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Abstract

Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to
be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however,
contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy
numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which
contains 28 closely related copies of a group II intron, constituting ,1.3% of the genome. Here, by using a combination of
bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation
of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site
saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns
that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other
mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions.
Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help
promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA,
with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation
mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of
eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile
thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of
thermostable reverse transcriptases.
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Introduction

Mobile group II introns are bacterial and organellar retro-

transposons that are hypothesized to be ancestors or closely related

to ancestors of spliceosomal introns and retrotransposons in higher

organisms (reviewed in [1,2]). They consist of a catalytically active

intron RNA (‘‘ribozyme’’) and an intron-encoded protein (IEP),

which has reverse transcriptase (RT) activity. Group II intron

RNAs typically show little sequence conservation but have

conserved secondary and tertiary structures that consist of six

interacting double-helical domains (DI–DVI) [3,4]. The folded

RNA catalyzes its own splicing via two sequential transesterifica-

tion reactions that are the same as those for spliceosomal introns in

higher organisms and yield spliced exons and an excised intron

lariat RNA [5]. For mobile group II introns, the IEP assists

splicing by stabilizing the catalytically active RNA structure

(‘‘maturase activity’’) and then remains bound to the excised intron

lariat RNA in a RNP (ribonucleoprotein particle) [6–8]. The latter

promotes intron mobility by a mechanism that involves reverse

splicing of the intron RNA directly into a DNA strand, reverse

transcription of the inserted intron RNA by the IEP, and

integration of the resulting intron cDNA into the genome by host

enzymes [9–13]. This mechanism is used by group II introns both

to retrohome into specific DNA target sites at high frequency and

to retrotranspose into ectopic sites that resemble the retrohoming

site at low frequency, and ancestral mobile group II introns may

have used the same mechanism to invade and proliferate within

the nuclear genomes of early eukaryotes, before evolving into

spliceosomal introns, snRNAs, and non-LTR-retrotransposons

[1,2].

Group II introns are common in eubacteria and in the

mitochondrial (mt) and chloroplast (cp) genomes of fungi and

plants but are rare in archaea, with the few known examples of

archaeal group II introns attributed to horizontal transfer from

eubacteria [14,15]. This phylogenetic distribution is consistent

with a scenario in which mobile group II introns evolved in

eubacteria and were transferred to eukaryotes with bacterial

endosymbionts that gave rise to eukaryotic organelles [16,17].
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Bacteria contain eight lineages of mobile group II introns, which

are distinguished by different IEP types (bacterial A–F, mitochon-

drial-like (ML) and chloroplast-like (CL)) and distinct RNA

structural subgroups (IIA (ML), IIB (CL and bacterial lineages

A, B, and D–F), and IIC (bacterial lineage C)) [18]. Notably, while

all eight group II intron lineages are found in bacteria with

extensive horizontal transfer between different species [14,19],

only the ML and CL lineages are also found in organelles,

consistent with the possibility that they were associated with the

bacterial endosymbionts that evolved into mitochondria and

chloroplasts.

Evolutionary scenarios for the evolution of group II introns into

spliceosomal introns suggest that group II introns harbored by

bacterial endosymbionts invaded the host’s nuclear genome, where

they proliferated and degenerated, with the group II intron RNA

domains evolving into spliceosomal snRNAs that form the core of

a common splicing apparatus for multiple dispersed introns [2,20].

Key aspects of this scenario are supported by experimental

evidence, including structural and functional similarities between

group II intron domains and snRNAs and numerous examples of

group II introns that are fragmented into two or three segments

that functionally reassociate to catalyze trans-splicing [1,2,21,22].

Most bacteria, however, contain no more than one or a few group

II introns [23], suggesting that group II intron mobility is tightly

controlled and/or that mutations that lead to uncontrolled intron

proliferation are lost rapidly by purifying selection. Thus, it is

unclear how group II introns could have proliferated to higher

copy numbers in nuclear genomes.

Although group II intron proliferation is rare in bacteria, it is

evident in smaller organellar genomes, the most striking example

being Euglena cp DNA, which contains ,150 group II introns

[24]. Most of the Euglena introns are highly degenerate, lacking

different domains, with some (referred to as group III introns)

containing only DI-like and DVI-like structures and even lacking

DV, which is catalytically essential. These degenerate introns

presumably rely on protein factors and/or trans-acting RNAs to

promote RNA splicing. Only two of the Euglena cp group II

introns encode RTs, which may act in trans to promote splicing

and mobility of the ORF-less introns [25]. Although the Euglena

group II introns can potentially provide insight into mechanisms

involved in intron proliferation and generation of a common

splicing apparatus, they have been largely intractable to detailed

analysis.

Another instance of group II intron proliferation has been

revealed by genomic sequencing of the thermophilic cyanobacte-

rium Thermosynechococcus elongatus strain BP-1, which contains 28

group II introns comprising ,1.3% of the genome [26]. These T.

elongatus group II introns are closely related to each other and

appear to have proliferated from a single group II intron. Here, we

used bioinformatic analysis and intron mobility assays at different

temperatures to identify four mechanisms that contribute to the

proliferation of the T. elongatus introns. Our results provide insight

into how group II introns proliferate within genomes; show how

higher temperatures, which are thought to have prevailed on

Earth during the emergence of eukaryotes, can contribute to this

process; and identify actively mobile thermophilic group II introns,

which may be useful for structural studies and biotechnological

applications.

Results

Characteristics of T. elongatus Group II Introns
Figure 1 lists the T. elongatus introns classified according to

intron family (F1–F6) by criteria described below, along with

their insertion sites in the T. elongatus genome. All 28 introns are

closely related to each other (85%–100% sequence identity in

pairwise comparisons). Twenty-five of the T. elongatus introns are

intact containing all six conserved RNA domains, but three are

fragments that have undergone large deletions (TeI3g, TeI3m,

and TeI3n; Figure 1). Eight of the intact introns (TeI4a–h)

contain ORFs encoding IEPs (see below), while the remaining 17

introns (TeI3a–t) lack ORFs but are otherwise closely related to

the ORF-containing introns. The closest known relative of the T.

elongatus introns is EcI5, a previously characterized Escherichia coli

CL/IIB1 intron (,50% sequence identity in pairwise compari-

sons [27,28]).

Except for the presence or absence of the intron ORF, the 25

intact T. elongatus introns have very similar predicted RNA

secondary structures, which are characteristic of subclass IIB1

introns and closely resemble that of EcI5 [28]. Figure 2A–C show

a secondary structure model for TeI4h, one of the introns studied

in detail below, and key differences in representatives of other T.

elongatus intron families. As for other group II introns, the predicted

structure consists of the six conserved RNA domains (DI–DVI)

with a series of conserved motifs (denoted by Greek letters, EBS

(exon-binding site), and IBS (intron-binding site)). The latter are

involved in a series of long-range interactions that help fold the

intron RNA into the catalytically active tertiary structure. Notable

regions are DI and DV, which together comprise the minimal

catalytic core; DIV, which encodes the IEP in the loop of

subdomain DIVb; and DVI, which contains the branch-point A-

residue [2]. Many of the sequence differences between the T.

elongatus introns correspond to reciprocal changes in stem regions,

but some introns have deviations in conserved structures or motifs

that are expected to impair ribozyme activity (e.g., TeI4f and

TeI4g have mispairings in the upper stem of DV and the lower

stem of DVI). Inactive group II introns that have lost mobility

functions are common in bacteria and organelles and presumably

reflect selective pressure against intron mobility, which is

deleterious to the host [1].

Author Summary

Group II introns are bacterial mobile elements thought to
be ancestors of introns and retroelements in higher
organisms. They comprise a catalytically active intron
RNA and an intron-encoded reverse transcriptase, which
promotes splicing of the intron from precursor RNA and
integration of the excised intron into new genomic sites.
While most bacteria have small numbers of group II
introns, in the thermophilic cyanobacterium Thermosyne-
chococcus elongatus, a single intron has proliferated and
constitutes 1.3% of the genome. Here, we investigated
how the T. elongatus introns proliferated to such high copy
numbers. We found divergence of DNA target specificity,
evolution of reverse transcriptases that splice and mobilize
multiple degenerate introns, and preferential insertion into
other mobile introns or insertion elements, which provide
new integration sites in non-essential regions of the
genome. Further, unlike mesophilic group II introns, the
thermophilic T. elongatus introns rely on higher temper-
atures to help promote DNA strand separation, facilitating
access to DNA target sites. We speculate how these
mechanisms, including elevated temperature, might have
contributed to intron proliferation in early eukaryotes. We
also identify actively mobile thermophilic introns, which
may be useful for structural studies and biotechnological
applications.

Thermophilic Group II Introns
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Characteristics of the T. elongatus IEPs
TeI4a–h have long ORFs in DIV that encode predicted IEPs of

561 amino acid residues with RT, X/thumb, DNA binding (D),

and DNA endonuclease (En) domains homologous to those of

other group II IEPs (Figure 2D) [1,2,29]. Seven of the ORFs show

strong conservation of amino acid sequences residues known to be

required for activity of other group II IEPs (see alignments in

Figure S1), but one has an early frameshift as well as multiple

premature stop codons and other sequence deviations (TeI4d, not

shown in the alignment). Like the intron RNAs, the IEPs are

closely related to each other (84%–100% identity in pairwise

comparisons, excluding TeI4d), and their closest known relative is

the EcI5 IEP (53%–55% identity in pairwise comparisons; Figure

S1).

Two introns (TeI4f and 4h) have continuous ORFs, while in five

other introns (TeI4a, b, c, d, and e) the ORF is interrupted by

insertion of an ORF-less intron (TeI3a, b, c, d, and e, respectively)

between the first two ATGs, which are separated by only five

codons (Figure 2B, Figure S2). This configuration in which one

intron inserts into another is known as a ‘‘twintron’’ [24]. The T.

elongatus twintrons could potentially encode active IEPs initiated

either from the first AUG after splicing of the inner intron or from

the second AUG without splicing of the inner intron. In the

remaining intron, TeI4g, the ORF is interrupted by an insertion

element (TeI4g::ISEL2f) [26]. Thus, excluding TeI4d and TeI4g,

six of the T. elongatus introns (TeI4a, b, c, e, f, and h) could

potentially encode active IEPs.

The ORF-Less T. elongatus Introns Were Derived from a
Single ORF-Containing Intron by ORF Deletion

All 17 ORF-less T. elongatus introns (TeI3a–t) have a ,1.5 kb

deletion in subdomain DIVb, which removes most of the ORF

(Figure 2B and C). Sequence alignments show that the break-

points of this deletion are the same in all 17 introns and that

remnants of the N- and C-termini of the ORF are clearly

discernible on either side (Figure S2). All of the ORF-less introns

also have a single extra U residue in DIVa1, which disrupts the

remnant reading frame, and a second smaller deletion in DIVa2

(Figure 2B and C; Figure S2). These findings most simply suggest

that the 17 ORF-less introns arose from a single ancestral intron

that underwent the deletion and then proliferated. Phylogenetic

analysis based on alignments of intron sequences supports this

hypothesis and indicates that the ORF deletion was an early event

that occurred before the divergence of the T. elongatus introns into

different families (Figures 3 and S3, and see below). Notably, in the

ORF-less introns, the terminal loop of DIVa2 resulting from the

Figure 1. T. elongatus group II Intron families and insertion sites. The 25 intact introns are classified into six families (F1–F6) based on their
EBS sequences. Three other introns are fragments (TeI3g retains ,340 nts of the 39 part of the intron starting in the En domain of the IEP; TeI3m lacks
regions upstream of DIVa(39); and TeI3n has a large internal deletion between DId(59) and DIVa1). Colors highlight EBS sequences and
complementary nucleotide residues in the IBS sequences. The EBS2 sequence of TeI4h could not be identified unambiguously from the secondary
structure model and was defined by in vivo selections with donor and recipient plasmids in which potential EBS2 and IBS2 nucleotide residues were
randomized (G.M. and A.M.L., unpublished data).
doi:10.1371/journal.pbio.1000391.g001
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smaller deletion in DIV has co-varied with the terminal loop of

DIVa1 in a manner suggesting a base-pairing interaction between

the loops (Figure 2C). As DIVa is a critical binding region for the

IEP in subgroup IIA introns [30], these changes could be pertinent

to IEP recognition.

The T. elongatus Introns Have Diverged into Six Families
with Different Target Sites

Group II introns recognize DNA target sequences by using both

the IEP and base pairing of the intron RNA [31,32]. In group IIB

introns, the base-pairing interactions involve intron RNA

sequences denoted EBS1, 2, and 3 and complementary DNA

target sequences denoted IBS1 and 2 in the 59 exon and IBS3 in

the 39 exon [28,33,34]. We noticed that the T. elongatus introns

could be divided into six families, F1–F6, based upon their EBS1,

2 and 3 sequences (Figure 1), and phylogenetic analysis indicated

that each of these families corresponds to a distinct clade (Figures 3

and S3). Most of the introns are inserted at genomic sites with

largely complementary IBS sequences (one or no mismatches),

suggesting insertion by retrohoming, but some are inserted at sites

with more poorly matched IBS sequences, suggesting insertion by

infrequent retrotranspositions. Because the EBS/IBS interactions

in the precursor RNA are required for RNA splicing, only those

introns inserted by retrohoming at sites with complementary IBS

sequences are expected to splice efficiently. Most introns with

poorly matched IBS sequences and some introns with well-

matched IBS sequences are inserted at sites in intergenic regions,

where their splicing ability is less likely to affect host gene

expression.

The eight ORF-containing introns are divided into two families

(F1 and F2), while the 17 ORF-less introns are divided into four

families (F3–6; Figure 1). The F1 introns (TeI4a–e) are inserted in

intergenic regions, as are two of the F2 introns (TeI4f and 4g).

Notably, the 59 exon of TeI4f and the 39 exon of TeI4g correspond

to 59 and 39 segments of an ABC transporter pseudo-gene,

respectively, suggesting these introns were derived from an exon-

shuffling homologous recombination event between two ancestral

introns. The remaining F2 intron, TeI4h, is inserted in a gene

encoding the single copy of tRNAIle
CAU, which is putatively

essential [26]. The site of insertion in the tRNA gene is one with

good EBS/IBS pairings, suggesting that TeI4h inserted by

retrohoming and can splice to produce a functional tRNA.

F3 consists of seven identical ORF-less introns, five of which

(TeI3a–e) are inserted at a conserved site between the two closely

Figure 2. T. elongatus group II intron RNA secondary structure and IEP. (A) Predicted secondary structure of TeI4h. Differences in TeI4c, TeI4f,
and TeI3c are indicated in red, boxed, and blue letters, respectively. The structure consists of six conserved domains (DI–DVI). Subdomains and further
subdivisions are denoted with letters followed by numbers (e.g., DIc1). Greek letters indicate nucleotide sequences involved in long-range tertiary
interactions [2]; 59 and 39 exon (E1 and E2, respectively) are boxed; and splice sites are indicated by open arrowheads. The gray boxes show a region
of DIII that is replaced by a different sequence in TeI3c (blue, inset). (B) Secondary structure of DIV of ORF-containing TeI4 introns. The figure shows
the secondary structure of DIV of TeI4h, with differences in TeI4c, 4f, and 4g indicated in red, boxed, and white letters in black boxes, respectively. The
two potential start codons and the stop codon of the intron ORF are circled, and the arrow between the two potential start codons indicates the site
at which TeI3c and other F3 introns insert into TeI4c and other F1 introns, resulting in the formation of twintrons. Regions that differ substantially in
the ORF-less TeI3 introns are shaded gray. (C) Secondary structure of DIV of the ORF-less TeI3 introns. The figure shows the secondary structure of
TeI3c, with differences in TeI3f, 3k, and 3l indicated in orange, green, and purple, respectively. Regions that differ from the ORF-containing TeI4
introns are shaded gray. Potential base pairings between the DIVa1 and DIVa2 loops are indicated at the upper right. A red circle highlights the extra
U residue in DIVa1 of ORF-less introns (see also Figure S2). (D) Schematic of the TeI4h IEP. Conserved protein domains are: RT, containing conserved
amino acid sequence blocks RT1–7 characteristic of the finger and palm regions of retroviral RTs; X/Thumb, region associated with maturase activity
and corresponding in part to the RT thumb; D, DNA binding; and En, DNA endonuclease; RT-0 is a region conserved in the RTs of non-LTR
retroelements [1,29]. Multiple sequence alignments of the TeI4h and other IEPs are shown in Figure S1.
doi:10.1371/journal.pbio.1000391.g002
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spaced start codons of the RT ORF of F1 introns, while TeI3i is

inserted at the same site in the remnant ORF of TeI3h, and TeI3o

is inserted in an intergenic region. F4 consists of three introns

inserted at a conserved site in insertion element ISEL1, a member

of the IS200 insertion element family [26]. F5 consists of three

introns inserted in intergenic regions and a fourth intron (TeI3j)

inserted within a glycosyl transferase gene. Finally, F6 consists of

two introns inserted in intergenic regions and one intron inserted

near the 39 end of gene t112453. The finding that only a small

number of T. elongatus introns are inserted within genes may reflect

purifying selection against insertions that are deleterious to the

host, but mechanisms for actively avoiding insertion within genes

are also possible.

Importantly, most of the ORF-less introns are inserted at sites

with good EBS/IBS pairings, suggesting insertion via retro-

homing, further evidence that the ORF-less introns are actively

mobile (Figure 1). The larger number of ORF-less introns

presumably reflects that they are more efficiently mobile than

ORF-containing introns due to their smaller size and more

compact structure. The latter makes them less susceptible to

degradation by host nucleases, which appears to be a major means

of controlling group II intron mobility in bacteria [35].

Derivatives of the TeI4h Intron Are Mobile and
Thermophilic

To directly assay mobility of the T. elongatus introns, we used an

E. coli plasmid assay in which an intron with a phage T7 promoter

inserted near its 39 end is expressed from a donor plasmid and

integrates into a target site cloned in a recipient plasmid upstream

of a promoterless tetracycline-resistance (tetR) gene, thereby

activating that gene (Figure 4A; [36,37]). Because the intron is

expressed from a donor plasmid, the IEP must splice the intron

RNA to generate RNPs, which then promote integration of the

intron into the DNA target site. Previous studies showed that the

Lactococcus lactis Ll.LtrB intron is efficiently mobile in this E. coli

assay, reflecting that it has a wide host range and is not dependent

upon host-specific factors for RNA splicing or intron mobility

[13,36,38], and we anticipated this would also be the case for the

T. elongatus introns.

For the mobility assays with the T. elongatus introns, the CapR

(chloramphenicol-resistant) intron-donor plasmid uses a T7lac pro-

moter (PT7lac) to express a precursor RNA containing a DORF-

derivative of the intron RNA (I-DORF) with short flanking exons and a

phage T7 promoter (PT7) inserted in place of the intron ORF in DIVb.

The IEP, which splices and mobilizes the intron, is expressed from a

position downstream of the 39 exon (E2). This configuration using an

intron RNA with the ORF deleted and the IEP expressed from

downstream of E2 gives high mobility frequencies for other group II

introns [28,36] and facilitates the mixing and matching of intron RNAs

and IEPs in experiments below. The AmpR (ampicillin-resistant)

recipient plasmid contains the intron target site (i.e., ligated-exon

sequences flanking the intron-insertion site) cloned upstream of a

promoterless tetR gene. For mobility assays, the donor and recipient

plasmids are co-transformed into E. coli HMS174(DE3), which

contains an IPTG (isopropyl b-D-1-thiogalactopyranoside)-inducible

T7 RNA polymerase. After induction of donor plasmid expression with

IPTG, cells are plated on Luria-Bertani (LB) medium containing

tetracycline plus ampicillin or amplicillin alone, and mobility

efficiencies are calculated as the ratio of (TetR+AmpR)/AmpR colonies.

We focused first on TeI4h, which is inserted within the

tRNAIle
CAU gene because it contains a continuous ORF and is

inserted within an essential gene at a site with good EBS/IBS

pairings. These characteristics imply insertion via retrohoming

and active splicing to produce a functional tRNA. Nevertheless,

TeI4h has features that deviate from the canonical group II intron

structure, including a 59 T residue and a mispairing in the d-d9

interaction in the intron RNA (Figure 2A) and YAGD instead of

the highly conserved YADD motif at the RT active site in the IEP

(Figure S1).

Table 1 summarizes the mobility efficiencies for donor plasmids

expressing different derivatives of the TeI4h-DORF intron and

IEP at different induction temperatures. At 37uC, the wild-type

TeI4h-DORF intron and IEP combination had very low mobility

efficiency (2.561025%), but changing the IEP’s YAGD sequence

to YADD increased the mobility efficiency dramatically to 3.4%.

This modified IEP, denoted IEP-4h*, was used in all subsequent

constructs. Combining the TeI4h* IEP with a modified intron

(denoted TeI4h*), which has the change C326T in d9 to restore the

d-d9 pairing, increased the mobility efficiency further to 39%.

Surprisingly, however, combining the TeI4h* IEP with a modified

intron in which the 59-nucleotide residue was changed from T to

Figure 3. Phylogeny of T. elongatus introns. The figure shows a
phylogram for all 25 intact T. elongatus introns. TeI4 introns were
aligned with TeI3 introns by deleting ORF sequences in DIVb (positions
755–2290 of TeI4h). RNA sequences were aligned with ClustalX [49], and
the alignment was refined manually and used as input for Phylip (ver.
3.69, with default parameters [50]). The phylogenies were generated
with program modules DNAdist and DNAcomp using all of the Distance
settings (F84, Kimura, Jukes-Cantor, LogDet) independently and varying
the out-group (EcI5 or random Te intron). Trees were visualized with
Treeview [51,52] and were essentially the same regardless of distance or
out-group settings. Support for the major groupings of the phylogram
was obtained by bootstrapping 1,000 data sets (using Seqboot from
Phylip ver. 3.69) and using these as input for DNAdist. The output of the
latter program was then used to obtain a consensus tree with
Consense. The numbers indicate the percentage of times a particular
grouping occurred in the 1,000 data sets.
doi:10.1371/journal.pbio.1000391.g003
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the highly conserved 59 G residue found in other group II introns

decreased the mobility efficiency to 0.5%, and combining all three

changes gave a mobility efficiency of only 8.4%. Thus surprisingly,

the unusual 59 T-residue is favored in TeI4h. Sequencing of

retrohoming products from this experiment and from target-site

definition experiments described below showed that the inserted

TeI4h* intron begins with the unusual 59 T-residue in all cases

(.600 sequences), confirming use of a corresponding 59 U-residue

in the intron RNA for both RNA splicing and reverse splicing.

The maximally efficient donor plasmid expressing the TeI4h*-

DORF intron with the C236T mutation restoring d-d9 and the

TeI4h* IEP, with the mutation changing YAGD to YADD at the

RT active site, is designated pACD2-TeI4h*/4h* to denote the

intron RNA/IEP combination.

At higher temperatures, the mobility efficiency of TeI4h and its

derivatives increased dramatically, with the mobility efficiency of

the optimal TeI4h*/4h* construct as well as several of the

suboptimal constructs reaching 100% at 48uC (Table 1 and

Figure 4B). By contrast, the mobility efficiency of the mesophilic

Ll.LtrB-DORF intron expressed from an analogous donor plasmid

decreased with increasing induction temperature, with the residual

,20% mobility at 48uC likely reflecting integrations that occurred

at 37uC prior to induction or after plating. The native TeI4h/4h

construct, which expresses the wild-type DORF intron and IEP

without modification of the d-d9 pairing or YAGD sequence, had

low mobility efficiency even at 48uC (6.761022%), indicating that

one or both of these suboptimal features inhibits mobility

regardless of temperature (Table 1). We note that the mobility

of the TeI4h at 48uC presumably relies either on residual activity

of T7 RNA polymerase at the higher temperature and/or on

RNPs made at 37uC prior to the temperature shift. Together, the

above findings show that the TeI4h-DORF intron and IEP are

thermophilic, presumably reflecting adaptation for retromobility

in the native host T. elongatus.

Mobility Assays with Other T. elongatus Introns
The finding that the T. elongatus ORF-less introns likely evolved

from a single intron by ORF deletion and then proliferated to new

sites by retrohoming suggested that their splicing and mobility

might be promoted by one or more of the IEPs encoded by other

T. elongatus introns. To test this hypothesis, we carried out E. coli

mobility assays at 48uC with donor plasmids expressing different

combinations of T. elongatus introns and IEPs (Table 2). The intron

RNAs tested included at least one representative of each intron

family (the ORF-less introns TeI3c, 3k, 3f, and 3l, all of which

have good EBS/IBS pairings with their flanking exons, and

TeI4h*-DORF, 4c-DORF, and 4f-DORF, with ORF deletions

matching the deletion break points in the naturally ORF-less

introns; see Materials and Methods). The IEPs tested were TeI4h*,

4a, 4b, 4c, 4e, 4f, and 4g, the latter with the IS element precisely

deleted. The TeI4c ORF, which in T. elongatus is present in a

twintron with TeI3c inserted between the first two ATGs, was

expressed from either ATG. After this choice of ATGs was found

to have little effect on mobility efficiency (see below), the

remaining twintron IEPs were expressed only from the second

ATG. The recipient plasmids contained the natural target site (i.e.,

Figure 4. TeI4h intron mobility assays. (A) E. coli genetic assay of intron mobility. The CapR donor plasmid uses a T7lac promoter (PT7lac) to
express a DORF intron (I-DORF) with short flanking 59 and 39 exons (E1 and E2, respectively) and the IEP downstream of E2. The intron, which carries a
T7 promoter (PT7) in DIVb, integrates into a target site (ligated E1–E2 sequences) cloned in an AmpR recipient plasmid upstream of a promoterless tetR

gene, thereby activating that gene. The donor and recipient plasmids are derivatives of pACD2X and pBRR-tet, respectively (see Materials and
Methods). The assays are done in E. coli HMS174(DE3), which contains an IPTG-inducible T7 RNA polymerase, with intron expression induced with
500 mM IPTG for 1 h at different temperatures. Mobility efficiencies are calculated as the ratio of (TetR+AmpR)/AmpR colonies. (B) Mobility efficiency of
the TeI4h-DORF (blue) and Ll.LtrB-DORF (red) introns as a function of induction temperature. The donor plasmid for the Ll.LtrB-DORF intron was
pACD2X [47].
doi:10.1371/journal.pbio.1000391.g004

Table 1. Mobility efficiencies of TeI4h and effect of mutations
at different temperatures.

Mobility (%)

Intron IEP Temp (uC)

37 41 45 48

4h 4h 2.561025 N.D. N.D. 6.761022

4h 4h* 3.4 2.4 34 100

4hC236T (4h*) 4h* 39 37 81 100

4hT1G 4h* 0.5 1.2 11 60

4hT1G/C236T 4h* 8.4 27 82 100

Mobility assays were done in E. coli, as described in Figure 4 and Materials and
Methods, using different TeI4h/4h donor plasmids that express the wild-type or
mutant TeI4h-DORF introns and IEPs, and a recipient plasmid that contains the
TeI4h target site (i.e., ligated E1–E2 sequences). Donor plasmid expression was
induced with 500 mM IPTG for 1 h at different temperatures. Mobility
efficiencies were calculated as the ratio of (TetR+AmpR)/AmpR colonies. 4h* IEP,
YAGD changed to YADD; C236T (TeI4h*), intron position 236 (d) changed from
C to T; T1G, intron position 1 changed from T to G. N.D., not determined.
doi:10.1371/journal.pbio.1000391.t001
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ligated-exon sequences) for each intron (Figure 1; see Materials

and Methods).

The results, summarized in Table 2, show that the TeI4h* IEP

has very high specificity for its cognate intron. Its mobility

efficiency with the TeI4h* RNA was 100%, while its mobility

efficiencies with all other intron RNAs were 104- to 106-fold lower

(TeI4c, 3c, 3k, 3f, and 3l; 6.461022 to 1.461024%). The other

IEPs were less specific. Among these, the TeI4c IEP was the most

active. Expressed from either the first or second ATG, it mobilized

the TeI4c-DORF RNA with efficiencies of 2.6 and 2.361022%,

respectively, while it mobilized representatives of other intron

families at comparable (4.461024 to 361022%; 4h, 3k, 3f) or

higher efficiencies (0.96%–7.7%; 3c and 3l). We note that low

mobility efficiencies for some introns are a consequence of

suboptimal natural target sites, as the TeI4c IEP could also

promote mobility of either TeI4c-DORF or TeI3c at 60%–80%

efficiency with other target sites (Table S1 and unpublished data).

The TeI4a, b, c, and e IEPs showed different degrees of activity

and specificity for different introns, but each had the ability to

splice and mobilize multiple introns to some degree. Among the

naturally ORF-less introns, TeI3c is most active with the widest

variety of IEPs; TeI3l has relatively high activity (0.5%–2.4%) with

a subset of these IEPs; and TeI3f and TeI3k have low activity with

most of the IEPs. The TeI4f IEP and restored TeI4g IEP with the

IS element deleted gave low mobility efficiencies (3.761022 to

2.161024%) with all introns tested, and the TeI4f RNA showed

little or no mobility with any IEP tested, likely reflecting mutations

that inhibit ribozyme activity, which is required for RNA splicing

and reverse splicing (see above; Figure 2B). Together, the findings

in this section indicate that some but not all of the T. elongatus IEPs

have decreased specificity for their cognate intron, enabling them

to mobilize multiple ORF-less introns as or more efficiently than

the intron that encodes them.

DNA Target Site Recognition
Another mechanism that could potentially contribute to

proliferation of the T. elongatus introns is relaxed DNA target

specificity. For previously characterized group II introns, the IEP

recognizes sequences in the distal 59-exon and 39-exon regions of

the DNA target and promotes DNA melting, enabling the intron

RNA’s EBS sequences to base pair to the target site’s IBS

sequences [31]. The EcI5 IEP, which is closely related to the T.

elongatus IEPs, recognizes five different nucleotide residues flanking

the IBS sequences, C–18, C–17, A–15, and A–14 in the distal 59-

exon region and T+5 in the 39 exon [28]. A more relaxed DNA

target specificity of the T. elongatus IEPs would enable intron RNAs

with the same EBS sequences to insert at a greater number of sites.

To identify nucleotide residues in the DNA target site that are

recognized by the T. elongatus IEPs, we carried out selection

experiments using the donor plasmids TeI4h*/4h*, TeI4c/4c, and

TeI3c/4c with recipient plasmids in which the distal 59-exon and

39-exon regions potentially recognized by the IEP were random-

ized [28]. After selection for TetR+AmpR colonies in which the

intron had inserted into the recipient plasmid, the 59- and 39-

integration junctions in active target sites were amplified by colony

PCR and sequenced. Figure 5 summarizes nucleotide frequencies

at the randomized positions in active target sites in WebLogo

format [39]. In each case, the nucleotide frequencies are based on

sequencing of ,100 active target sites and were corrected for

nucleotide frequency biases in the libraries by sequencing a similar

number of unselected recipient plasmids from the initial pools

(Figure 5). Because we were uncertain about the boundaries of

IBS2, the randomized regions in the recipient plasmids extended

1–2 nucleotide residues into IBS2 (shown in black in Figure 5) to

confirm selection for complementary nucleotide residues in EBS2.

Figure 5A and B show selections at different temperatures for

the donor plasmid TeI4h*/4h* in which the TeI4h* IEP promotes

mobility of the TeI4h*-DORF intron. At 37uC, we see selection for

two nucleotide residues in the distal 59-exon region, A–15 and C–

16, along with G–14 and G–13, which are part of IBS2 recognized

by base pairing of C-residues at the corresponding positions in

EBS2 of the intron RNA. Although the TeI4h IEP contains an En

domain, there was no selection for any 39-exon nucleotide, which

is required for En cleavage by other group II IEPs [31]. At 48uC,

we see similarly strong selection for the two EBS2 residues but

somewhat weaker selection for A–15 and strongly decreased

Table 2. Mobility efficiencies for intron donor plasmids expressing different combinations of T. elongatus group II intron RNAs and
IEPs.

Mobility (%)

Intron Family IEP

4h 4a (2nd) 4b (2nd) 4c (1st) 4c (2nd) 4e (2nd) 4f 4g

4h F2 100 1.861023 5.661024 5.461023 3.061023 1.861023 9.061023 3.761022

4c F1 1.461024 3.661022 1.261022 2.661022 2.361022 2.561022 1.161022 1.161022

4f F2 0 N.D. N.D. 0 0 N.D. 2.461024 N.D.

3c F3 6.461022 0.62 3.8 6.7 7.7 0.32 2.061023 2.061022

3k F4 3.761023 1.961024 3.561024 3.061022 5.961023 2.161024 N.D. 2.161024

3f F5 1.961023 5.661023 6.961023 2.461023 4.461024 9.261023 N.D. 2.761024

3l F6 2.661023 1.861022 0.50 2.4 0.96 4.661022 N.D. 4.561024

Mobility assays were done in E. coli, as described in Figure 4 and Materials and Methods, using a donor plasmid that expresses the indicated TeI3 or TeI4-DORF intron
and IEP combination and a recipient plasmid that contains the target site for the intron (i.e., ligated E1–E2 sequences). Donor plasmid expression was induced with
500 mM IPTG for 1 h at 48uC, and mobility efficiencies were calculated as the ratio of (TetR+AmpR)/AmpR colonies. PCR and sequencing of 3 to 10 TetR+AmpR colonies
confirmed insertion of the intron at the target in all cases, except for TeI3f with the 4a, b, e, and g IEPs, where the low mobility efficiency calculated from ratios of
antibiotic-resistant colonies thus represent an upper limit. F1–F6 denote intron families. 1st and 2nd denote the initiation codon used for expression of twintron IEPs,
where the intron ORF has been interrupted by the insertion of another group II intron between the first two ATGs. The TeI4f-DORF intron was tested with modifications
that improved the EBS/IBS pairings (see Materials and Methods), and the TeI4g IEP was tested with the inserted IS element precisely deleted based on the alignment in
Figure S1. Similar mobility efficiencies (less than 5-fold difference) were obtained in one or two repeats of the mobility assays in all cases. N.D., not determined.
doi:10.1371/journal.pbio.1000391.t002
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selection for C–16 compared to that at 37uC. Mobility assays

confirmed that a mutation at position 216 (C–16G) inhibits

mobility to a much greater extent at 37uC than at 48uC in

agreement with the selection data (Figure S4). These findings likely

reflect that the recognition of C–16 by the IEP is more stringently

required for DNA melting at 37uC than at higher temperatures,

which by themselves promote DNA melting. The selected distal

59-exon sequence A–15, C–16 matches that at the TeI4h insertion

site in the T. elongatus genome (Figure 1).

Figure 5C shows a similar selection at 48uC for the donor

plasmid TeI4c/4c, in which the TeI4c IEP mobilizes its cognate

TeI4c-DORF intron RNA. Here, we see selection for A or T at

positions 213 to 216, which diminishes with increasing distance

from the last nucleotide of IBS2 (T–12), along with weak selection

for A or T at positions +2 and +3. This pattern most likely reflects

selection for less stable AT base pairs that would facilitate melting

of this region rather than any specific base recognition, potentially

an example of a mobile intron that recognizes its DNA target site

entirely by base pairing. The insertion site for TeI4c in the T.

elongatus genome also shows A/T residues extending from 213 to

217 upstream of IBS2 and at +2 and +3 downstream of IBS3

(Figure 1).

Finally, Figure 5D shows a selection at 48uC for the donor

plasmid TeI3c/4c, in which the same TeI4c IEP mobilizes the

ORF-less intron TeI3c. Surprisingly, we now see strong selection

for A–14 and A–15 upstream of IBS2, with weaker selection for A

or T at position 216, suggesting that the TeI4c IEP makes a

greater contribution to DNA target site recognition when paired

with the non-cognate TeI3c RNA than with its own cognate

TeI4c-DORF RNA. The selected sequence again matches the

genomic insertion site for TeI3c (Figure 1). The apparently altered

DNA target specificity of the TeI4c IEP when paired with the

TeI3c RNA may reflect that the non-cognate intron RNA induces

a protein conformation that interacts differently with the DNA

target site or that the different intron RNA/DNA base-pairing

interactions lead to differences in DNA target site recognition by

the IEP. Additionally, we cannot exclude that a small number of

nucleotide residues upstream of IBS2 are recognized in some

Figure 5. Identification of critical nucleotide residues in the distal 59-exon and 39-exon regions of the DNA target sites of T.
elongatus introns. (A) Intron donor plasmid TeI4h*/4h* at 37uC. Intron donor plasmid TeI4h*/4h* at 48uC. (C) Intron donor plasmid TeI4c/4c at 48uC.
(D) Intron donor plasmid TeI3c/4c at 48uC. Selection experiments were done in E. coli HMS174(DE3) containing the indicated intron donor plasmid
and a recipient plasmid library randomized at the positions shown, as described in Materials and Methods. After selection by plating on LB medium
containing antibiotics, AmpR+TetR colonies were analyzed by colony PCR and sequencing of the 59- and 39-integration junctions to identify
nucleotide residues in active target sites. The WebLogo representation [39] depicts nucleotide frequencies at each randomized position in ,100
selected target sites, corrected for biases in the initial pool based on sequences of ,100 randomly chosen recipient plasmids [28]. The sequence of
the intron-insertion site in the T. elongatus genome is shown, with white bases on black background indicating randomized nucleotides belonging to
IBS2. Summarized below are nucleotide frequencies (percent) at each randomized position in (i) active target sites after intron insertion (‘‘selected’’),
(ii) randomly chosen recipient plasmids from the original pool (‘‘pool’’), and (iii) active target sites corrected for nucleotide frequency biases in the
initial pools (‘‘corrected’’). The latter were used to generate the WebLogos. In some cases, percentage totals do not equal 100 due to rounding off.
doi:10.1371/journal.pbio.1000391.g005
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unknown way by the intron RNA rather than the IEP. In

summary, the selection experiments show that all three T. elongatus

introns tested recognize DNA target sites almost entirely by base

pairing of the intron RNA, with the IEP making a much smaller

contribution than for previously analyzed mesophilic group II

introns, particularly at elevated temperatures that help promote

DNA strand separation.

Discussion

Here, we analyzed group II introns that have proliferated within

the genome of the thermophilic cyanobacterium T. elongatus. Our

results suggest that the 28 group II introns found in the T. elongatus

genome arose from a single intron. An early event was deletion of

the intron ORF, which appears to have occurred once prior to the

divergence of intron families, giving rise to a smaller ORF-less

intron that could be mobilized by the IEP of the intron from which

it was derived. From that point, the ORF-containing and ORF-

less introns diverged and proliferated in parallel by inserting into

different sites, some of which were compatible with further

mobility.

We identify four mechanisms that contributed to the prolifer-

ation of T. elongatus introns. First, we find that the T. elongatus

introns have diverged into six families with different EBS

sequences that target the introns to different sites. Although it

had been thought that group II intron dispersal to new sites occurs

primarily via retrotransposition, our results suggest instead that

most of the T. elongatus introns have inserted into new sites via

retrohoming after EBS sequence divergence. Sequence compar-

isons show that T. elongatus intron EBS sequences are relatively

malleable compared to RNA regions required for ribozyme

activity (Figure 2A). Mutations in the EBS sequences make it more

difficult for an intron to splice and retrohome from its current site

but increase its chances of retrohoming to a site not previously

occupied by a related group II intron. Thus, this process enables

waves of retrohoming into different sets of target sites, circum-

venting the problem of DNA target site saturation. As a

proliferation mechanism, retrohoming has the selective advantage

of ensuring that the intron inserts at sites with good EBS/IBS

pairings from which it can subsequently splice efficiently, making

intron insertion less deleterious to the host. By contrast,

retrotransposition into essential genes with poorly matched exon

sequences would be detrimental. Consequently, mutations leading

to increased retrotransposition frequency may be lost by purifying

selection, preventing this process from playing a greater role in

group II intron proliferation.

A second proliferation mechanism is that some but not all T.

elongatus IEPs have evolved to have relaxed intron specificity,

enabling them to act as ‘‘driver’’ IEPs to mobilize multiple ORF-

less introns with the same or greater efficiency than the intron in

which they are encoded. Deletion of the intron ORF favors

proliferation because the smaller, more compact ORF-less introns

are less susceptible to nuclease degradation, which appears to be

a major mechanism limiting the mobility of bacterial group II

introns [35]. To mobilize an ORF-less intron by retrohoming or

retrotransposition, a driver IEP must be able to splice the intron

to generate RNPs that promote mobility. Thus, the dispersal of

degenerate ORF-less introns by a driver IEP automatically leads

to the evolution of a common splicing apparatus. Other bacteria

have also been found to contain ORF-less introns that are spliced

by the IEP of a closely related intron, but because the introns are

very closely related, it has not been clear to what extent this

ability involved relaxation of IEP specificity [40]. A distinctive

feature of the T. elongatus introns is that we identify one IEP,

TeI4h, which retains high specificity for its cognate intron,

presumably reflecting the ancestral situation, and other closely

related IEPs, such as TeI4c, which have diverged to mobilize

other introns as or more efficiently than their cognate intron. As

the specific TeI4h and relaxed TeI4c IEPs have 87% sequence

identity with only a few divergent regions (Figure S1), further

comparisons may facilitate the identification of IEP features that

dictate intron specificity.

A third mechanism favoring intron proliferation in T. elongatus

is the evolution of some introns to insert at a conserved site in

another mobile element, either an insertion sequence or another

mobile group II intron. The latter configuration, known as a

twintron, could lead to intron proliferation either by retro-

mobility of the composite intron or by separate splicing and

mobility of the outer and inner introns. Supporting the latter

mechanism, we find that the TeI4c IEP can independently

splice and mobilize the outer TeI4c intron and the inner ORF-

less TeI3c intron of the twintron (Table 2). Further, in all the T.

elongatus twintrons, the inner F3 introns are identical (i.e., no

sequence differences), while the outer F1 introns have diverged

(Figure S5), as expected for recent independent insertions of an

F3 intron into previously dispersed F1 introns. A previous

example of group II intron proliferation via twintron formation

was found in the archaebacteria Methanosarcina acetivorans,

although in this case the twintron structure differs in involving

nested arrays formed by repeated insertion of one group II

intron into another [41]. A consequence of twintrons is the

progressive expansion of non-essential genomic regions provid-

ing new target sites for intron insertion.

Finally, we find that proliferation of the T. elongatus IEPs is

favored by higher temperatures that promote DNA strand

separation, facilitating access to DNA target sites and enabling

their recognition almost entirely by base pairing of the intron

RNA. For other mobile group II introns, IEP recognition of the

distal 59-exon region upstream of IBS2 is required for reverse

splicing into double-stranded but not single-stranded DNA,

implying a major role in DNA strand separation, while IEP

recognition of the 39 exon is not required for DNA strand

separation but is critical for second-strand cleavage by the En

domain [31,42]. The IEP encoded by EcI5, a closely related

mesophilic intron, stringently recognizes four bases in the distal 59-

exon region upstream of EBS2 and one base in the 39 exon

downstream of EBS3 [28]. By contrast, the T. elongatus intron IEPs

analyzed here recognize at most 1–2 bases in the distal 59-exon

region and none in the 39 exon, with the stringency of IEP

recognition decreasing at higher temperatures. We note that these

relaxed DNA target site requirements with minimal IEP

recognition found in mobility assays in E. coli at 48uC agree

closely with the sequences of intron-insertion sites in the T. elongatus

genome, implying that in both organisms the DNA target site is

recognized in an unwound or more readily unwound state at

higher temperature. As a result, the T. elongatus introns have access

to a larger number of potential target sites compatible with intron

RNA base pairing than do group II introns whose IEPs have

higher target specificity. The lack of recognition of 39-exon

residues by the T. elongatus IEPs could reflect that distal 59-exon

and EBS/IBS interactions are sufficient for site-specific second-

strand cleavage, that En cleavage is not stringently site specific, or

that the introns dispense with En cleavage and use a nascent

strand at a DNA replication fork to prime reverse transcription

[1,2]. As the other three proliferative mechanisms identified here

are also available to mesophilic introns, retromobility at high

temperature may be a key factor enabling the T. elongatus introns to

proliferate to higher copy number than other group II introns.
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In order to proliferate to high copy number, the T. elongatus

introns must overcome selective pressure against retromobility.

Such selective pressure is evidenced by the accumulation of

mutations that impair retromobility of some T. elongatus introns

(e.g., the YAGD and d-d9 pairing mutations in TeI4h, multiple

mutations that inactivate TeI4d and TeI4f, and insertion of an IS

element into the ORF of TeI4g). Selection for mutations that

decrease mobility is common for bacterial and organellar group

II introns and presumably reflects that actively mobile introns are

deleterious to the host because they can insert into essential genes

or make harmful double-strand chromosome breaks [1,2,37].

The proliferative mechanisms evolved by T. elongatus introns

enable them to partially overcome purifying selection, striking

what is for them a more favorable balance toward intron

accumulation.

Importantly, we find that TeI4h and other T. elongatus introns

are not only actively mobile but also thermophilic (Figure 4B

and Table 1), suggesting that both the intron RNA and IEP

have structural adaptations for thermostability. The T. elongatus

intron ribozymes have a higher GC content (55.3%–56.2% for

TeI4h, 4c, and 3c) than does EcI5 (51.2%), possibly contrib-

uting to their greater stability at higher temperature. The

actively mobile thermostable introns can potentially be used for

structural analysis, as well as for practical applications. The

latter include use of thermostable group II intron RTs for RT-

PCR and next-generation RNA sequencing and use of the

thermophilic introns as gene targeting vectors for thermophiles,

patterned after ‘‘targetrons’’ developed from mesophilic group

II introns that can be reprogrammed to insert at desired sites by

modifying the base pairing sequences in the intron RNA

[32,37].

Finally, we speculate that the mechanisms elucidated here could

have contributed to the initial proliferation of mobile group II

introns in the nuclear genomes of ancestral eukaryotes. Estimates

of paleotemperatures based on isotopic measurements and

phylogenetic reconstruction of ancient enzymes suggest that

eukaryotes evolved at a time of higher than present-day

temperatures (50–65uC) [43]. By promoting DNA melting,

elevated temperatures would facilitate access of group II introns

to DNA target sites and increase the number of target sites that

could be recognized by base pairing of the intron RNA, with little

or no additional constraints for IEP recognition. Indeed, it is

possible that ancestral group II introns evolved to insert by reverse

splicing into RNA or single-stranded DNA at higher temperature

and became dependent upon the IEP for DNA strand separation

only after temperatures cooled. Another important factor in the

initial intron invasion of eukaryotic genomes may have been the

evolution of driver IEPs that could splice and mobilize multiple

group II introns, enabling most introns to lose their own ORFs. In

addition to providing a common splicing apparatus, the evolution

of IEPs to function efficiently in trans rather than cis as for other

mobile group II introns [44] would have been essential to support

group II intron proliferation after evolution of the nuclear

membrane, which separates transcription from translation.

Ultimately, the evolution of the spliceosome, a common RNA-

based catalytic machinery consisting of snRNAs derived from

group II intron RNA domains, would have enabled more

extensive intron degeneration, leaving only minimal recognition

motifs for the splice sites and branch-point nucleotide. Coupled

with the existence of a common splicing apparatus, such

degeneration would have accelerated intron proliferation by

increasing the chances that functional introns could arise de novo

as a result of mutations or recombination events that introduce the

minimal recognition sequences [45,46].

Materials and Methods

Recombinant Plasmids
T. elongatus introns and flanking exons were cloned via PCR of

T. elongatus BP-1 DNA provided by Dr. T. Kaneko, Kazusa DNA

Research Institute, Japan. PCRs were done using Taq DNA

polymerase (New England Biolabs, Ipswich, MA). For ORF

containing introns, 59 and 39 segments of the intron were amplified

separately by PCRs using an exon primer that appends a PstI,

BamHI, or EcoRI site together with an intron primer that overlaps

a unique site (HindIII or EcoRI). The PCR products were then

cloned between compatible sites in the polylinker of pUC18

or 19.

Intron-donor plasmids for mobility assays were constructed in

two steps to insert the coding sequences for the intron RNA

followed by the IEP. In the first step, the T. elongatus introns were

swapped for the Ll.LtrB intron/IEP cassette in donor plasmid

pACD2X [47]. For ORF-containing T. elongatus introns, this was

done via two PCRs that separately amplify 59 and 39 segments of

the intron, while introducing a 1.5-kb deletion in the ORF coding

sequence matching that in the ORF-less T. elongatus introns. These

PCRs used end primers that append short flanking exons

(,15 nts) and unique cloning sites (SpeI (59) and PstI and/or

XhoI (39)) and internal primers that replace the intron ORF in

DIVb with a T7 promoter sequence and an MluI site. The two

PCR products were then cloned between XbaI and XhoI sites of

pADC2X. Twintrons were resolved by precisely deleting the

internal intron using PCR primers spanning the insertion site and

replacing the original fragment with the deleted one. The ORF-

less T. elongatus introns were cloned directly into donor plasmid

pACD2X by PCR of T. elongatus BP-1 DNA with primers that

append SpeI and PstI sites. The T7 promoter and an MluI site

were inserted into DIVb of the ORF-less introns by another round

of PCR using the same external primer together with an internal

primer that adds the T7 promoter and an MluI site and then

swapping the PCR product back into pACD2X. Cloned introns

were confirmed to have the sequence published for T. elongatus

genomic DNA [26], except for TeI4c for which all clones differed

from the published sequence by a single base (G1901A). In the

second step of donor plasmid construction, the RT ORFs were

amplified in two pieces from the pUC18 or 19 clones (see above)

by PCR using a 59 primer that appends a PstI site, phage T7 w10

gene Shine-Dalgarno sequence, and ATG codon, a 39 primer that

appends an XhoI site, and internal primers that overlap a unique

restriction site. The ORF was then cloned via a three-way ligation

into the donor plasmid using the PstI and XhoI sites downstream

of the previously inserted T. elongatus introns.

Donor plasmids with point mutations in TeI4h (T1G, C236T)

and the TeI4h IEP (YAGD to YADD) were derived by PCR

amplifying the wild-type intron or IEP of previously constructed

plasmids with primers that introduce the modification and then

swapping the PCR product containing the mutation for the wild-

type sequence to generate donor plasmids containing different

combinations of mutations. The TeI4f intron’s EBS1, EBS2, and

EBS3 sequences were modified by quick-change site-directed

mutagenesis (Stratagene, La Jolla, CA) to GTTCTG, TTCAA,

and A, respectively, in order to improve complementarity to IBS1,

2, and 3 in the 59 and 39 exons.

Recipient plasmids for the T. elongatus introns contain ligated-

exon sequences (TeI4h, 246/+22; TeI4f, 250/+15; TeI4c, 240/

+20; TeI3f, 3k, 3l, 3c, 4a, 4b, 4d, 4e, 230/+15) cloned between

the PstI site (or AatII site for the TeI4f target) and the EcoRI site of

pBRR-tet [36]. The intron target sites were made either by PCR

of cloned exon sequences with primers that append PstI and
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EcoRI sites or by inserting two complementary oligonucleotides

with flanking PstI and EcoRI sites.

Recipient plasmid libraries for TeI3c and 4c were constructed

by starting with synthetic DNA oligonucleotides that contain

randomized target site positions 230 to 212 or 213 and +2 to

+20 with a 59 PstI site and a 39 EcoRI site followed by the 39

sequence tag 59 GAATTCGACAACCCAACAG. The opposite

strand was then synthesized with Klenow DNA polymerase (New

England Biolabs) using a primer complementary to the tag, and

the resulting double-stranded DNA target site was cloned between

the PstI and EcoRI sites of pBRR-tet. The recipient plasmid

library for TeI4h was constructed similarly by using Klenow DNA

polymerase to fill in annealed, overlapping oligonucleotides that

contain the randomized 59- or 39-exon sequences and append PstI

and EcoRI sites.

All constructs were confirmed by sequencing the PCR amplified

or modified region.

Intron Mobility Assays
Mobility assays were done in E. coli HMS174(DE3) (Novagen,

Madison, WI) grown in LB medium, with antibiotics added as

required at the following concentrations: ampicillin, 100 mg/ml;

chloramphenicol, 25 mg/ml; tetracycline, 25 mg/ml. Cells, which

had been co-transformed with the CapR donor and AmpR

recipient plasmids, were inoculated into 5 ml of LB medium

containing chloramphenicol and ampicillin and grown with

shaking (200 rpm) overnight at 37uC. A small portion (50 ml) of

the overnight culture was inoculated into 5 ml of fresh LB medium

containing the same antibiotics and grown for 1 h as above. The

cells were then induced by adding 1 ml of fresh LB medium

containing the same antibiotics and 3 mM IPTG (500 mM final)

and incubating for 1 h at temperatures specified for individual

experiments. In mobility assays with TeI4h and its mutant

derivatives at 37uC, changing the IPTG concentration from 100

to 1,000 mM or induction time from 30 to 90 min gave at most a

2-fold increase in mobility efficiency. For determination of

temperature dependence, the initial log-phase cultures (5 ml)

grown at 37uC were mixed with an equal volume of fresh LB

medium containing antibiotics and 1 mM IPTG (500 mM final)

that had been pre-warmed to achieve the desired temperature.

The cultures were then induced for 1 h at that temperature,

placed on ice, diluted with ice-cold LB, and plated at different

dilutions onto LB agar containing ampicillin or ampicillin plus

tetracycline. After incubating the plates overnight at 37uC, the

mobility efficiency was calculated as the ratio of (TetR+AmpR)/

AmpR colonies.

To verify correct insertion at the target site, TetR+AmpR colonies

were picked into duplicate 96-well plates and used for colony PCR

to separately amplify the 59- and 39-integration junctions using the

primers Rsense (59-ACAAATAGGGGTTCCGCGCAC) plus

Te680rc (59-GTTGGTGACCGCACCAGT) for the 59 junction

and Te420f (59-AACGCGGTAAGCCCGTA) plus Rev2pBRR

(59-AATGGACGATATCCCGCA) for the 39 junction. The PCR

products were purified with Sera-Mag magnetic beads (Seradyne,

Indianapolis, IN) and sequenced using the primers TargetSeq (59-

ATGCGAGAGTAGGGAACTGC) for the 59 junction and Te500f

(59-AAACCGTAAGGAATGCTGATG) or Te420f (see above) for

the 39 junction.

Target-Site Determination
E. coli HMS174(DE3) that had been co-transformed with the

CapR donor plasmid and an AmpR recipient plasmid in which

regions of the DNA target site had been randomized was induced

with 500 mM IPTG for 1 h at the specified temperature and then

plated on LB agar containing tetracycline and ampicillin, as

described above for mobility assays. TetR+AmpR colonies were

picked into 96-well plates for colony PCR and sequenced for

target-site determination, as described above.

Supporting Information

Figure S1 Multiple amino acid sequence alignments of
T. elongatus and other group II intron-encoded proteins.
The figure shows aligned predicted amino acid sequences of the

IEPs of the group II introns TeI4a, b, c, e, f, g, and h, EcI5, and

Ll.LtrB (LtrA protein). The boundaries of conserved RT sequence

blocks and the X/thumb, DNA-binding, and DNA endonuclease

domains are delineated above the aligned sequences. Identical

amino acid residues in the T. elongatus group II IEPs are shown as

white letters on a black background, and similar amino acid

residues, based on the matrix of Henikoff and Henikoff [48], are

highlighted by gray background. Dashes indicate gaps inserted to

maximize sequence homology. The alignment was done with

ClustalX [49] and refined manually.

Found at: doi:10.1371/journal.pbio.1000391.s001 (1.37 MB

TIF)

Figure S2 Alignment of DIV sequences of T. elongatus
group II introns showing deletion breakpoints in the
ORF-less introns. The sequences are grouped by intron family

and extend from the first to last nucleotide residue of the DIV

stem. The positions of the AUG start and UGA stop codons of the

intron ORF are indicated. The arrow at the top and asterisks in

the alignment indicate the insertion site of TeI3c and other F3

introns in the TeI4a, b, c, d, e, and TeI3h introns. Bases identical

in all sequences are in red. Regions with deletions or insertions in

the ORF-less introns are highlighted in gray. All the ORF-less

introns contain an additional U residue just downstream of the

second inframe AUG of the RT ORF (highlighted in red). The

alignments were done with ClustalX [49] and refined manually.

Found at: doi:10.1371/journal.pbio.1000391.s002 (2.38 MB TIF)

Figure S3 Phylogeny of T. elongatus introns. (A) Phylo-

gram of full-length ORF-containing introns. (B) Phylogram of

intron-encoded proteins. RNA and protein sequences were aligned

with ClustalX [49], and the alignments were refined manually and

used as input for Phylip (ver. 3.69, with default parameters [50]).

The phylogenies were generated with program modules DNAdist

and DNAcomp for nucleotide alignments or Protdist and

Protcomp for IEP alignments using all of the Distance settings

(F84, Kimura, Jukes-Cantor, LogDet) independently and varying

the out-group (EcI5 or random Te intron). Trees were visualized

with Treeview [51,52] and were essentially the same regardless of

distance or out-group settings. Support for the major groupings of

the phylogram was obtained by bootstrapping 1,000 data sets

(using Seqboot from Phylip ver. 3.69) and using these as input for

DNAdist or Protdist. The output of the latter programs was then

used to obtain consensus trees with Consense. The numbers

indicate the percentage of times a particular grouping occurred in

the 1,000 data sets.

Found at: doi:10.1371/journal.pbio.1000391.s003 (0.19 MB TIF)

Figure S4 Effect of mutation at DNA target site position
C–16 on the mobility efficiency of TeI4h* at 37uC and
48uC. Mobility assays with donor plasmid TeI4h*/4h* and

recipient plasmids containing either the wild-type or C–16G

mutant DNA target site were done in E. coli at 37uC and 48uC, as

described in Figure 4 and Materials and Methods. Donor plasmid

expression was induced with 500 mM IPTG for 1 h, and mobility

efficiencies were calculated as the ratio of (TetR+AmpR)/AmpR
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colonies. The bar graphs show the mobility efficiency with the C–

16G mutant DNA target site normalized to that with the wild-type

DNA target at 37uC and 48uC. Mobility efficiencies with the wild-

type target site in these experiments were 11.561.7 and 9863% at

37uC and 48uC, respectively. The data are the mean for three

experiments, with the error bars indicating the standard deviation.

Found at: doi:10.1371/journal.pbio.1000391.s004 (0.02 MB TIF)

Figure S5 Sequence alignment of F1 and F3 introns. (A)

Alignment of F1 ORF-containing introns. Mutations relative to

the TeI4c sequence are indicated in red. (B) Alignment of F3

ORF-less introns. The alignments were done with ClustalX [49].

Identical nucleotides are indicated by an asterisk below the

alignment.

Found at: doi:10.1371/journal.pbio.1000391.s005 (0.06 MB PDF)

Table S1 Mobility efficiencies for donor plasmid
TeI4c/4c with recipient plasmids containing different
target sites. Mobility assays were done in E. coli, as described in

Figure 4 and Materials and Methods, using donor plasmid TeI4c/

4c, which expresses the TeI4c-DORF intron and TeI4c IEP (2nd

ATG), and recipient plasmids that contain target sites for the

TeI4a, b, c, d, and e introns (i.e., ligated E1-E2 sequences flanking

the intron-insertions sites in T. elongatus). Donor plasmid expression

was induced with 500 mM IPTG for 1 h at 48uC. Mobility

efficiencies were calculated as the ratio of (TetR+AmpR)/AmpR

colonies and are the mean of two independent experiments. The

two repeats for the TeI4b target site gave mobility efficiencies of

83% and 72%, and the variation between repeats for the other

target sites was less than 3-fold. Similar results were obtained with

the Te4Ic IEP expressed from the first ATG (not shown). Insertion

of the intron at the expected target site was confirmed by PCR (12

colonies) and sequencing (3 colonies) in all cases, except for the

TeI4d and TeI4e target sites, where 100% and 60%, respectively,

of the colonies did not give the expected PCR product and thus

may not correspond to be bona fide mobility events. In a related

experiment, donor plasmid TeI3c/4c, which expresses the TeI3c

intron and TeI4c IEP, likewise gave high mobility efficiencies

(60%–80%) with alternative target sites (unpublished data).

Found at: doi:10.1371/journal.pbio.1000391.s006 (0.07 MB PDF)
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