biomass-derived esters, aldehydes, aromatic compounds and so on. From the current
knowledge on titanate nanotubes-based material via hydrothermal method here
summarized, the future lines of research in the field of catalysis/supports for bio-based
chemicals production are outlined.
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INTRODUCTION

At the present moment, fossil fuels are the primary sources of energy for humankind. However, the
use of fossil fuels often associated with the concerns, such as price fluctuation, long-term availability,
and growing environmental effects (Brockway et al., 2019). Besides, the quest for global energy and
chemicals needs will be in high demand due to the rapidly developments of economic and
socioeconomic. Hence, transforming renewable energy into alternative fuels and chemicals is an
essential and indispensable pathway (Gielen et al., 2019; Stančin et al., 2020). Biomass is an abundant
renewable and cleaner resource, which can be converted into a wide range of various fuel grade
molecules and bio-chemicals as alternatives to fossil-derived products (Li et al., 2017; Schutyser et al.,
2018; Okolie et al., 2021; Ashokkumar et al., 2022). In this situation, new chemical technology and
efficient catalysts to convert plentiful biomass to renewable bio-chemicals is urgent need.

Titanate nanotubes (TNTs), a typical of Ti-basedmaterial, have attracted extensive researches due
to its novel properties such as chemical stability, large surface area, non-toxicity, and relatively
hydrophobic nature, which have shown great potential not only as catalysts but also as supports. A lot
of literatures have described the synthesis of titanate nanotubes by various methods such as
hydrothermal treatment (Kasuga et al., 1998; Kasuga et al., 1999), template-assisted method
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(Zhang et al., 2001), and the anodizing of titanium metal (Gong
et al., 2001). It is worth noted that TNTs obtained by
hydrothermal treatment of TiO2 nanoparticles in the absence
of a template and at low temperature (120–150°C), which has
received significant attention (Bavykin et al., 2006). In recent
years, many articles and reviews have covered the applications of
hydrothermally synthesized TNTs materials in
photoelectrochemial reactions (Arifin et al., 2021),
photocatalytic (Ji et al., 2022), dye-sensitized solar cells
(Madurai Ramakrishnan et al., 2020; Souza et al., 2021),
adsorbents (Li et al., 2021) and other interesting applications
(Yao et al., 2020). In addition, the structural, optical, thermal and
morphological properties of TNTs synthesized by conventional
hydrothermal method were systematically discussed in other
reviews (Ou and Lo, 2007; Muniyappan et al., 2017; Rempel
et al., 2021).

Kitano and co-workers found that the TNTs exhibited
excellent catalytic performance in Friedel-Crafts alkylation and
the 5-hydroxymethylfurfural production (Kitano et al., 2010).
This findingmay potentially open up new catalytic applications of
the titanate nanotubes for organic transformations and biomass
conversion. In the past few years, some studies have been
reported the use of TNTs in various acid (base) catalyzed
organic chemical transformation (Kitano et al., 2013; Wada

et al., 2013; Li et al., 2015; Reddy et al., 2015). This mini-
review focuses on TNTs based material as solid catalysts/
supports with the potential application for the bio-based
chemicals production (Figure 1).

BIOMASS DERIVED CHEMICALS
PRODUCTION

Production of Glycerol-Derived Solketal
The acetalization reaction has been widely studied because they
are important and efficient processes to convert aldehydes or
ketones into high-valued compounds. The glycerol-derived
solketal as oxygenated compound may be incorporate into
additive for standard diesel fuel as well as decrease the
emission of hydrocarbons and particulate species (Talebian-
Kiakalaieh et al., 2018). De Carvalho et al. reported the
acetalization of glycerol using the protonated titanate
nanotubes as a solid catalyst (de Carvalho et al., 2017). The
synthesis time of TNTs and the role of structure on the catalytic
performance were systematically investigated. The best
performance towards glycerol conversion was achieved by the
TNTs synthesized at 72 h with high textural, morphological and
acidity properties. The glycerol conversion was 44.4% and the

FIGURE 1 | The schematic of production of typical biomass derived chemicals over titanate nanotubes-based catalyst.
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selectivity toward the desired products (solketal and acetal) was
observed to be more than 98% at 50°C and an acetone/glycerol
molar ratio of 1. Decoration of transition and rare earth metal
nanoparticles on titanate nanotubes has a considerable effect on
the number of Brønsted and Lewis acidity sites (Camposeco et al.,
2016; Wada et al., 2016). These researches demonstrated that
various metals (Ag, Au, Ce, Fe, Mn, Pd, Pt, V, W and Nb)
obviously improve the Brønsted acidity of TNTs except for La;
somemetals such as Pt, Mn andW could enhance Lewis acidity of
TNTs; the addition of transition metals (V, Mn, W and Fe)
increased remarkably the total acidity of TNTs. In another study,
TNTs incorporated with metals (Pt, Co, Ni) were synthesized and
applied in acetalization of glycerol with acetone (Gomes et al.,
2018). Interestingly, the Pt-containing titanate nanotubes (Pt-
TNT) catalyst has high catalytic activity, affording 46.7% of
glycerol conversion with 10% selectivity to solketal, whereas
the Co and Ni-incorporated titanate nanotubes exhibited
relativity low catalytic activity (glycerol conversion <5%).
Structural properties of various titanate nanotubes-based acid
catalysts are listed Table 1. The suitable tuning of pore-structure
and proper surface acidity of Pt-TNT were contributed to the
resulting in a stable solid for this reaction (Gomes et al., 2018). It
is noteworthy that leaching of Co and Ni species is reported as the
main mechanism for the catalyst deactivation for Co-containing
titanate nanotubes and Ni-containing titanate nanotubes. This
demonstrated that the catalytic activity and recyclability of TNTs
could be tuned by incorporation of a suitable metal.

Jet Fuel Range Alkanes Precursors
Synthesis
Aldol condensation approach is the very important for synthesis
of high-quality bio-fuels (He et al., 2021). Protonated titanate
nanostructures used as solid acid catalysts exhibited the excellent
catalytic activity in the condensation reaction between various
benzaldehyde derivatives and cyclohexanone (Sluban et al., 2017).
A higher conversion rate was obtained over TNTs as compared to
titanate nanoribbons, demonstrating the beneficial role of
nanotube morphology. The catalyst showed a remarkable
stability since no significant decrease in the catalytic activity in
five cycles. In addition, protonated titanate nanotubes did not
require any activation prior to the reaction. Recently, protonated
titanate nanotubes catalyst displayed much higher activity for
acid-catalyzed aldol condensation of methyl benzaldehyde and
acetone, two platform compounds obtained from lignocelluloses
(Timothy et al., 2020). Around 76% yield of jet fuel precursors,

namely 4-(o-tolyl)but-3-en-2-one, was obtained under the
optimum reaction conditions. After the hydrodeoxygenation
(HDO) of jet fuel precursors in cyclohexane under mild
conditions (403K, 5MPa, 2 h), high yields ( ~ 90%) of
dicycloalkanes were achieved. They discovered the catalytic
activity of protonated titanate nanotubes was higher than TiO2

P25 and titanate nanowire under the same conditions. It is
suggested that the special nanotube morphology, bigger
surface area, higher acid site amount and acid strength could
be considered as the reasons for the good catalytic performance of
protonated titanate nanotube. It is also found that the protonated
titanate nanotubes catalyst was stable and could be repeatedly
used for five runs without significant deactivation.

The protonated titanate nanotubes as a good solid catalyst was
applied for the hydroxyalkylation/alkylation (HAA) of 2-
methylfuran (2-MF) with n-butanal from lignocelluloses to
synthesize diesel and jet fuel range alkanes precursors.
Compared to other inorganic solid acids such as SO4

2-/ZrO2,
ZrP and H-ZSM-5, protonated titanate nanotubes has higher
catalytic activity, giving 77% yield of HAA product under mild
reaction conditions (Li et al., 2015). The protonated titanate
nanotubes was also effective for the catalytic HAA of 2-MF
with other lignocellulosic carbonyl compounds, such as
furfural, acetone and mesityl oxide. The outstanding catalytic
performance of protonated titanate nanotubes for the HAA of 2-
MF and n-butanal can be explained by the following reasons: 1)
the protonated titanate nanotubes has higher specific surface area,
which is beneficial for the adsorption of reactants, 2) the
transformation of commercial TiO2 P25 to protonated titanate
nanotubes leads to the higher acidity (the amount of acid sites and
the generation of strong acid sites), and 3) the generation of
Brönsted acid sites may be beneficial to the HAA reaction of 2-
MF and n-butanal.

Preparation of Biomass-Derived Esters
Some researchers have suggested that the sodium titanate
nanotubes is an effcient heterogenous base catalyst in the
transesterification reactions, which is the most common route
for biodiesel production (Hernández-Hipólito et al., 2014).
Recently, the sodium titanates were used as catalysts in the
transesterification of pure and cooked oils into biodiesel (Zaki
et al., 2019). The biodiesel yield was found to be 95.9% at 80°C for
2 h; the authors discovered that the catalyst showed high activity
for cooked oil conversion, with yields of 96.0, 96.0, and 93.58% for
the first, second, and third uses of oil, respectively. The authors
found that the transesterification reaction preferentially

TABLE 1 | Structural properties of various titanate nanotubes-based acid catalysts.

Catalyst SBET (m2/g) Pore Volume
(cm3/g)

Mesopore Diameter
(nm)

Acidity (mmol/g) Ref.

HTNT48 313 0.81 9.0 0.24 de Carvalho et al. (2017)
HTNT72 182 0.74 11.5 0.33 de Carvalho et al. (2017)
Co-TNT 236 0.84 11.8 0.093 Coelho et al. (2016); Gomes et al. (2018)
Ni-TNT 222 0.84 12.6 0.103 Coelho et al. (2016); Gomes et al. (2018)
Pt-TNT 182 0.64 12.2 0.261 Coelho et al. (2016); Gomes et al. (2018)
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proceeded via dual-site Langmuir-Hinshelwood mechanism with
the aid of the Density Functional Theory (DFT), Monte Carlo
(MC) simulation, and molecular dynamics simulation.
Furthermore, the transesterification reaction kinetics followed
a pseudo-first-order kinetics model. Simiarlly, the sodium
titanate catalysts were prepared by sol–gel hydrothermal
method, and the synthesis parameters of sodium titanates on
the catalysts activity in soybean oil conversion to biodiesel were
discussed using a factorial design (Machorro López et al., 2021).
Combing the characterization results and catalytic results, the
authors pointed out that trititanate was the most efficient in the
conversion of soybean oil to biodiesel, achieving around 80%
conversion. Doping metal ions on sodium titanate nanotubes
may be an important strategy to improve the catalytic acitivity.
For example, sodium titanate nanotubes doped with potassium
proved as a efficient catalyst for transesterification of soybean oil
with methanol (Hernández-Hipólito et al., 2015; Martínez-
Klimova et al., 2016). Recently, the promoting role of sodium
carbonate addition to sodium titanate nanotubes were reported
(Martínez-Klimov et al., 2020). Incorporation of Na2CO3

(3–10 wt%) to sodium titanate nanotubes can increase the
amount of strong basic sites in the catalysts. A synergetic
effect between Na2CO3 and sodium titanate nanotubes was
proposed for the increase in the amount of strong basic sites,
resulting in an excellent catalytic performance in transformation
of triglycerides to methyl esters (97% yield). Interestingly, in other
important studies, lipase immobilized onto the sodium titanate
nanotubes have recently been employed in the fatty acid methyl
esters production (Nady et al., 2020; El-Kady et al., 2021). The
immobilized lipase gave a high fatty acid methyl esters yield of
83.5% at short time of 90 min and showed the enhanced recycling
stability for ten consecutive cycles.

Esterification is the most common reaction for biomass
conversion and high-valued chemicals production (Zhang
et al., 2019). Xu et al. found the catalytic performance of the
titanate nanotubes is significantly higher than titanate nanosheets
and layered H2TiO7 in esterification of acetic acid with n-butanol
(Xu et al., 2020). The authors proposed that the surface acid
characteristics and confinement effect were responsible for the
high catalytic activity of titanate nanotubes. This clearly reveals
that the microstructure is important to the catalytic activity. The
finite amount of catalytic sites on the TNTs, however, would
hamper in practical applications. It is noteworthy that TNTs
prepared by hydrothermal method with abundant hydroxyl
groups. Thus, the potential to modify TiO2 nanotubes to
incorporate organosulfonic acid groups open new perspectives
for their use as solid acid catalysts in a variety of reactions. Our
groups reported various titanate nanotubes-bonded
organosulfonic acid catalysts for the esterification of biomass-
derived levulinic acid with n-butyl alcohol (Zhou et al., 2018;
Zhou et al., 2019; Zhou et al., 2022a). Up to 98.9% yield of n-butyl
levulinate was obtained under the optimal reaction conditions. In
these hybrid catalysts the acid sites are covalently linked on
titanate nanoutbes, therefore, they showed an excellent
reusability with a slight decrease in several runs. On the other
hand, the incorporation of organic groups on the TNTs can tune
surface hydrophobicity property. Recently, in order to recycle

heterogeneous acid catalysts from the reaction mixture, a new
solid acid catalyst Fe3O4@TNTs-SO3H was successfully
synthesized and applied to esterification of renewable levulinic
acid to fuel additive n-butyl levulinate (Mao et al., 2020). This
catalyst was demonstrated to show high catalytic activity,
affording n-butyl levulinate with a yield of 94.6% under
optimum conditions; the catalyst could be reused for 6 times.
It is believed that titanate nanotubes can be rationally designed
via post-synthesis strategy to prepare solid acid catalysts with
excellent performance.

The alcoholysis process has been reported as a highly reactive
method for conversion of lignocellulose to valuable chemicals
(Zhu et al., 2017). Sulfonic acid functionalized TiO2 nanotubes
were prepared by the sulphonation reaction of hydrothermally
synthesized Titanate nanotubes using chlorosulfonic acid as the
sulfating agent in our recent work (Zhou et al., 2022b). About
79.9% yield of n-butyl levulinate was achieved in the alcoholysis
of the furfuryl alcohol with n-butanol under mild conditions. In
addition, the catalysts showed a stable catalytic performance after
four consecutive cycles. The covalently linked –SO3H groups on
the TNTs surface was responsible for the stability of catalyst.

Synthesis of Glucose Derived Compounds
Kumar and co-workers have recently reported a sodium titanate
nanotubes as a potential Lewis base catalyst for large-scale
demonstration of glucose isomerization to fructose in aqueous
media (Kumar et al., 2018). In this work, the glucose conversion
could be reached with 31.26% fructose yield and 65.26%
selectivity under relatively lower operating conditions for
15 min or less. They found that the presence of large basic
sites in sodium titanate nanotubes was contribute to the
higher glucose conversion. Additionally, the catalyst could be
effciently recycled and regenerated by a simple NaOH treatment.
On the contray, protonated titanate nanotubes was reported as
solid acid catalyst for conversion of glucose into HMF via
isomerization and dehydration process, giving the moderate
yield of HMF (Kitano et al., 2010). Recently, protonated
titanate nanotubes exhibit relatively high catalytic performance
for isomerizaiton of alpha pinene, an inexpensive and important
essential oil which is widely used in the synthesis of various fine
chemicals (Huang et al., 2020). Hence, it is believed that the
protonated titanate nanotubes/sodium titanate nanotubes can be
uesed as acid or base catalyst in different types of isomerization
reactions for bio-based chemicals production.

More importantly, TNTs are regarded as an attractive support
material because they exhibit large surface area, high surface
hydroxyl density, high ion-exchange capacity and the good
stability. Recently, the catalytic performance of Au-Pd
nanoparticles prepared by colloidal synthesis and immobilised
on titanate nanotubes in the selective oxidation of glucose to
gluconic and glucaric acids has been studied by Khawaji et al.
under relatively mild conditions (Khawaji et al., 2019). They
found that Au-rich catalysts favored deep oxidation to glucaric
acid while Pd-rich catalysts displayed the formation of gluconic
acid. It is suggested that the bimetallic composition of Au and Pd
on TNTs could be tuned to enhance the production of either
gluconic acid or glucaric acid.
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Selective Oxidation of Benzyl Alcohol to
Benzaldehyde
The selective oxidation is potentially key reaction in the biomass
conversion and value-added chemicals production
(Nasrollahzadeh et al., 2020). The selective oxidation of benzyl
alcohol, a typical biomass derivative, to corresponding carbonyl
compounds has been received much attention. A highly active
Au-Pd on titanate nanotubes (Au-Pd/Ti-NT) catalyst has been
produced by using colloidal synthesis and immobilisation on
sodium-free Ti-nanotubes (Khawaji and Chadwick, 2017). The
catalyst has markedly superior catalytic activity (turn over
frequency>19 ,000 h−1) for the selective oxidation of benzyl
alcohol compared with similar catalysts reported in the
literature such as Au-Pd catalysts supported on Ti-NTs
prepared by adsorption as well as conventional Au-Pd/TiO2

prepared by impregnation. The authors claimed that the
superior catalytic activity of the catalyst is attributed to the
high metal dispersion on the external surfaces of titanate
nanotubes, the narrow particle size distribution, and the high
degree of Au-Pd mixed alloying. Moreover, the effect of the
catalyst preparation method on the selective oxidation catalytic
activity of Au-Pd supported on titanate nanotubes (Au-Pd/Ti-
NT) was further investigated (Khawaji and Chadwick, 2019). The
most active Au-Pd/Ti-NT catalyst for the selective oxidation of
benzyl alcohol is shown to be that prepared using colloidal
synthesis and immobilization with PVA as a stabilizer, which
has markedly superior catalytic activity compared to catalysts
prepared by deposition-precipitation, adsorption, and dry
impregnation methods. Therefore, it is very importance to
select a synthesis method to obtain optimal catalytic
performance. Besides, the morphology and physiochemical
properties of the support were also found to play a crucial role
for catalytic oxidation activity, selectivity, and stability (Khawaji
and Chadwick, 2018; Khawaji and Chadwick, 2020).
Furthermore, exploring the utilization of TNTs-based material
as a photocatalyst for selective oxidation of benzyl alcohol will be
desirable under ambient conditions (Yang et al., 2016).

Production of Other Bio-Based Chemicals
Hydrogenation reactions are considered as valuable and key
technologies in biomass conversion processes (Li et al., 2019).
Titanate nanotubes supported Pd was applied to hydrogenation
of 4-carboxy-benzaldehyde, displaying a better catalytic
performance than the commercial Pd/C catalyst (Liu et al.,
2018). Meanwhile, Torres’ group reported the selective
hydrogenation of nitrobenzenes over gold nanoparticles
supported on titania nanotubes in liquid phase at room
temperature (Torres et al., 2018). It was found that the
selectivity towards p-substituted anilines reached 90% for all
substrates in their study. Recently, other nobel metals, such Pt
and Pd, confined on titanate nanotubes also performed well for
the hydrogenation of nitroarenes and other substituted-
nitroarenes (Shanmugaraj et al., 2022). These works indicated
that the TNTs has the hollow tubular structure, the abundant
–OH groups and strong metal–support interaction which renders
them excellent supports for preparing TNT-supported catalysts

for hydrogenation of various compounds to high-value
chemicals.

Transforming of CO2 conversion into hydrocarbons recently has
received significant attention (Díaz de León et al., 2019). A ternary
hybrid catalyst, poly (ethyleneimine)-tethered Ir complex catalyst
immobilized in titanate nanotubes were applied to hydrogenation of
CO2 to formic acid under the relatively mild conditions (Kuwahara
et al., 2017). Kuwahara et al. stated that the ability of TNTs to
efficiently capture CO2 and to stabilize PEI, where Na+-type TNTs
with higher basic property providesmore productive effect, which are
responsible for the high catalytic performances. Recently, the catalytic
activity of rhodium supported on titanate nanotubes was evaluated by
in situ infrared study in the synthesis of formic acid via CO2

hydrogenation (Ruiz-García et al., 2019). For this catalyst a turn
over frequency (TOF) of 7.2 × 10−2 h−1 was obtained at 90°C and
atmospheric pressure. Furthermore, the authors provided the
evidence of active surface species bonded to support sites and to
rhodium sites via in-situ studies. Besides, photocataytic CO2

conversion to hydrocarbon fuel using TiO2 based material is
another important strategy (Razzaq and In, 2019).

CONCLUSION

In summary, titanate nanotubes-based heterogeneous catalyst
prepared via hydrothermal method have been critically
outlined and discussed in this mini-review as a promising
catalyst/support for bio-based chemicals production. Titanate
nanotubes can be modified by a variety of metal or non-metal
dopants or be functionalized by organic surface modification to
increase the acid and/or base properties of titanate nanotubes,
thereby enhancing the catalytic activity and selectivity. Their very
interesting properties make them promising catalysts for use in
various reactions, such as acetalization/condensation,
hydroxyalkylation/alkylation, transesterification, esterification,
alcoholysis and isomerization for production of biomass
derived chemicals. The described titanate nanotubes-based
heterogeneous catalyst with different catalytic properties can
be utilized as low-cost, efficient, sustainable and versatile
materials. Enlightened by the hollow tubular structure,
confinement effect and strong metal–support interaction,
much works on the rational design of multifunctional catalyst
for selective oxidation and hydrogenation reaction are ongoing.
Although these catalysts have some advantages such as simple
separation, and recycling, it would be highly desirable to keep the
catalysts intrinsic characteristics that will enhance the catalytic
stability of titanate nanotubes-based material under extreme
environment. Therefore, except for traditional catalyst
characterization, a combination of in situ catalytic studies and
theoretical calculations and simulations are also helpful to
provide valuable information toward the structure-activity
relationships of titanate nanotubes-based catalysts. This review
is also expected to act as a key reference to researchers for
developing advanced titanate nanotubes-based catalysts in
large scale applications for bio-based chemicals production
with resulting in significant developments.
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