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Objective: Rheumatoid arthritis (RA) is a chronic inflammatory joint disease,

which is associated with progressive disability, systemic complications, and

early death. But its etiology and pathogenesis are not fully understood. We

aimed to investigate the alterations in plasma metabolite profiles, gut bacteria,

and fungi and their role of them in the pathogenesis of RA.

Methods: Metabolomics profiling of plasma from 363 participants including

RA (n = 244), systemic lupus erythematosus (SLE, n = 50), and healthy

control (HC, n = 69) were performed using the ultra-high performance

liquid chromatography-quadrupole time-of-flight mass spectrometry. The

differentially expressed metabolites were selected among groups and used

to explore important metabolic pathways. Gut microbial diversity analysis was

performed by 16S rRNA sequencing and ITS sequencing (RA = 195, HC = 269),

and the specific microbial floras were identified afterward. The diagnosis

models were established based on significant differential metabolites and

microbial floras, respectively.

Results: There were 63 differential metabolites discovered between

RA and HC groups, mainly significantly enriched in the arginine and

proline metabolism, glycine, serine, and threonine metabolism, and

glycerophospholipid metabolism between RA and HC groups. The core

differential metabolites included L-arginine, creatine, D-proline, ornithine,

choline, betaine, L-threonine, LysoPC (18:0), phosphorylcholine, and

glycerophosphocholine. The L-arginine and phosphorylcholine were

increased in the RA group. The AUC of the predictive model was 0.992,
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based on the combination of the 10 differential metabolites. Compared with

the SLE group, 23 metabolites increased and 61 metabolites decreased

in the RA group. However, no significant metabolic pathways were

enriched between RA and SLE groups. On the genus level, a total of 117

differential bacteria genera and 531 differential fungal genera were identified

between RA and HC groups. The results indicated that three bacteria genera

(Eubacterium_hallii_group, Escherichia-Shigella, Streptococcus) and two

fungal genera (Candida and Debaryomyces) significantly increased in RA

patients. The AUC was 0.80 based on a combination of six differential

bacterial genera and the AUC was 0.812 based on a combination of seven

differential fungal genera. Functional predictive analysis displayed that

differential bacterial and differential fungus both were associated with KEGG

pathways involving superpathway of L-serine and glycine biosynthesis I,

arginine, ornithine, and proline interconversion.

Conclusion: The plasma metabolism profile and gut microbe profile changed

markedly in RA. The glycine, serine, and threonine metabolism and arginine

and proline metabolism played an important role in RA.

KEYWORDS

rheumatoid arthritis, metabolomics, gut bacterial, gut fungus, metabolic pathway

Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune
disease characterized by inflammation, especially persistent
synovitis, and progressive joint damage with dominant extra-
articular features (Smolen et al., 2016). It affects up to 1% of the
general population worldwide, regardless of age group (Smolen
et al., 2018). Although strict control and targeted therapy may
retard the progress of RA, it still cannot be cured completely
(Smolen et al., 2020).

With the rapid development of high-throughput
technologies, including mass spectrometry (MS) and nuclear
magnetic resonance spectroscopy (NMRS) (Kang et al., 2015),
metabolomics was initiated recently to have exceptional
advantages on some novel metabolic pathways and related
metabolites (Zhang et al., 2018). Since metabolites are a specific
manifestation of the metabolic process, they are indicative of a
certain disease state (Horgan and Kenny, 2011). A number of
previous studies have claimed the potential value of metabolites
for RA (Chimenti et al., 2013; Kapoor et al., 2013; Priori
et al., 2015; Cuppen et al., 2016). For example, arachidonic
acid metabolism, sphingolipid metabolism, and arginine and
proline metabolism were found essential in the therapeutic
response of RA, due to achieving sustained drug-free remission
(Hu et al., 2011; Teitsma et al., 2018; Wang et al., 2021).
RA and systemic lupus erythematosus (SLE) are common
autoimmune diseases. In fact, these two autoimmune diseases
share several clinical manifestations, serological profiles, and

immunological characteristics. However, differences in the
plasma metabolic profile between RA and SLE groups are rarely
reported.

Due to biological coevolution, flora metabolism has
also been found to affect human health through “functional
acquisition.” Numerous pathological changes are found
accompanied (Grover and Kashyap, 2014; Foster et al., 2016;
Tang et al., 2020). Since the significant role of intestinal
flora in RA was first identified in 1968 (Olhagen and
Mansson, 1968), it was further considered to be involved
in potential treatment. For instance, the diversity of gut
microbiota is found to decrease in RA patients (Smolen
et al., 2018), while the rare taxa, that is, Actinobacteria
increased (Chen et al., 2016). The prevotella copri was more
common in new-RA patients than in established RA or no-RA
patients (Scher et al., 2013). Thus, the gut microbiota is also
suggested to be potential markers of the development of
RA.

However, most studies only focused on the correlation
of the RA with either a certain specific metabolite or
microbial flora (Song et al., 2020; Mun et al., 2021).
Very few of them can combination both plasma and fecal
metabolomics to comprehensively explore their correlation
with RA, not to mention constructing a predictive model
to predict the development of RA. Therefore, we aimed
to investigate changes in plasma metabolite profiles,
gut bacteria, and fungi, and to explore their role in the
pathogenesis of RA.
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Materials and methods

Study patients

The flow chart of this study is shown in Figure 1. The
RA patients were diagnosed according to the American
College of Rheumatology 2010 classification (Kay and
Upchurch, 2012), hospitalized in the Department of
Rheumatology and Immunology in Dazhou Central
Hospital from November 2017 to July 2020. The RA
group exclusion criteria are as follows: (1) Age < 18 years
old; (2) Combination other immune metabolic diseases
and complications, such as diabetes, osteoarthritis,
metabolic syndrome, and infection; (3) Used probiotics
and antibiotics in the last 2 weeks; (4) Tumor patients;
(5) Organ failure and organ transplant patients; and (6)
Pregnant women. The collected data included patients’
age, gender, 28-joint tender joint count (TJC28), 28-
joint swelling joint count (SJC28), C-reactive protein
(CRP), erythrocyte sedimentation rate (ESR), and so
on.

The healthy control (HC) group included 338 participants,
who underwent health examination in Dazhou Central
Hospital from May 2020 to July 2020. The disease
control group included 50 SLE patients hospitalized
in Dazhou Central Hospital from September 2018 to
August 2020. All SLE patients were diagnosed according
to the American College of Rheumatology (ACR’97)
and/or Systemic Lupus International Collaborating Clinic
(SLICC’12) classification criteria (Hochberg, 1997; Petri
et al., 2012). The plasma samples from 363 participants
(244 RA, 69 HC, 50 SLE) were analyzed by non-targeted
metabolomics.

The stool samples from 464 participants
(195 RA and 269 HC) were used to identify
the microbial biomarkers and construct the
predictive model.

This study was approved by the Ethics Committee
of Dazhou Central Hospital. The subjects have signed
informed consent.

Plasma sample collection

Four milliliters of fasting venous blood were drawn
and placed in an anticoagulant vacuum blood collection
tube (BD Vacutainer R©). After the blood was collected, the
samples were placed in a refrigerator at 4◦C to stand
still for processing within 2 h after collection. First, each
tube of blood was centrifuged at 3,500 rpm, 4◦C for
10 min, and the supernatant was separated into two EP
tubes, and then centrifuged again at 12,000 rpm, 4◦C for
10 min. Finally, the supernatant plasma was transferred

into two new EP tubes and stored in the refrigerator at
-80◦C.

Untargeted metabolomics analysis by
UNPLC/Q-TOF-MS

The method detail of UNPLC/Q-TOF-MS was shown
in Supplementary Method File. The hierarchical cluster
was performed to display the relationship and difference
between metabolites. The multidimensional statistical analysis,
including principal component analysis (PCA), partial least-
squares discriminant analysis (PLS-DA), and orthogonal
partial least-squares discriminant analysis (OPLS-DA), were
also performed to help cluster the metabolites. Besides,
a permutation test was performed for the validation of
the model. Metabolic pathways [impact < 0.2, −log10(p)
value > 1.3] and greater metabolic abundance were identified
by KEGG database.

Fecal sample collection

The fresh stool was collected and delivered immediately at
low temperatures, then divided into individual parts of 200 mg
and stored at −80◦C until extraction.

Fecal sample DNA extraction and
Illumina MiSeq sequencing

According to the manufacturer’s protocol, total DNA
was extracted from fecal samples. Bacterial 16S rRNA gene
fragments (V3–V4) were amplified from the extracted DNA
using the primers 338F ACTCCTACGGGAGGCAGCAG
and 806R GGACTACHVGGGTWTCTAAT, and fungal
internally transcribed spacer (ITS) gene fragments were
amplified from the extracted DNA using the primers
ITS1F CTTGGTCATTTAGAGGAAGTAA and ITS2R
GCTGCGTTCTTCATCGATGC.

The following PCR Amplicons were subjected to paired-
end sequencing on an Illumina MiSeq sequencing platform
using a PE250 kit.

Amplification sequence processing and
analysis

Taxonomic assignment of ASVs was performed
using the Naive Bayes consensus taxonomy classifier
implemented in Qiime2 and the SILVA 16S rRNA and
ITS database. ASV analysis, Community diversity analysis,
Genus and Species difference analysis, model predictive
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FIGURE 1

The flowchart of the study. RA, Rheumatoid arthritis; HC, healthy control; SLE, systemic lupus erythematosus.

analysis, and PICRUSt2 (Phylogenetic Investigation
of Communities by Reconstruction of Unobserved
States 2) function prediction analysis were performed
based on the 16S rRNA bacterial and ITS Fungal
sequencing data.

The method of microbial diversity analysis is detailed in
Supplementary Method File.

Statistical analysis

The One-Way ANOVA and t-test were performed
using SPSS Statistics (V.24.0.0.0) (SPSS Inc., Chicago,
United States). The bar graph was performed using
GraphPad Prism (v6.0) (GraphPad Software, Inc., CA,
United States). And the Principal Co-ordinates Analysis,
PCA, Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States, Receiver Operating

Characteristic (ROC) curve, OPLS-DA, and Correlation
heat map analysis were performed using R software
(Version 3.4.4).

Results

Baseline characteristics of healthy
control, systemic lupus erythematosus,
and rheumatoid arthritis participants

The baseline characteristics of the three groups are
presented in Table 1. The RA group included 244 patients
(age, 57.8 ± 12.7 years; 72.5% women), with average
DAS28(3) 5.5 ± 1.5. The HC group included 338 cases (age,
49.3 ± 7.7 years; 18.6% women). The disease control SLE group
included 50 cases (age, 46.2 ± 9.4 years; 98.0% women). There
are significant differences in the other clinical indicators of
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TABLE 1 The characteristics of the patients with RA or SLE and healthy controls.

Parameters HC(n = 338) RA(n = 244) SLE(n = 50) P

Age (y) 49.3 ± 7.7 57.8 ± 12.7 46.2 ± 9.4 <0.0001

Sex, F, No. (%) 63 (18.6) 177 (72.5) 49 (98) <0.0001

RF (U/ML) – 300.9 ± 312.3 26.0 ± 91.0 <0.0001

DAS28(3) – 5.5 ± 1.5 – –

CRP (mg/L) – 43.2 ± 40.0 4.8 ± 5.8 <0.0001

ESR (mm/h) – 68.7 ± 30.2 25.5 ± 17.1 <0.0001

TJC28 – 9.9 ± 8.8 – –

SJC28 – 8.0 ± 8.0 – –

WBC (109/L) 5.3 ± 1.3 7.2 ± 2.9 5.8 ± 2.6 <0.0001

NEUT (109/L) 3.2 ± 1.0 5.2 ± 2.6 2.7 ± 2.0 <0.0001

LY (109/L) 1.6 ± 0.4 1.3 ± 0.6 31.0 ± 32.9 <0.0001

The p-value < 0.05 means a significant difference between groups. RA, Rheumatoid arthritis; HC, healthy control; RF, rheumatoid factor; DAS28, Disease Activity Score 28; CRP, C-reactive
protein; ESR, Erythrocyte Sedimentation Rate; TJC28, Tender 28-joint count; SJC28, Swollen 28-joint count; WBC, white blood cell; NEUT, Neutrophil; LY, lymphocyte.

the three groups, such as white blood cells, neutrophils, and
lymphocytes (all p < 0.0001).

Plasma metabolomics profiles of
healthy control, systemic lupus
erythematosus, and rheumatoid
arthritis participants

Based on an untargeted metabolomics analysis by
UNPLC/Q-TOF-MS, we detected 486 peaks in positive
and negative ion modes. After excluding 62 metabolites by the
natural isotopic peaks, the rest 424 metabolites were finally
included for analysis. The PCA results of metabolites indicated
that HC group could be distinguished markedly from RA and
SLE groups, whereas SLE and RA groups showed less obvious
separation (Supplementary Figures 1A,B). Results of the
permutation test were shown in Supplementary Figures 1C,D.
A total of 63 differential metabolites were identified between RA
and HC groups, 21 of which increased and 42 of which decrease
in the RA group compared with the HC group (Supplementary
Figures 1E,F).

After KEGG pathway analysis, there were three metabolic
pathways that most significantly changed between RA
and HC groups, arginine and proline metabolism, glycine,
serine and threonine metabolism, and glycerophospholipid
metabolism (Figure 2A). Among them, a total of 10 differential
metabolites were discovered, including L-arginine, creatine,
D-proline, ornithine, choline, betaine, L-threonine, 1-stearoyl-
2-hydroxy-sn-glycero-3-phosphocholine [LysoPC(18:0)],
phosphorylcholine, and glycerophosphocholine (Figure 2B
and Supplementary Table 1). The L-arginine and
phosphorylcholine were increased in the RA group (all
p < 0.01). The correlation heatmap indicated that the patient’s
disease activity [DAS28(3)] was negatively correlated with

glycerophosphocholine, and inflammation indicators (IL-6,
CRP) were negatively correlated with D-proline, L-arginine,
L-threonine, LysoPC (18:0), and glycerophosphocholine
(Figure 2C). The result of the ROC analysis indicated that
the predictive model showed a high discriminatory power to
predict the RA status and the area under the curve (AUC) was
0.992 based on a combination of the 10 differential metabolites
(Figure 2D).

Compared with the disease control, the RA and SLE
groups were distinguished significantly in the OPLS-DA analysis
(Figures 3A,B). A total of 84 differential metabolites were
identified by the differentiated analysis (Figure 3C). Compared
with the SLE group, the difference analysis result displayed
23 metabolites increased in RA patients, such as deoxycholic
acid, d-galacturonic acid, and L-aspartate. The other 61
metabolites were lower in the RA group, including L-glutamine,
L-threonine, and L-alanine. However, all the fold changes
of differential metabolites were 0.9–1.2, and no significant
metabolic pathway was enriched in the KEGG pathway analysis
based on all differential metabolites between RA and SLE groups
(Figure 3D).

Gut microbiota changes of rheumatoid
arthritis participants

Fecal samples were obtained from 464 human participants,
including 195 RA cases and another 269 HC volunteers.
Bacterial 16S rRNA and fungal ITS amplification provided a
series of ASVs to analyze the difference between the two groups.

16S rRNA bacterial community analysis
The clear boundary described the significant difference

between RA and HC groups and proved that the number of
sequencing samples was sufficient. On the species level, a total
of 596 bacterial species were identified between the two groups,
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FIGURE 2

The biomarkers and pathway in RA based on plasma metabolomics. (A) The three significant pathways are based on 10 differential metabolites
between RA and HCs (Pathway impact < 0.2, −log10(p) value > 1.5 and greater metabolic abundance). (B) The metabolite content differences
between RA and HC. *P < 0.05, **P < 0.01, ***P ≤ 0.001. (C) The correlation heatmap between metabolites and clinical information. (D) The
ROC curve of the combination of 10 differential metabolites for classifying RA patients from HC. RA, rheumatoid arthritis; HC, healthy control;
DAS28, disease activity score-28; TJC28, tender joint count 28; SJC28, joint swelling count 28; ESR, erythrocyte sedimentation rate; CRP,
C-reactive protein; RF, rheumatoid factor; WBC, white blood cell count; LY, lymphocyte count; NEUT, neutrophil count; MONO, monocyte
count; HB, hemoglobin; PLT, platelet count, ROC, receiver operating characteristic.

including 219 unique bacterial species in the RA group and 147
unique bacterial species in HC (Supplementary Figure 2A). The
beta of principal coordinates analysis (PCoA) suggested that
there were significant differences in the horizontal community
distribution of bacterial species between the two groups
(Supplementary Figure 2B). By Wilcoxon rank-sum test, 169
differential bacterial species were identified, and the top 10
bacterial communities based on mean proportions were shown
in Supplementary Figure 2C (p < 0.05). However, most names
of differential specie names could not be identified.

On the genus level, there were 293 common bacterial
genera between the two groups, 68 unique genera in the RA
group and 41 unique genera in the HC group (Figure 4A).
The PCoA analysis displayed that there were differences in
the distribution of bacterial communities between the two

groups (Figure 4B). The dominant bacteria genus in RA group
includes Blautia (11.0%), Faecalibacterium (7.1%), Escherichia-
Shigella (9.6%), Bifidobacterium (6.1%), Subdoligranulum
(5.4%); the dominant bacteria genera in the HC group were
Blautia (10.8%), Faecalibacterium (10.4%), Bifidobacterium
(6.9%), Bacteroides (6.7%), and Megamonas (7.4%) (Figure 4C).
A total of 117 differential bacteria genera were identified
between groups by Wilcoxon rank-sum test, and the top
10 bacterial communities base on mean proportions were
shown in Figure 4D (p < 0.05). Furthermore, the results
of linear discriminant analysis effect size (LEfSe) identified
that six key differential bacteria genera were screened again
between groups (LDA score > 4.0 and p < 0.05), including
Eubacterium_hallii_group, Escherichia-Shigella, Megamonas,
Bacteroides, Faecalibacterium, and Streptococcus (Figure 4E).
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FIGURE 3

The orthogonal partial least-squares discriminant analysis (OPLS-DA) and KEGG pathway analysis in RA patients compared to SLE patients. (A,B)
The OPLS-DA plots between RA and SLE, cation, and anion, respectively. (C) The volcano plot of RA vs. SLE. (D) The KEGG pathway analysis
results based on the significant metabolites between RA and SLE. RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.

Among them, Eubacterium_hallii_group, Escherichia-Shigella,
and Streptococcus increased in RA patients. Hence, the six
most important differential bacterial genera were selected for
predictive model analysis, and the AUC was 0.80 of the ROC
curves (Figure 4F).

Fungal internally transcribed spacer analysis
On the fungal species level, there were 686 common fungal

species between the two groups, 980 unique fungal species in
the RA group, and 311 unique fungal species in HC group
(Supplementary Figure 3A). The PCoA analysis on the species
level showed that there were significant differences in the
horizontal community distribution between the two groups

(Supplementary Figure 3B). Using Wilcoxon rank-sum test, a
total of 160 differential fungal species were identified; the top 15
fungus communities based on mean proportions are shown in
Supplementary Figure 3C (p < 0.05).

On the fungal genus level, the PCoA plot of beta diversity
analysis showed that there were significant differences in the
distribution of fungal communities between the two groups
(Figure 5A). There were 411 common fungal genera between
the two groups, 401 of which were specific fungal genera in
the RA group, and 117 specific fungal genera in the HC group
(Figure 5B). A total of 531 differential fungal genera were
identified between RA and HC groups. Community bar diagram
analysis showed that there were also significant differences in
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FIGURE 4

The differential bacterial flora and predicted enzymes based on 16s rRNA (genus level) between RA and HC groups. (A) The Venn plot between
RA and HC groups. (B) The PCoA analysis between RA and HC. (C) The Bar graph of bacterial flora composition in RA and HC. (D) The top 10
significant bacteria between RA and HC. (E) The LDA bar of bacterial flora in RA and HC. (F) The ROC curve of the combination of six differential
bacteria for classifying RA patients from HC. RA, rheumatoid arthritis; HC, healthy control; ROC, receiver operating characteristic.

the fungal composition, relative abundance, and proportion
between the two groups. The dominant fungal genera in the RA
group were Candida (41.0%), Aspergillus (9.3%), Debaryomyces
(3.7%), and Penicillium (3.4%); and the dominant fungus
genera in the HC group were Candida (16.3%), Aspergillus
(11.4%), Penicillium (5.9%), and Cryptococcus_f_Tremellaceae

(4.4%) (Figure 5C). Using Wilcoxon rank-sum test, the
top 10 fungal communities based on mean proportions are
shown in Figure 5D. Specifically, Cryptococcus, Apiotrichum,
Cladosporium, Rhodotorula, and Monascus were significantly
more abundant in the HC group; and Candida, Debaryomyces,
Wallemia, Kazachstania, and Xeromycesis were significantly
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more enriched in the RA group (p < 0.05). The LEfSe
analysis result discovered that there were seven important
different fungal genera between groups (LDA score > 4.0)
including Cryptococcus, Penicillium, Aspergillus, Cladosporium,
Monascus, Candida, and Debaryomyces (Figure 5E). Specifically,
the Candida and Debaryomyces both increased in RA patients.
The result of the ROC analysis suggested that the AUC of the
prediction model was 0.812 based on a combination of the above
seven differential fungal genera (Figure 5F).

Functional predictive analysis

We predicted changes in modules and pathways using
PICRUSt2 and calculated the mean proportion of important
enzymes in modules and pathways between the RA and
HC groups using the STAMP software. PICRUSt2 analysis
of the bacteria suggested that these changes in the relative
ASV abundance might be associated with the regulation of
pathways involving superpathway of L-serine and glycine
biosynthesis I, arginine, ornithine, and proline interconversion
(Supplementary Figure 4). The most important enzymes
associated with the above pathways were predicted, namely
choline dehydrogenase, D-amino-acid oxidase, glycine
amidinotransferase, betaine-aldehyde dehydrogenase, ornithine
aminotransferase, and lysophospholipase (Figure 6A). The
functional predictive analysis of fungus also displayed that
host metabolic pathways were regulated by fungi including
superpathway of L-threonine biosynthesis, urea cycle, L-proline
biosynthesis II (from arginine), superpathway of L-serine
and glycine biosynthesis I (Supplementary Figure 5),
and predictive enzymes including choline dehydrogenase,
lysophospholipase, ornithine aminotransferase, choline-
phosphate cytidylyltransferase, arginase, phospholipase
A (2), and glycine amidinotransferase (Figure 6B). The
metabolic network diagram revealed that the three KEGG
pathways were enriched based on the 10 key differential
metabolites between RA and HC groups (Figure 6C).
The three metabolic pathways were interconnected by
creatine and choline. Finally, the correlations between
metabolites, bacteria, and fungi were analyzed. The results
showed that changes in amino acid metabolism were
associated with changes in gut microbes in RA patients.
D-Proline concentration in plasma was significantly
positively correlated with the abundance of Agathobacter,
Roseburia, and Cladosporium, and negatively correlated
with Candida. Among bacteria, we found that Escherichia-
Shigella abundance was positively correlated with plasma
Creatine concentration, while Bacteroides genus was negatively
correlated with plasma Creatine concentration. The plasma
L-Arginine concentration is increased in RA patients and is
positively correlated with Rhodotorula of fungi in the stool
(Figure 6D).

Discussion

As RA is a chronic autoimmune disease, its etiology has
not been fully understood yet. Genetic and environmental
factors are important risk factors for disease incidence and
development. In this study, we mainly focused on the metabolic
disorder during RA disease progression using multi-omics
approaches. We sought to apply plasma metabolomics profiling
and gut microbial community profile to identify potential
biomarkers for predicting RA-patient. The metabolomics
analysis highlighted three main metabolic pathways: the
glycine, serine, and threonine metabolism, glycerophospholipid
metabolism, and arginine and proline metabolism. The AUC of
the multivariate prediction models based on a combination of
the 10 differential metabolites was 0.992. Additionally, the 16S
rRNA sequencing results showed that the intestinal bacterial
diversity and bacterial structure changed significantly in RA
patients compared with the HC group. The AUC of the ROC
curve was 0.80 to predict the RA, based on six core differential
bacterial genera (LDA > 4). Further, the fungal diversity in
RA patient group increased significantly more than in HC,
and the AUC of the prediction model was 0.812 based on a
combination of seven core differential fungal genera. Functional
predictive analysis suggested that the superpathway of L-serine
and glycine biosynthesis I, and arginine, ornithine, and proline
interconversion might be regulated by bacterial and fungus.
These results revealed that arginine and proline metabolism
and glycine, serine, and threonine metabolism could play an
important role in the disease incidence and development of RA.

The plasma metabolic changes, caused by the chronic
inflammation, usually served as biomarkers for diagnosis
(Chimenti et al., 2015). Our study showed that plasma levels
of many kinds of amino acids (AAs) were reduced in RA
patients, including L-tryptophan, L-alanine, L-threonine, and
L-leucine, compared to healthy controls. These findings were
similar to another study (Wang et al., 2018), which suggested
that tryptophan (Trp) and glycine were decreased in patients
with RA. These metabolites have been associated with immune
system activation. For instance, serum alanine level was
associated with synovial B-lymphocyte stimulator expression,
while the serum levels of threonine and leucine were associated
with synovial expression of IL-1β and IL-8 (Narasimhan et al.,
2018). Trp, as one of the rarest essential AAs, might degrade
to affect immunity through kynurenines and regulate T cells
(Murray, 2016).

A large body of evidence indicated that arginine metabolism
played an important role in the occurrence and development
of RA disease (Radhakutty et al., 2017; Brunner et al., 2020).
In our study, the plasma level of arginine was higher in
RA patients than in HC by non-target metabolomics, which
was also validated in target metabolomics analysis. This
result is consistent with the previous study that displayed
patients with RA had higher plasma concentrations of
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FIGURE 5

The differential fungal flora and predicted enzymes based on ITS (on genus level) between RA and HC. (A) The Venn plot between RA and HC
groups. (B) The PCoA analysis between RA and HC groups. (C) The Bar graph of fungal flora composition in RA and HC groups. (D) The top 10
significant fungal between RA and HC groups. (E) The LDA bar of fungal flora in RA and HC groups. (F) The ROC curve of the combination of
seven differential fungal for classifying RA patients from HC. RA, rheumatoid arthritis; HC, healthy control; ROC, receiver operating
characteristic.

arginine (Radhakutty et al., 2017; Brunner et al., 2020).
Brunner and his colleagues reported RANKL that cellular
programming required extracellular arginine (Brunner et al.,
2020). This evidence indicated that it could improve outcomes
in murine arthritis models by systemic arginine restriction,
and preosteoclast metabolic quiescence would be induced by
arginine removal. It may be a possibility for the effective
intervention of RA by arginine restriction. These studies
suggested that the core AAs exhibited potential application

value in the diagnosis, disease progression, and therapy of
RA.

Choline, as a bridge of glycerophospholipid metabolism and
glycine, serine, and threonine metabolism, was decreased in
the blood of the RA group in our study. This is consistent
with Rekha Narasimhan et al.’s study (Narasimhan et al.,
2018). Choline C-11 PET scanning was transferred to joints in
inflammatory arthritis (Roivainen et al., 2003) and increased in
fibrocyte-like synoviocytes (Beckmann et al., 2015). Evidence
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FIGURE 6

The function predictive and omics association analysis. (A) The enzymes prediction of bacterial metabolome between RA and HC. (B) The
enzymes prediction of fugal metabolome between RA and HC. (C) The metabolic network diagram of the three enrichment pathways based on
10 differential metabolites. (D) The network mapping diagram of the differential metabolites, bacterial, and fungus. RA, rheumatoid arthritis; HC,
healthy control.

of a previous research revealed that Choline was presented
in synovial fibroblasts and associated with TNF-α production
and migration (Guma et al., 2015). In our study, choline,
L-threonine, and D-proline levels were inversely correlated with
the RA disease activity defined by DAS28(3). This indicated that
these plasma metabolites may be strongly linked to RA disease
progression and serve as potential predictive markers.

RA and SLE are both typical chronic inflammatory
autoimmune diseases, and with complicated pathogenesis. It
is difficult to identify and clarify accurate etiology for them.
Many previous studies have reported that abnormal metabolic
activities are critical in SLE pathogenesis. For example, glycolysis
and mitochondrial oxidative metabolism both were raised in
SLE patients and the SLE mouse model (Yin et al., 2015).
Another paper revealed that citrate and pyruvate were decreased
in both SLE and RA patients compared with healthy controls,
and the serum level of formate was markedly decreased in SLE
patients (Ouyang et al., 2011). In our study, we compared the RA
and SLE and found that the RA metabolic profile was different
from the SLE group. However, there was no significant change in
metabolic pathways between RA and SLE groups. Additionally,

the fold change value of all differential metabolites was small
(0.9-1.2), which may support a hypothesis that the changes in
the plasma metabolic are similar for RA and SLE patients.

In recent years, numerous studies proved that there were
alterations in intestinal microbiota composition, especially in
autoimmune diseases (Wu and Wu, 2012; Luckey et al., 2013;
Taneja, 2014), including RA. Previous studies showed that
gut microbiome dysbiosis could induce the production of
proinflammatory cytokines, interleukin-17, and increased levels
of Th17 cells (Luckey et al., 2013). The role of gut microbiota in
the pathogenesis of arthritis was demonstrated in experimental
murine models (Chen et al., 2016; Liu et al., 2016; Wang et al.,
2020a). For instance, L. bifidus could induce joint swelling in
germ-free mice (Abdollahi-Roodsaz et al., 2008). In our study,
we identified 68 genera unique in the RA group and 41 unique
genera in the HC group, and 117 differential bacterial genera
were further identified. On the genus level, the Lactobacillus,
Eubacterium_hallii, Escherichia-Shigella, and Streptococcus were
more abundant in RA patients. Our results were similar to a
previous study that reported that some Lactobacillus species
might cause arthritis (Simelyte et al., 2003). Eubacterium_hallii,
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as one of the major butyrate producers (Louis et al., 2010), may
play anti-rheumatic and anti-inflammatory effects by butyrate,
which was proved that it inhibited arthritis and suppressed
the expression of inflammatory cytokines in the CIA mice
model (Hui et al., 2019). However, the change tendency of
Eubacterium_hallii in our study was increased in patients with
RA. Moreover, the abundance of Bacteroides was higher in
healthy controls. This was consistent with a recent previous
study that reported the decrement of a redox reaction-related
gene of the genus Bacteroides in RA (Kishikawa et al., 2020).

Notably, in this study, we systematically analyzed the
profile of fecal fungal biodiversity and community structure
between RA and HCs. At the genus level, there were 401
specific fungal genera in the RA group, which were significantly
more than the HC group. The LDA effect size analysis
indicated that the seven discovered different fungal genera
as a combination of biomarkers to diagnose RA included
Cryptococcus, Penicillium, Aspergillus, Cladosporium, Monascus,
Candida, and Debaryomyces. Especially, the Candida and
Debaryomyces were more enriched in RA patients, which could
be a potential biomarker for the prediction of early RA.
Bishu et al. (2014). reported that there was clearly a trend
toward increased susceptibility to C. albicans colonization in
RA, and the risk of mucosal candidiasis in RA patients may
increase by using biologic drugs selectively targeting the IL-
23/IL-17 axis. Furthermore, Jain et al. (2021) discovered that
yeast Debaryomyces hansenii were more likely to localize and
be abundant within incompletely healed intestinal wounds of
mice and inflamed tissue results from Crohn’s disease patients.
Another study also confirmed that Debaryomyces hansenii could
control the proliferation of opportunistic bacteria in the mucosa
of intestinal microbiota disorder mice (Zeng et al., 2019).
Although our results analyzed the fungal profile and changing
trend in RA patients, the relationship of fungi with RA disease
and the biological functions of fungi are still unclear and needs
further exploration.

A recent study has reported that aberrant gut microbiota
alters the host metabolome and impacts renal failure in
humans, and gut microbiota is an important determinant
of the host fecal and serum metabolic landscape (Wang
et al., 2020b). A previous study has suggested that the
serum metabolome can be impacted by dysbiosis of the
human gut microbiota, and Prevotella copri and Bacteroides
vulgatus are identified as the main species driving the
association between biosynthesis of branched-chain AAs
and insulin resistance (Pedersen et al., 2016). In our study,
we analyzed the fecal bacterial community and fungal
community structure and species diversity of RA patients
and healthy controls and performed a functional predictive
analysis of the identified differential communities. The
results showed that plasma amino acid metabolism was
associated with changes in gut microbes in RA patients.
Especially, the arginine and proline metabolism pathways

were significantly affected by microbiota changes. The
expression of the metabolite L-Arginine was increased in RA
patients and positively correlated with Rhodotorula in fungi.
D-Proline levels were significantly positively correlated with
abundances of Agathobacter, Roseburia, and Cladosporium,
and negatively correlated with Candida. Escherichia-Shigella
abundance was positively correlated with plasma Creatine
levels, while Bacteroides genus was negatively correlated
with Creatine. Our results are consistent with those of a
previous study that found that Megamonas was decreased
in RA patients, which participates in the metabolism of
carbohydrate fermentation into SCFAs (Feng et al., 2019).
The functional predictive analysis results suggested that
differential genera affect the host metabolic pathway of
L-threonine biosynthesis, L-serine and glycine biosynthesis
I, and “arginine, ornithine, and proline interconversion”
through a variety of enzymes, such as choline dehydrogenase,
D-amino-acid oxidase, glycine amidinotransferase, ornithine
aminotransferase, lysophospholipase, choline-phosphate
cytidylyltransferase, arginase, and phospholipase A (2), which
from the functional prediction is based on a differential
microbial genus. Interestingly, the functional prediction results
showed a higher abundance of choline dehydrogenase, glycine
amidinotransferase, phospholipase A (2), lower abundance of
ornithine aminotransferase, and lysophospholipase, in bacteria
of the RA group compared with HC group, however, the
abundance of these enzymes was the exact opposite in fungi of
RA patients.

There were several limitations. First, the critical role of
metabolites biomarkers and microbial biomarkers need to
be validated further. Second, though the glycine, serine, and
threonine metabolism could help us draw a positive conclusion
that they could be considered as a bridge between plasma
and microbial metabolomes, the pathological mechanism from
genotype to phenotype is not clear. Third, the untargeted
metabolomics and microbiome were not using the same batch
of personnel in the healthy control group, and a cautious
interpretation of our result was needed when applying our
model to other populations.

Conclusion

In conclusion, we provided a list of metabolites, bacteria,
and fungus, whose abundance changed in RA as potential
biomarkers and built plasma metabolic/microbe-markers-based
models for potentially clinical diagnosis of RA. The function
prediction analysis of plasma metabolomics, intestinal bacteria,
and intestinal fungi displayed that RA disease was related
to changes in arginine and proline metabolism and glycine,
serine, and threonine metabolism. Gut microbiome analysis
combined with plasma metabolomics can shed new light on the
pathogenesis of RA.
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