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MicroRNA-146a-5p Limits
Elevated TGF-$ Signal
during Cell Senescence

MicroRNAs (miRNAs) are small non-cod-
ing RNAs implicated in post-transcriptional
suppression of target genes in a sequence-
specific manner and are thereby able to
modulate cellular processes. miR-146a seems
to play multiple roles in terms of regulating
different phenotypes by targeting a wide
range of different genes in various cellular
Notably, miR-146a-5p targets
Smad4' and tumor necrosis factor recep-
tor-associated factor 6 (TRAF6),”> which
both serve as important mediators in
the transforming growth factor- (TGF-p)
pathway. TGF-B is a potent anti-tumor cyto-
kine because of its function as a strong inhib-
itor of the growth of epithelial cells and its
regulation of a wide array of cellular pro-
cesses, such as cell growth, differentiation,
and apoptosis;” therefore, its misregulation
can result in tumor development. How-
ever, the role of miR-146a-5p in regulation
of stress-induced senescence of normal
human keratinocytes has not been fully
addressed yet.

contexts.

Serial subculture of primary normal hu-
man oral keratinocytes (NHOKSs) induces
stress-induced senescence and provides an
excellent in vitro model for stress-induced
senescence.” To determine whether stress-
induced senescence results from continued
serial subculture of primary NHOKs, the
protein level of pl6™<** and senes-
cence-associated B-galactosidase (SA-B-gal)
activity, biomarkers of senescence, were
determined during serial subculture of
primary NHOKs. The level of cellular
p16™¥* gradually increased in the serially
subcultured keratinocytes with increasing
population doubling (PD) levels (Figure 1A).
Moreover, although senescent cells were de-
tected in exponentially proliferating NHOKSs
at PD 13.6, the percentage of SA-B-gal
positive cells was very low; in contrast,
the majority of cells at PD 16.9 displayed
characteristics of stress-induced
cence, showing SA-B-gal-positive staining
and growth arrest (Figure 1B). These indi-
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cate that the serial subculture of primary
NHOKSs to the post-mitotic stage of prolifer-
ation induces stress-induced senescence.

In preliminary screening with a miRNA
microarray, we found that miR-146a-5p
expression was increased in NHOKs at
later passages compared with those at
earlier passages (data not shown). To
clarify the expression pattern of miR-
146a-5p in stress-induced senescence, we
first examined the levels of miR-146a-5p
expression by a TagMan miRNA assay dur-
ing stress-induced senescence of primary
NHOKs. The expression level of miR-
146a-5p was gradually enhanced with
increasing PD levels (Figure 1C). Further-
more, the protein level of the p65 subunit
of nuclear factor kappa B (NF-kB), which
transactivates miR—146a—5p,6 was also
steadily enhanced and reached a plateau
just before cell cycle arrest (Figure 1A).
Because TGF-B1 treatment of exponentially
proliferating NHOKSs significantly inhibited
cell proliferation (Figure 1D) and concom-
itantly promoted apoptosis (Figure 1E),
we next determined whether TGF-B1 was
involved in stress-induced senescence of
primary NHOKSs. The level of TGF-fB1 pro-
tein gradually increased with increasing
PD levels and peaked in senescent cells
during stress-induced senescence of pri-
mary NHOKs (Figure 1F); its expression
pattern seemed to be identical to that of
miR-146a-5p (Figure 1C). Therefore, we
assessed whether TGF-Bl1 can regulate
the expression of NF-kB and miR-146a-
5p in normal human keratinocytes. TGF-
Bl induced the expression of NF-«kB
(Figure 1G) and also promoted transloca-
tion of NF-kB into the nucleus within
1 hr of TGF-B1 treatment in a small
portion of exponentially proliferating
NHOKs (Figure 1H). Moreover, TGF-B1
treatment significantly enhanced miR-
146a-5p expression (Figure 1I). Although
TGE-B1 induced NF-kB expression in our
experiment, it is uncertain whether the up-
regulation of NF-kB during stress-induced
senescence of NHOKSs is due to TGF-B1
because of a slight difference in chronolog-
ical expression patterns. However, consid-
ering the similar chronological expres-
sion patterns of TGF-B1 and miR-146a-5p

and the nuclear translocation of NF-«B
induced by TGF-B1, TGF-B1 seems to be
the rate-limiting factor of miR-146a-5p
upregulation during stress-induced senes-
cence of primary NHOKSs. Taken together,
our data indicate that miR-146a-5p expres-
sion is associated with stress-induced
senescence of primary NHOKs that is,
in part, linked to the elevated levels of
TGE-BL.

Next, to test the role of miR-146a-5p in
keratinocyte senescence, exponentially prolif-
erating NHOKSs were transfected with miR-
146a-5p mimic or negative control. Exoge-
nous miR-146a-5p expression, which was
verified by a TagMan miRNA assay (data
not shown), led to significantly increased
cell proliferation (Figure 1J) and inhibited
apoptosis of NHOKSs (Figure 1K). Further-
more, the protein level of pl6™<** was
decreased in miR-146a-5p mimic-transfected
cells (Figure 1L); however, there is no signifi-
cant difference in SA-fB-gal activities between
negative control- and miR-146a-5p mimic-
transfected NHOKSs (Figure 1M). These data
suggest that the introduction of exogenous
miR-146a-5p may play a role in inhibiting
keratinocyte senescence in exponentially
proliferating NHOKSs, which expressed small
amounts of TGF-B1 compared to senescent
cells.

To determine whether canonical Smad
signaling is involved in keratinocyte senes-
cence, we investigated the expression of
Smad proteins in both
proliferating NHOKSs and senescent cells.
The expression levels of Smad signaling
that represent the
Smad signaling, including phospho-Smad2-
Ser465/467, Smad2/3, and Smad4 proteins,
were decreased in the senescent NHOKs

exponentially

cascades canonical

compared to those of exponentially prolif-
erating NHOKSs (Figure 1N). This observa-
tion suggests that the canonical Smad
signaling may be turned off in senescent
keratinocytes.

miR-146a-5p has been implicated in the
modulation of TGF- signaling by target-
ing Smad4 and TRAFG;"” therefore, we
next examined whether miR-146a-5p
could abrogate TGF-f3 signaling in NHOKGs.
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Figure 1. miR-146a-5p Is a Self-Limiting Factor of TGF-p Signaling that Is Upregulated during Stress-
Induced Senescence of Primary NHOKs

(A) Immunoblot analyses of p16™<** and NF-kB during serial subculture of primary NHOKs. Primary NHOKs were
serially subcultured once they were 70% confluent until they reached the post-mitotic stage of proliferation
(PD16.9), at which time the culture was maintained for 12 days without further passaging (PD16.9%). (B) Phase-
contrast micrographs of SA-B-gal staining of the exponentially growing NHOKs (PD 13.6) and senescent NHOKs
(PD 16.9%). Scale bars, 100 um. (C) The miR-146a-5p expression profile during serial subculture of primary
NHOKSs. The assay conditions were the same as in (A). (D) and (E) show the effects of TGF-B1 on proliferation (D)
and apoptosis (E) of NHOKSs. Exponentially proliferating NHOKs were treated with vehicle or 20 ng/mL TGF-B1 for
2 days. Scale bars, 100 um (D) and 50 um (E). *p < 0.01. (F) Immunoblot analysis of TGF-B1 during serial
subculture of primary NHOKSs. The assay conditions were the same as in (A). (G) Immunoblot analysis of NF-kB in
NHOKs treated with TGF-B1. The assay conditions were the same as in (D) and (E). (H) Translocation of NF-«kB into
the nucleus in NHOKSs in response to TGF-B1. Exponentially proliferating NHOKs were treated with vehicle or
20 ng/mL TGF-B1 for 1 hr, and translocation of NF-kB from the cytoplasm into the nucleus was characterized by
confocal microscopy. Scale bars, 20 um. (I) Effect of TGF-B1 on miR-146a-5p expression. The assay conditions
were the same as in (D) and (E). *p < 0.01. (J) and (K) show the effects of exogenous miR-146a-5p expression on
the proliferation and apoptosis of primary NHOKSs. Exponentially proliferating NHOKs were transfected with miR-
146a-5p mimic (20 nM) or negative control (20 nM) for 2 days. Cell proliferation (J) and apoptotic cells (K) were
determined in miR-146a-5p mimic-transfected cells by cell viability assay and TUNEL assay, respectively.
(L) Immunoblot analyses of Smad proteins and p16™<*A in miR-146a-5p mimic-transfected NHOKs. The assay
conditions were the same as in (J) and (K). (M) shows phase-contrast micrographs and incidence of senescent
cells detected by SA-B-gal staining in the miR-146a-5p mimic-transfected NHOKSs. The assay conditions were the
same as in (J) and (K). Scale bars, 100 um. (N) shows immunoblot analyses of p16™<** and Smad proteins in both
exponentially proliferating NHOKSs (PD13.6) and senescent cells (PD16.9%). (O) and (P) show the effects of TGF-B1
on cell proliferation (O) and protein levels of miR-146a-5p target genes, Smad proteins, p15™<*B, and p16™<** (P)
in miR-146a-5p mimic-transfected NHOKSs. Exponentially proliferating NHOKSs transfected with a miR-146a-5p
mimic (20 nM) or the negative control (20 nM) for 2 days were further treated with 20 ng/mL TGF-B1 for 2 days.
P <0.01. (Q—(S) show the effects of TGF-B1 on cell proliferation (Q), apoptosis (R), and the protein level of p53 (S)
in TRAF6-specific siRNA-transfected NHOKs. Exponentially proliferating NHOKSs transfected with TRAF6-specific
SiRNA (40 nM) or control siRNA (40 nM) for 2 days were further treated with 20 ng/mL TGF-B1 for 2 days. Scale
bars, 50 um. **p < 0.01.
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Pretreatment with a miR-146a-5p mimic
partly reversed the anti-proliferative effect
of TGF-B1 in exponentially proliferating
NHOKs (Figure 10). In addition, the expres-
sion of TRAF6, which is implicated in non-
canonical signaling of TGF-p, was notably
reduced after the introduction of exogenous
miR-146a-5p (Figure 1P). However, the
expression levels of phospho-Smad2-
Ser465/467,  phospho-Smad3-Ser423/425,
Smad2/3, and Smad4 proteins were not
affected (Figures 1L and 1P), suggesting
that the canonical Smad signaling is not
affected by the miRNA. A considerable
body of evidence indicates that Smad4 is a
valid target gene of miR-146a-5p;"” how-
ever, exogenous miR-146a-5p expression
did not affect the expression levels of
Smad4 in NHOKs. TGF-B1 induced the
expression of p15™**P, which is known
to be induced by TGF-B/Smad signaling
pathway,” and its expression was also re-
tained despite miR-146a-5p pretreatment
(Figure 1P), further supporting that the ca-
nonical Smad signaling is not affected by
the miRNA. As expected, TGF-B1 induced
the expression of p16INK4a; however, intro-
duction of exogenous miR-146a-5p inhibited
p16™X* expression, and its expression was
retained despite TGF-PB1 treatment (Fig-
ure 1P). To further test whether TRAF6 sup-
pression is implicated in the abrogation of
TGE-P signaling by miR-146a-5p, exponen-
tially proliferating NHOKSs were transfected
with TRAF6-specific or negative control
small interfering RNA (siRNA) and subse-
quently treated with TGF-B1. TRAF6 knock-
down (Figure 1Q, upper panel) notably
reversed the cellular responses to TGF-B1
treatment in these cells (Figures 1Q, lower
panel, and 1R) and also markedly reduced
the expression level of p53 protein (Fig-
ure 1S). Taken together, our data indicate
that miR-146a-5p can function as a self-
limiting factor of the TGF-Bl-induced
reduction of proliferation and apoptosis by
directly targeting TRAF6.

Nevertheless, the importance of miR-
146a-5p upregulation during stress-induced
senescence was an enigma. A plausible
that miR-146a-5p may
serve to restrain excessive TGF-p signaling
in order to maintain tissue homeostasis

explanation is
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Figure 1. (continued).

during stress-induced senescence in pri-
mary NHOKs. Consistent with this, miR-
146a-5p from oncogenic
Ras-induced senescence.’ In addition, miR-

rescues cells
146a regulates toll-like receptor 2-induced
inflammatory responses in keratinocytes in
a negative feedback manner by targeting
interleukin-1 receptor-associated kinase 1
and TRAF6."

Not surprisingly, miR-146a-5p is impli-
cated in multiple epithelial lesions. miR-
146a-5p is highly expressed in both
progressive premalignant leukoplakia and
oral squamous cell carcinoma compared
with normal mucosa and non-progressive
leukoplakia.'" Theoretically, once cells
achieve against
miR-146a-5p can further drive transforma-
tion of keratinocytes by conferring resis-
tance against cell static signals, such as
TGF-B. Epithelial lesions characterized
by dysregulation of immune cells, such
as oral lichen planus, are also linked
with dysregulation of miR-146a-5p."* Alto-
gether, thorough comprehension of the

resistance senescence,

miRNA may result in a valuable armament
in clinical applications against such dis-
eases in the future. In summary, our
findings demonstrate that miR-146a-5p is
overexpressed as a consequence of stress-
induced senescence of primary NHOKs
and mediates a negative regulatory cir-
cuit within TGF-B signaling by targeting
TRAF6.
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