
Buckberry et al. BMC Genomics  (2017) 18:10 
DOI 10.1186/s12864-016-3384-9

RESEARCH ARTICLE Open Access

Placental transcriptome co-expression
analysis reveals conserved regulatory
programs across gestation
Sam Buckberry1,2,3, Tina Bianco-Miotto1,4, Stephen J. Bent1, Vicki Clifton1, Cheryl Shoubridge1,
Kartik Shankar5 and Claire T. Roberts1*

Abstract

Background: Mammalian development in utero is absolutely dependent on proper placental development, which is
ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by
exploring the underlying organisation of the placental transcriptome through a systematic analysis of gene-wise
co-expression relationships.

Results: In this study, we performed a comprehensive analysis of human placental co-expression using RNA
sequencing and intergrated multiple transcriptome datasets spanning human gestation. We identified modules of
co-expressed genes that are preserved across human gestation, and also identifed modules conserved in the mouse
indicating conserved molecular networks involved in placental development and gene expression patterns more
specific to late gestation. Analysis of co-expressed gene flanking sequences indicated that conserved co-expression
modules in the placenta are regulated by a core set of transcription factors, including ZNF423 and EBF1. Additionally,
we identified a gene co-expression module enriched for genes implicated in the pregnancy pathology preeclampsia.
By using an independnet transcriptome dataset, we show that these co-expressed genes are differentially expressed
in preeclampsia.

Conclusions: This study represents a comprehensive characterisation of placental co-expression and provides
insight into potential transcriptional regulators that govern conserved molecular programs fundamental to placental
development.
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Background
The placenta is the first human tissue to start devel-
oping once the embryo implants into to the mother’s
uterus shortly after conception. At implantation, placen-
tal trophoblast cells begin to invade into the lining of the
uterus, where they colonise and transform the mother’s
spiral arteries and the extra-embryonic tissue placen-
tal tissue establishes its own network of blood vessels.
Together these processes facilitate the exchange of all
nutrients, gases and waste throughout pregnancy. Normal
placental function is dependent on appropriate growth
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and development of its structural components, which
are underpinned by the fine-tuned regulation of gene
expression. Consequently, alterations to placental gene
regulation are thought to be a major contributor to preg-
nancy pathologies. Several studies aimed at elucidating
the molecular basis of placental development have utilised
high-throughput gene expression technologies, such as
RNA sequencing (RNA-Seq) and microarrays, and show
that the placenta undergoes global shifts in gene expres-
sion across human gestation [1–4]. They also show that
placentas from pre-eclamptic pregnancies feature a dis-
tinct expression signature [5–9], and that some of these
expression differences arise approximately six months
before the condition manifests [10]. Recently, two pla-
cental transcriptome studies employing RNA-Seq have
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described the breadth of gene expression in the human
placenta and show that the placenta exhibits unique pat-
terns of exon splicing and greater than four-fold enrich-
ment for > 800 genes compared to other human tissues
[11, 12].
A common feature in previous studies on placental

gene regulation is that expression data are typically sum-
marised at the gene level for between-group comparisons,
widely known as differential expression. With differen-
tial expression, the greatest significance is attributed to
individual genes where the differences between groups
reach an appropriate significance threshold. Although dif-
ferential expression analyses have unquestionable utility,
the inherent natural organisation of the transcriptome
remains largely unexplored. Conversely, co-expression
analyses that consider the gene-wise relationships in
gene expression data have cast new light on previously
unappreciated patterns of transcriptional organisation
with regards to processes and functions such as lipid
metabolism [13], cancer [14], human brain development
and neuropathology [15–17], and embryonic develop-
ment [18]. Gene co-expression analyses identify groups of
genes where expression levels are highly correlated across
samples. By leveraging the inter-individual expression
variability between biological samples, a co-expression
analysis can enable the identification of higher-order rela-
tionships among genes. Further post hoc characterisation
of these relationships can then provide insight into the
biological processes arising from the underlying transcrip-
tional program. Therefore, to gain a new perspective on
placental genome regulation across human gestation and
between human and mouse, we performed a comprehen-
sive analysis of placental gene co-expression.

Results
RNA sequencing
To explore patterns of gene co-expression in the healthy
human term placenta, we performed single-strand 100-
base paired-end total RNA-Seq for 16 samples, obtain-
ing a total of 1.32 billion paired reads with and average
of 83 million reads per library. The mapping rate was
94.6±16.6% with an average of 26.2±8.8 million uniquely
mapped pairs per library overlapping annotated genes
(Additional file 1: Figure 1a). By summarising the RNA-
Seq reads by counting the number of overlaps with hg19
genes (see “Methods”), we detected 15,861 genes (includ-
ing both coding and non-coding RNAs) above the thresh-
old of > 1 read count per million, which we show is
an accurate threshold of detection based on quantifica-
tion of spiked synthetic RNAs (Additional file 1: Figure
1b and c). The normalised gene expression values were
also highly correlated (Additional file 1: Figure 2), with
a Pearson’s correlation coefficient for each pair being
0.97±0.01.

Constructing a weighted human placental co-expression
gene network
To integrate gene-level expression profiles into a higher-
order systems level framework, normalised gene
expression values were used to perform a weighted gene
co-expression network analysis (WGCNA) [19]. To con-
struct the gene-wise network, we first calculated Pearson’s
correlation matrix, then raised this matrix to a power to
weight strong correlations at the expense of weaker ones,
thus resulting in a weighted network (see Methods). To
identify groups of genes with highly correlated patterns
of expression, these data were then transformed into a
topological overlap matrix of ‘connection-strengths’ [19].
This was then used as input for unsupervised hierarchical
clustering, where we employed a dynamic tree-cutting
algorithm [20] to group tree branches into 13 distinct
clusters of highly connected genes, which we refer to as
modules (Fig. 1).
Each module was then summarised by calculating the

module eigengene for each sample, which is the first prin-
cipal component of gene expression values for themodule.
Therefore, the eigengene represents a weighted average
of gene expression. For each gene, we then define its
membership in each module as the absolute correlation
between the gene’s expression and the module’s eigen-
gene, and represent this correlation as kME [19]. Genes
are assigned to modules if they have an absolute kME >

0.7. Note that by quantifying membership through cor-
relation, module membership for each gene is no longer
binary and allows genes to be members of more than
one module (Additional file 1: Figure 3), thus connecting
modules in a network.
The proportion of gene expression variation explained

by each eigengene ranged between 39.1% (M10) and 79.6%
(M3) (Table 1). This demonstrates that even for large
modules such as M3 (844 genes), a significant propor-
tion of variance can be captured by a single representative
value. For each gene module, the top hub genes (kME >

0.9) are reported in Table 1, and genes with a kME > 0.7
for each module are listed in Additional file 2. The plots in
Fig. 2 demonstrate the high correlation of the top tenmost
connected genes for modules M2 and M3, and how gene
variance is accurately reflected by the module eigengene.
As our dataset featured equal number of samples from

male and female fetuses, we expected that at least one
co-expression module would be correlated with fetal sex
status and would serve as a positive control. To test
this, we performed a chromosomal enrichment test which
identified module M10 to be significantly enriched for
Y chromosome genes (Fisher exact test, Bonferroni p =
2.9 × 10−12, OR = 29.4, Additional file 1: Figure 4).
Accordingly, M10 eigengene expression was also signifi-
cantly higher for male samples (t-test, p = 3.5 × 10−5,
CI = 0.27 − 0.57, Additional file 1: Figure 5).
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Fig. 1Weighted gene co-expression network analysis of the human placenta reveals distinct clusters of co-expressed genes. Weighted gene
co-expression network analysis of the human placenta reveals distinct clusters of co-expressed genes. Average linkage hierarchical clustering
dendrogram of genes based on gene expression topological overlap. Modules of co-expressed genes were assigned colours and identifiers
M1–M13, which are represented in the horizontal bar below the dendrogram

As placental gene expression has previously been
shown to be influenced by method of delivery and
the onset of labor [21], we tested for an association
of delivery method (operative vaginal, unassisted vagi-
nal and cesarean section) and found no significant

associations for any co-expression module (ANOVA tests
with Bonferroni correction, all p > 0.05). We fur-
ther tested for eigengene correlations with birthweight
and gestational age at delivery and found that M3
eigengene expression was moderately correlated with

Table 1 Co-expression module characteristics

Module No. of genes Variance explained by eigengene Top ten hub genes (kME > 0.9)

M1 740 44.6% ZNF845, ZNF808, GPR160, GIN1, ATP5J, ZNF567, ANAPC10, C8orf59,
MRPS36, RBM7

M2 262 48.9% EPHA10, ARIH2OS, TUBD1, FLJ42102, KIAA0101, RPL13AP20, CD96, PDE6A,
GGT8P, SLC35F1

M3 844 79.6% NOTCH3, PLXND1, PALM, CSPG4, ARHGEF17, DCHS1,MARK4, KIRREL, LTBP4,
AXL

M4 566 51.5% HMMR, CASC5, DEPDC1, CDK1, KIF15, CCNA2, AIM1, TTK, ESCO2, EXO1

M5 116 45.5% ATP2A1, C11orf35, P2RY2, CCDC33, ASIC3, KIFC2, IL17REL, CLIC3, MTVR2,
RBBP8NL

M6 88 51.4% HN1, ASAP3, SLC12A8, ASPHD2, B3GNT7, IL17RE, PRG2, NOG, IL2RB, PIPOX

M7 112 41.5% SNORD114-29, CDH11, FAM198B, SNORD114-7, SNORD114-10, FKBP7,
SNORD114-14, C4orf32, SNORD114-26, SNORD113-2

M8 390 68.1% SBF1, ULK1, STRA6, DOT1L, BCAR1, TMEM184A, B3GNT8, SLC25A22,
C19orf71, INTS1

M9 79 44.5% SELL, S100A12, LRRK2, CYTIP, MNDA, ACSL1, FPR2, TGFA, LOC100505806,
TMEM71

M10 110 39.1% MTHFS, TTTY15, RPS4Y1, TXLNG2P, TTTY10, KDM5D, UTY, EIF1AY, ZFY, PRKY

M11 112 43.1% PGAP3, GPR137, PRR5, ARTN, C10orf10, C7orf43, ALDH4A1, EFS, RELL2,
ADIRF

M12 81 51.7% PVRL4, ARHGEF4, NDRG1, INHBA, SYDE1, INHA, MIR210HG, C8orf58,
SIGLEC6, PDZD7

M13 414 71.0% FAM195B, FBXL15, BRAT1, AKAP2, SCAND1, EME2, CCDC85B, C19orf60,
PGLS, TSR3
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Fig. 2 Gene–eigengene correlations identify module hub genes that are consistently co-expressed in the human placenta. Gene–eigengene
correlations identify module hub genes that are consistently co-expressed in the human placenta. The upper line plots show the top ten genes with
the highest module membership (kME) for modules M3 (a) and M2 (b). Each continuous line represents a gene, with different genes showing a
similar variability of expression across samples on the x-axis

birthweight (Pearson’s r = 0.53, Student asymptotic
p = 0.035, Additional file 1: Figure 6), however this
correlation failed to remain significant after Bonferroni
correction.

Co-expression modules are reproducible
To evaluate the reproducibility of these gene modules in
the third trimester placenta, we utilized RNA-Seq data
from a previously published study on the human pla-
cental transcriptome [11] and tested whether the density
and connectivity patterns of gene modules we defined
in our reference dataset were preserved. To quantify
reproducibility, we applied a preservation permutation
test [22] to summarise evidence that the network topol-
ogy is preserved in independent test sets and report the
Zsummary statistic to summarise module preservation. In
this independent third trimester dataset, 4/13 modules
show highly significant preservation scores Zsummary, and
8/13 were at least preserved Zsummary > 5 despite a lower
depth of sequencing [11] (Fig. 3). A gene ontology anal-
ysis showed that conserved co-expression modules such
as M3 and M8 are enriched for distinct biological pro-
cesses fundamental to placental development such as cell
adhesion and vascular system development (Additional
file 3).

Key co-expression modules are preserved across human
gestation and conserved in the mouse
Given that the human placenta undergoes significant
growth and remodeling throughout the nine months
of gestation [23], we reasoned that if particular co-
expression modules were involved in core placental
functions, then these modules would be reproducible
using gene expression data from earlier gestational time
points. To test this hypothesis, we obtained microar-
ray gene expression data from placental tissue collected
during the first (GSE28551) [1] and second trimesters
(GSE5999) [2]. Although these datasets contain expres-
sion data for substantially fewer genes after filtering
and annotation (57.6% and 63.9% of detectable genes in
the RNA-Seq dataset, respectively), the module preser-
vation statistics indicate that a majority of modules
are nevertheless preserved across gestation at a low
to moderate level of significance (Fig. 3). In particu-
lar, M4 shows moderate preservation Zsummary > 5
across all gestational time points, indicating a conserved
pattern of gene regulation throughout human gesta-
tion. In contrast, the M2 module is highly preserved
in the third trimester datasets Zsummary > 10 with
little to no evidence of preservation during the first
or second trimesters, suggesting M2 genes constitute a
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Fig. 3 Preservation heat map of co-expression gene modules in
independent datasets shows level of module preservation in the
human placenta across human gestation and in mid gestation mouse
placenta (E11.5). Colours represent four classes of co-expression
preservation as represented by Z-score summary of preservation
statistics. Zsummary > 10 indicates high level of evidence for module
preservation, Zsummary 5-10 indicates moderate-high preservation,
Zsummary 2-5 indicates low-moderate preservation, and Zsummary < 2
indicates no evidence for preservation. Numbers within cells are the
Zsummary statistic. Third trimester reference (far left column) represents
results from running permutation tests using the data collected in
this study. Third trimester validation data (n=20) is from ref [11].
Second trimester gene expression data (n=27,GSE5999) is from ref [2].
First trimester expression data (n=16, GSE28551) is from ref [1]. Mouse
expression data at E11.5 (n=23, SRA062227) is from ref [24]

molecular program more specific to third trimester pla-
cental functions.
As the mouse is the most widely utilised model for

studying placental development, we next asked whether
the co-expression gene modules were conserved between
human andmouse. To achieve this, we obtained raw RNA-
Seq data (SRA062227) for 23 mid-gestation (E11.5) mouse
placenta samples [24] and showed that 5/13 had some
degree of evidence for module preservation Zsummary > 2,
with M3 showing a highly significant preservation score
Zsummary > 10 (Fig. 3). To further validate the con-
servation of co-expression between human and mouse,
we assembled an independent and unsupervised de novo
mouse co-expression network using the same methods as
our human dataset. By counting the overlapping genes

for each module and performing Fisher exact tests, we
show that five human modules have at least one mouse
counterpart (Bonferonni corrected p < 0.05, Fig. 4). As
predicted from the human–mouse Zsummary statistics, M3
showed the highest degree of overlap with a mouse mod-
ule (Bonferroni p = 2.78× 10−20) and a highly significant
kME correlation (Pearson’s r = 0.4, p = 2.6 × 10−102).

Preserved modules feature a core set of transcription
factor motifs
As several co-expression modules appeared to be highly
conserved, we tested the 10kb up and downstream of
genes in each module for enrichment of transcription fac-
tor binding motifs. This identified 52 transcription factors
as potential regulators of co-expression (Additional file 4),
several of which were detectable in the placenta at the
RNA level and predicted to target multiple conserved co-
expression modules. As M3 genes appeared to constitute
the most highly conserved transcriptional network in this
study (Fig. 3), we then further analyzed the transcription
factors that were detectable in the placenta at the RNA
level and predicted to target M3 genes. This identified
ZNF423 and EBF1 which were both also members of the
M3 module (kME = 0.85 and kME = 0.78, respectively),
and highly correlated with the M3 eigengene (Fig. 5c).
ZNF423 has previously been reported to interact with
EBF1 [25–28]. Here we show a majority of M3 genes with
ZNF423-binding motifs also feature EBF1 motifs (Fig. 5b),

Fig. 4 Overlap between weighted gene co-expression network
modules for human and mouse placenta. Heat map colours represent
Fisher exact test − log10 p-values. Numbers within cells represent the
number of overlapping genes with Bonferroni p < 0.05 and shows
five human co-expression modules (M1, M3, M4, M8 and M9) have a
significant corresponding module in the mouse. The M0/m0 modules
represent the groups of genes that were not assigned to any
modules and are therefore not included in the networks. Mouse data
is from SRA062227, ref [24]
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Fig. 5 EBF1 and ZNF423 are potential upstream regulators of M3 gene expression. EBF1 and ZNF423 are potential upstream regulators of M3 gene
expression. a Enrichment test for TF-binding motifs in the 10kb up- and down-stream of transcription start sites identify two TFs, ZNF423 (blue) and
EBF1 (orange), that are members of the M3 module. b EBF1 and ZNF423 are predicted to target many of the same M3 genes. Circles in the Venn
diagram represent the number of genes targeted by TFs and their overlap – EBF1 (orange), ZNF423 (blue), and when both have motifs directly
adjacent to each other (anchored analysis, yellow). c ZNF423 and EBF1 expression is highly correlated with M3 eigengene expression. Points
represent individual samples. d TF-binding motif density is greatest immediately upstream of M3 transcription start sites. Coloured lines represent
the density TF motifs for EBF1 (orange), ZNF423 (blue) and the combination of both (green)

and the density of these motifs is greatest immediately
upstream of M3 transcription start sites (Fig. 5d). These
multiple lines of evidence suggest ZNF423 and EBF1 are
potential regulators of M3 gene transcription. When we
performed the same enrichment tests for all other mod-
ules, ZNF423 and EBF1 were predicted to target a high
proportion of genes within other co-expression modules
(Additional file 4). Further inquiry revealed that the most
highly preserved modules across human gestation, and
between human and mouse (M1, M3-5, M8), feature a
core set of TF-binding motifs (Additional file 1: Figure
7), suggesting these co-expressed genes share common
regulatory elements and have a high degree of flanking
sequence similarity.

Modules of co-expressed genes are implicated in
pregnancy complications
The origins of several pregnancy pathologies, such as
preterm birth (PTB) and preeclampsia (PE) are largely
attributed to abnormal placental development [29–31]. If
co-expression modules constitute gene networks involved

in placental development, we reasoned that if a particu-
lar module underpinned key placental processes, it may
be enriched for genes implicated in pregnancy complica-
tions. To address this question, we obtained a curated gene
list from the PTB gene database [32], and a set of meta-
analysis-validated differentially expressed genes in PE [5],
and tested our co-expression gene modules for enrich-
ment of genes implicated in these pathologies (Fig. 6). M9
was statistically enriched for genes associated with PTB
(OR=3.4, FDR=0.03), but more strikingly, modules M11
and M12 showed significant enrichment for PE-related
genes (M11 OR=16.6, FDR=2.1 × 10−3; M12 OR=101.3,
FDR=1.2 × 10−16). Notably, three M12 intramodular hub
genes (PVRL4, INHBA and INHA) have consistently been
shown to be up-regulated in PE [5]. This provided the first
line of evidence that M12 gene co-expression genes may
be altered in PE.
To further validate the finding that M12 was enriched

for genes differentially expressed in PE, we obtained addi-
tional independent microarray expression data from a
recent study on early-onset PE (n = 16) [33] and tested
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Fig. 6M12 is enriched for genes that show a meta-signature for preeclampsia. M12 is enriched for genes that show a meta-signature for
preeclampsia. a Heat map table shows the statistical enrichment (FDR) of module genes in preterm birth (PTB) and preeclampsia (PE), and cell
colours represent log2 odds ratio. bM12 genes implicated in PE and their module membership (kME). M12 intramodular hubs are in bold. PTB
associated genes were obtained from PTB gene database [32] and genes with a PE signature obtained from ref [5]

for differences in M11 and M12 gene expression. First,
a rotation gene set test [34] showed that (61%) of M12
genes are significantly up-regulated in the PE placenta
(p = 0.021), with M11 showing no significant enrichment
(p = 0.938). When testing for differential expression of all
genes in preeclampsia versus controls independently, 261
genes were significant (absolute fold change > 2, FDR <

0.05) with M12 showing the highest proportion of differ-
entially expressed genes (Additional file 1: Figure 8). This
independent analysis thus provides a second line of evi-
dence for the involvement of M12 genes in preeclampsia
(Fig. 7a). Following this, we calculated the first princi-
pal component for M12 genes in this dataset to obtain
an eigengene measure, and showed that M12 eigengene
expression is significantly different (t-test, p = 1.7×10−4)
between PE and control (Fig. 7b). This demonstrated the
robust nature of the eigengene for testing for differences
in gene regulation between control and PE pregnancies.
Together, these results implicate M12 co-expressed genes
in PE and suggest that the mechanisms regulating M12
co-expression may be altered in PE.

Discussion and conclusions
By conducting this comprehensive co-expression net-
work analysis of the human placental transcriptome, we
reveal previously unappreciated aspects of transcriptional
organisation at the fetal-maternal interface. This anal-
ysis entailed the integration of multiple gene expres-
sion datasets and curated databases, which enabled the

testing of specific hypotheses regarding placental genome
regulation.
Our results demonstrate that a large proportion of the

placental transcriptome is organised into distinct modules
of co-expressed genes, some of which are preserved across
gestation, and conserved between human and mouse.
The reproducibility of these networks, constructed from
independent datasets and different platforms (RNA-Seq
and microarrays) suggest a fundamental modular organ-
isation of the placental transcriptome. Moreover, our
cross-species analysis demonstrates that certain aspects
of human placental transcriptional organisation are highly
preserved in the mouse, indicating the evolutionary con-
servation of molecular processes which drive mammalian
placental development.
When comparing the de novo human and mouse net-

works, five genes were identified as M3/m3 intramodular
hub genes (kME > 0.9) in both species (ARHGEF17,
DOCK6, MAP3K9OSBPL7, and PRR12), demonstrating a
high degree of inter-speciesmodule reproducibility. These
hub genes are centrally located within the M3module and
may be critical components of the network. Of particu-
lar interest, DOCK6 mutations in humans are associated
with extreme placental angiopathy and a severely abnor-
mal placental phenotype [35], while DOCK6 expression is
reported to be down-regulated in placentas from growth-
restricted fetuses [36]. Similarly, OSBPL7, an oxysterol-
binding protein, is also reported to be differentially
expressed in placentas from preeclamptic pregnancies
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Fig. 7M12 genes are significantly up-regulated in preeclampsia placentas. M12 genes are significantly up-regulated in preeclampsia placentas. a
Bar plot showing the log2 fold-change between preeclampsia and control placentas. Orange bars represent M12 hub genes. b The M12 eigengene
(first principal component) is significantly different between preeclampsia and control placentas. Validation gene expression data obtained from
GSE44711, ref [33]

[37]. For genes that do not have any previously reported
placental phenotype association, these could be potential
novel candidates for involvement in placental develop-
ment. Given the size of the M3 co-expression module, it
is reasonable to expect that these genes would be involved
in multiple cellular processes. The results of the gene
ontology analysis do indicate that M3 genes are involved
in processes such as cell adhesion, cardiovascular sys-
tem development, growth-factor binding and extracellular
matrix structre. Together, there results suggests that the
M3 co-expression network may be involved in multiple
levels of placental development and regulation.
Investigation of the TFs that potentially regulate co-

expression revealed that the most preserved modules
are predicted to be regulated by a core set of tran-
scription factors, including the M3 genes EBF1 and
ZNF423, which potentially target a high proportion of
genes in the most highly preservedmodules. Although the
effects of ZNF423 and EBF1 on placental gene regulation
remain largely unexplored, ZNF423 appears to be a multi-
functional transcription factor associated with B cell reg-
ulation, retinoic acid signalling, notch signalling, DNA
damage response pathways, adipogenesis and cancer [25].
Furthermore, homozygous mutation in the homologous
gene in mice (Zfp423) results in smaller ataxic pups who
die shortly after birth [38]. This indicates a critical role
for ZNF423 in development. EBF1 can act as both a tran-
scriptional activator and repressor and has known roles in
tumour suppression [39]. When EBF1 binds DNA directly

as a dimer, it can activate transcription via p300-CBP co-
activation [39]. In other contexts, the same DNA binding
dimer in conjunction with ZNF423 can recruit the nucle-
osome remodelling and deacetylase (NuRD) complex,
triggering EBF1-mediated transcriptional repression [39].
The observation that EBF1 and ZNF423 are co-expressed
in the placenta and members of the M3 module, and
their widespread targeting potential across modules of co-
expressed genes indicates that these TFs are candidate key
regulators of transcription in the placenta.
The identification of M12 being enriched for genes

implicated in PE demonstrates the utility of a co-
expression analysis for identifying genes that may respond
to the pathology, ormay indeed underlie its aetiology. This
guilt-by-association approach, clustered genes implicated
in PE (M12) in a completely unsupervised manner, sug-
gesting expression differences in these genes are driven
by a set of common factors. The observation that several
M12 hub genes are up-regulated in PE, and show highly
correlated patterns of expression, implies that expression
of other genes within this module is likely driven by the
same underlying factors, together indicating that these
genes are implicated in placental development. Moreover,
theM12 network is preserved in the first trimester (Fig. 3),
the period where the pathogenesis of PE is considered to
have its origins [40]. Furthermore, these patterns of co-
expression do not appear to be conserved in the mouse.
Although human and mouse placental development have
many similarities, it is also important to note that mice
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do not develop preeclampsia. Together, these findings
indicate further investigation of the involvement of M12
genes and their upstream regulators in human placental
development may be a valuable way of generating new
hypotheses regarding the placental origins of PE.
Concordant with our results, several M12 hub genes

such as NDRG1, INHA, INHBA were central to both
protein-protein interaction networks [41] and co-
expression networks [42] implicated in PE in previous
studies. Of particular interest, the intramodular M12 hub
gene PVRL4, which is up-regulated in PE [5], is expressed
more highly in the placenta compared to other human
tissues [43]. PVRL4 is a potent mediator of epithelial cell
colony formation [44] and is also highly expressed in
ovarian cancer tissue [45]. Furthermore, cleaved PVRL4 is
elevated in the serum of patients with ovarian cancer and
is correlated with PVRL4 expression [45], suggesting that
maternal serum PVRL4may hold potential as a biomarker
of PE. Together, these results suggest a potential role for
M12 genes in the pathogenesis of PE.
One limitation of our study is the number of samples

we have used to construct our co-expression networks,
and the expression levels of some hub genes are rela-
tively low. However, we are confident that our expression
measurements are reasonably accurate at these levels as
we emperically determined a threshold of detection using
spike-in RNAs (Additional file 1: Figure 1). Furthermore,
we have bolstered our analysis by incorporating multi-
ple independent datasets to validate our results assess
the preservation of co-expression networks. Secondly, as
different placental biopsies can feature differing contri-
butions of maternal versus fetal cells between different
gestational ages and sampling methodologies, there are
inherent limitations in comparing data between studies.
This may be one underlying factor in driving the dif-
ferences we observe between our dataset and the third
trimeser validation dataset. We also recognise that the
second trimester gene expression data (GSE5999) were
from basal plate tissue collected from pre-term birth
deliveries so they may not be directly comparable to the
villous tissue data collected from uncomplicated preg-
nancies. Additionally, the mouse placental tissue we have
re-analyzed (SRA062227) was collected at approximately
mid gestation (E11.5) therefore the comparison with the
late gestation human tissue should be interpreted with
some caution. However, given the rarity of some of sam-
ples used in our analysis, we are of the opinion that the
comparisons made still have value.
Several new questions arise from this comprehensive

co-expression network analysis. Firstly, are patterns of
co-expression altered in placental pathologies? Our anal-
ysis of independent expression datasets from PE placen-
tas provide compelling preliminary evidence that M12
genes are up-regulated in PE, which warrants further

investigation into the regulators of M12 genes. Sec-
ondly, what genetic and environmental factors influence
co-expression? A comprehensive assessment of genotypes
and environmental factors such as maternal diet has the
potential to reveal drivers of placental expression varia-
tion. Thirdly, does silencing of hub genes shift module
co-expression and influence placental cell phenotype and
behavior? Functional studies aimed toward elucidating the
biological function of co-expression modules may yield
new insights into how placental development is regulated.
In summary, we show that a weighted gene co-

expression network analysis can provide novel insights
into the functional organisation of the placental tran-
scriptome. To the best of our knowledge, the networks
described herein have not been described previously,
and emphasise that these findings could not be revealed
through conventional gene-level summaries or differen-
tial expression experiments. In typical differential expres-
sion analyses, emphasis is placed on genes where the
expression differences reach an appropriate level of sig-
nificance. Although such experiments have contributed
significantly to our understanding of placental genome
regulation, the significance of each gene is typically deter-
mined in isolation, subsequently failing to connect genes
in a manner that reflects the functional organisation of
the transcriptome. By connecting genes in a manner that
reflects underlying genome regulatory programs, we have
exposed previously unappreciated aspects of the placen-
tal transcriptional landscape and provide a framework for
multiple avenues of post hoc inquiry.

Methods
Ethics and consent
Ethics approval was granted by the Central Northern
Adelaide Health Service Ethics of Human Research Com-
mittee (Approval #2005082) and the University of Ade-
laide Human Research Ethics Committee (H-137-2006).
Written, informed consent was obtained from all patients.

Sample collection
Third trimester placenta samples were collected from
primiparous women with singleleton pregnancies clas-
sified as being uncomplicated by using the criteria
described in reference [46]. Placenta samples were col-
lected and dissected within one hour post-delivery at the
Lyell McEwin Health Service, South Australia in accor-
dance with our ethical approval (see ethics statement).
Placental villous tissue was obtained by first taking a full-
thickness sections and then removing the membranes and
basal plate tissue before dissecting villous tissue from the
middle of the section. No tissue or sample pooling was
performed at any step. Samples of villous tissue were then
incubated in RNAlater solution (Invitrogen) at 4 degrees
celsius for 24 hours before being stored at -80 degrees
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celsius. Full sample details are listed in Additional file 1:
Table 1.

RNA sequencing
RNA was extracted from 16 placental samples using
TRIzol following the manufacturer’s protocol. All sam-
ples were spiked with 96 External RNA Controls Con-
sortium (ERCC) ExFold RNA transcripts. Ribosomal
RNAs were depleted from samples using Ribo-Zero
Gold and sequencing libraries were prepared using
Illumina®TruSeq®Stranded Total RNA Sample Preparation
kits. Sequencing was performed on the Illumina Hi-Seq
2500 using a 100bp paired-end protocol at the Australian
Cancer Genomics Facility in Adelaide.
Sequence adapters were trimmed using AdapterRemoval

with options -trimns, -minlength 20. Trimmed
RNA-Seq reads were aligned to known UCSC hg19 genes
and the hg19 genome using Bowtie 2 v2.1.0 and TopHat v2
.0.9 with options -library-type=fr-firststrand
-mate-inner-dist -20 -mate-std-dev 180.
UCSC hg19 reference genome and transcriptome was
obtained through Illumina iGenomes (support.illumina.
com/sequencing/sequencing_software/igenome.html).

Sequence data processing
Aligned RNA-Seq reads were summarised using the
summarizeOverlaps algorithm with the UCSC known
genes hg19 GTF file using the the options
overlapMode=“Union”, ignoreStrand=FALSE,
singleEnd=FALSE, fragments=TRUE [47] to gene-
rate a table of unique read counts per gene for each
sample (this summarized data is available through NCBI
GEO, GSE77085). Only genes > 1FPKM were retained
(15,861 genes) and count data were transformed and
quantile-normalised using the Voom method [48] to
produce a numeric matrix of normalised expression
values on the log2 scale. All samples were processed in
the same way, with all sequencing libraries created in the
same batch and sequenced together. However, we never-
theless checked systematic differences between samples
(Additional file 1: Figures 9 and 10) and found no evidence
of batch effects or systematic shifts in gene expression.

Network construction
To construct the network of co-expressed genes, we
selected the most variable upper third of genes in the
placental RNA-Seq dataset using the Weighted Gene Co-
expression Network Analysis methods implemented in
the WGCNA R package [19]. Briefly, gene expression
values were used to construct a signed co-expression net-
work by computing a Pearson’s correlation matrix, which
is then used to compute an adjacencymatrix by raising the
correlation matrix to a power. We chose a power of eight,
which was determined by plotting scale-free fit and mean

connectivity as a function of power (Additional file 1:
Figure 11) using the scale-free topology criteria outlined
in [49]. By raising the absolute value of the correlation
to a power, the construction of co-expression networks
emphasises high correlations at the expense of low corre-
lations [19]. The interconnectedness (topological overlap)
of each gene pair was calculated using the adjacency
matrix, which was then used as input for average linkage
hierarchical clustering.
Gene modules were then defined as branches of the

resulting clustering tree, with the branches cut into
defined modules using the dynamic tree-cut algorithm
[20]. Gene modules were then summarised by calculating
module eigengenes, which are defined as the first prin-
cipal components of the module expression profiles. As
module eigengenes capture the maximum amount of vari-
ation of gene expression within a module, the eigengene
is considered a representative value (or weighted aver-
age) of module gene expression [19]. For each module, the
gene membership value (kME) is defined as the correla-
tion between the standardised gene expression values for
each gene and the module eigengene for each sample [19].
We assigned genes to modules if they had a high mod-
ule membership defined as kME > 0.7, and genes with a
value below this threshold were assigned to the M0 (grey)
module. Note that using this method allows genes to be
members of more than one module.

Module preservation
To evaluate the preservation of human third trimester pla-
centa gene modules in independent placenta gene expres-
sion datasets, we used the WGCNA modulePreservation
function to generate module preservation statistics [19].
These methods test whether the density and connectiv-
ity patterns of gene modules defined in our reference
dataset are preserved in independent datasets. We used
theZsummary statistic to summarise the evidence for signif-
icant module preservation compared to a random sample
of all network genes reiterated over 100 permutations
per dataset. We adopted the thresholds suggested by
Langfelder et al [13], who indicate Zsummary < 2 implies
no evidence for module preservation, 2 < Zsummary < 10
implies weak to moderate preservation, and Zsummary >

10 implies strong evidence for module preservation.

RNA-seq validation dataset
We used the raw RNA-Seq reads from 20 human third
trimester placenta samples as previously described
in a separate analysis of the human placental tran-
scriptome [11]. In this current study, RNA-Seq reads
were aligned to the human reference genome and
UCSC known genes (hg19) using Tophat 2 with the
options -library-type=fr-unstranded -segment
-length=18. For the mouse expression data,

support.illumina.com/sequencing/sequencing_software/igenome.html
support.illumina.com/sequencing/sequencing_software/igenome.html
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we obtained RNA-Seq fastq files for 23 samples
from the NCBI short read archive (SRA062227).
Reads were aligned to mm10 genome and
UCSC known genes using Tophat2 with the
options -library-type=fr-unstranded -read-
mismatches 3 -read-edit-dist 3. Alignment
bam files were summarised to obtain the number
of unique read counts per gene using the summa-
rizeOverlaps function in the genomicAlignments R
package [47] with the options ignore.strand=TRUE,
paired=FALSE, mode=“union” followed by log2
counts per million transformation and quantile nor-
malisation. To enable the comparison of human and
mouse datasets, mouse gene identifiers were converted
to orthologous human gene identifiers using Ensembl
Biomart and the biomaRt R package. Only mouse genes
with one-to-one orthologues in the human dataset were
included and mouse genes with no corresponding human
gene were removed from the analysis.

Microarray validation datasets
For second trimester placenta, Affymetrix CEL files for
27 samples (GSE5999) were pre-processed, background
subtracted and normalised using the robust multi-average
(RMA) algorithm [50]. Pre-processed and normalised
data from 16 first trimester placenta samples (GSE28551)
and third trimester preeclampsia samples (GSE44711)
were downloaded directly from NCBI GEO. Only probes
that mapped uniquely to human genes using the biocon-
ductor package biomaRt were retained. In cases where
multiple probes mapped to the same gene, we selected
the probe with the highest mean expression. Differen-
tial expression testing of GSE44711 was performed using
linear models (lmFit and eBayes functions) and a rota-
tion gene set test (mroast function) in the limma R
package [34].

Gene ontology
Gene lists for each module were tested for enrichment of
gene ontology (GO) terms using Fisher exact tests to com-
pute p-values for statistical over-representation of GO
terms using the GOstats bioconductor package [51] with
all the detectable genes (15,861) in our placental gene
expression dataset used as the background set.

Transcription factor motif enrichment
The genes within each co-expression gene module
were analysed for enrichment of transcription fac-
tor (TF)-binding sites (TFBS) against a background
gene set of all detectable genes in the placenta
dataset (15,861) using the oPOSSUM program and the
JASPAR vertebrate core profiles [52, 53]. For each
gene, we searched for TFBS motifs in the conserved
regions of the 10kb upstream/downstream sequences

using a conservation cut-off of 0.4, a matrix score
threshold of 85% and a minimum specificity of 8-
bits. The highly enriched TFBSs were identified by
ranking TFs using results from Fisher tests and Z-score
rankings.

Additional files
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figures and tables. (PDF 1780 kb)

Additional file 2: Co-expression module gene lists. Comma-seperated
values file. This file contains the lists of all the genes in each co-expresion
module. (XLSX 85 kb)

Additional file 3: Co-expression module gene ontology terms.
Comma-seperated values file. The results of gene ontology analyses for
each co-expression module. (XLSX 50 kb)

Additional file 4: Predicted transcription factos for each co-expression
module. Comma-seperated values file Top 10 predicted transcription
factors for each co-expression module. (XLSX 62 kb)
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