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ABSTRACT HIV-1 full-length RNA (referred to as HIV-1 RNA here) serves as the
viral genome in virions and as a template for Gag/Gag-Pol translation. We previ-
ously showed that HIV-1 RNA, which is exported via the CRM1 pathway, travels
in the cytoplasm mainly through diffusion. A recent report suggested that the
export pathway used by retroviral RNA could affect its cytoplasmic transport
mechanism and localization. HIV-1 RNA export is directed by the viral protein
Rev and the cis-acting element, Rev response element (RRE). When Rev/RRE is re-
placed with the constitutive transport element (CTE) from Mason-Pfizer monkey
virus (MPMV), HIV-1 RNA is exported through the NXF1 pathway. To determine
the effects of the export pathway on HIV-1 RNA, we tracked individual RNAs and
found that the vast majority of cytoplasmic HIV-1 RNAs travel by diffusion re-
gardless of the export pathway. However, CTE-containing HIV-1 RNA diffuses at a
rate slower than that of RRE-containing HIV-1 RNA. Using in situ hybridization,
we analyzed the subcellular localizations of HIV-1 RNAs in cells expressing a CTE-
containing and an RRE-containing provirus. We found that these two types of
HIV-1 RNAs have similar subcellular distributions. HIV-1 RNA exported through
the NXF1 pathway was suggested to cluster near centrosomes. To investigate
this possibility, we measured the distances between individual RNAs to the cen-
trosomes and found that HIV-1 RNAs exported through different pathways do
not exhibit significantly different distances to centrosomes. Therefore, HIV-1
RNAs exported through CRM1 and NXF1 pathways use the same RNA transport
mechanism and exhibit similar cytoplasmic distributions.

IMPORTANCE The unspliced HIV-1 full-length RNA (HIV-1 RNA) is packaged into viri-
ons as the genome and is translated to generate viral structural proteins and en-
zymes. To serve these functions, HIV-1 RNA must be exported from the nucleus to
the cytoplasm. It was recently suggested that export pathways used by HIV-1 RNA
could affect its cytoplasmic transport mechanisms and distribution. In the current re-
port, we examined the HIV-1 RNA transport mechanism by following the movement
of individual RNAs and identifying the distribution of RNA using in situ hybridization.
Our results showed that whether exported by the CRM1 or NXF1 pathway, HIV-1
RNAs mainly use diffusion for cytoplasmic travel. Furthermore, HIV-1 RNAs exported
using the CRM1 or NXF1 pathway are well mixed in the cytoplasm and do not dis-
play export pathway-specific clustering near centrosomes. Thus, the export pathways
used by HIV-1 RNAs do not alter the cytoplasmic transport mechanisms or distribu-
tion.
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Retroviral DNA is integrated into the cellular genome to become a provirus and a
permanent part of the cell (1). Using the promoter located in the 5= long terminal

repeat (LTR), RNA polymerase II transcribes the provirus and generates viral transcripts,
some of which are spliced, while others remain full length. Splicing patterns differ in
various retroviruses. Some retroviruses, such as murine leukemia virus, generate one
spliced RNA and the unspliced full-length RNA. Other retroviruses, such as HIV-1, have
complex splicing regulation that generates several types of completely, partially, and
unspliced transcripts. In general, retroviruses use spliced transcripts to express viral
proteins, and the unspliced full-length RNA serves as a template for Gag/Gag-Pol
translation and as the viral genome that is packaged into virions (2). Thus, it is
important for retroviruses to ensure that partially spliced and unspliced RNAs are
exported to the cytoplasm.

Retroviruses use the host machinery for gene expression, including the nuclear
export factors. Cellular mRNA export is closely coupled with RNA processing, including
splicing, and most of the exported cellular mRNAs are spliced transcripts (3–6). The
full-length viral RNA is unspliced and contains introns; thus, the virus must employ
strategies to ensure that these RNAs are exported from the nucleus. HIV-1 and Mason-
Pfizer monkey virus (MPMV) represent two of the well-defined examples of retroviruses
utilizing different strategies to export their unspliced and partially spliced transcripts
from nucleus to cytoplasm via distinct export pathways. HIV-1 uses a set of cis- and
trans-acting elements to facilitate the export of partially spliced and unspliced RNA.
HIV-1 encodes an accessory protein, Rev, that binds and multimerizes on a highly
structured RNA element in the env gene, termed Rev response element (RRE) (7–13).
Rev-RRE forms a complex with host export protein CRM1 (XpoI) and Ran-GTP, facilitat-
ing the export of the RNA-protein complex into the cytoplasm (14, 15). In contrast, the
MPMV genome contains an RNA element, the constitutive transport element (CTE),
which forms a complex with host export proteins NXF1/NXT1 to facilitate RNA export
(16–18). Thus, different retroviruses use distinct export pathways to transport their
intron-containing RNA to the cytoplasm. Interestingly, although the Rev/RRE and the
CTE are distinct in their mechanisms of action, each system can functionally substitute
for the other to support viral replication. Replacing Rev/RRE with CTE allows HIV-
derived intron-containing viral RNA expression in a Rev- and CRM1-independent man-
ner (16). Similarly, substituting the CTE with HIV-1 RRE, and supplementing Rev in trans,
supports MPMV particle production (19). Interestingly, the strengths of these export
elements may differ among retroviruses. It was shown that although the presence of
one copy of MPMV CTE can mediate HIV-1 full-length RNA (HIV-1 RNA) export, the
process is inefficient; however, the presence of four copies of MPMV CTE allows gene
expression at levels similar to that from RRE-mediated RNA export (20). Hence, four
copies of MPMV CTE are often used to replace RRE to achieve efficient RNA export (21,
22). There are multiple elements in the HIV-1 gag-pol that inhibit RNA export (23, 24);
thus, it is possible that the Rev-RRE has evolved to overcome the effects of these
inhibitory elements.

After exiting the nucleus, RNAs travel to various subcellular locations to serve their
functions. The transport of cellular mRNA in the cytoplasm can be complex. Some
mRNAs are transported in the cytoplasm predominantly by diffusion, whereas other
mRNAs can be actively transported along the cytoskeleton by motor proteins to specific
locations (25–30). By tracking movements of individual RNA molecules in living cells, we
and others have shown that diffusion is the major transport mechanism used by
unspliced HIV-1 RNA (31, 32). Furthermore, HIV-1 RNAs do not exhibit obvious cluster-
ing in a given subcellular location but are distributed throughout the cytoplasm (31).
In this previous study, we used HIV-1 RNA containing authentic RRE; thus, these RNAs
were exported via the CRM1-mediated pathway. In another recent study (33), it was
shown that RNA containing mostly HIV-1 sequences along with RRE did not transport
directionally and appeared to distribute throughout the cytoplasm, confirming our
observations. Interestingly, this recent report also showed that when RRE was replaced
with CTE from MPMV, the resulting RNA changed the transport mechanism and
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subcellular location (33). It was suggested that the NXF1 protein associated with CTE
linked RNAs to the microtubules in the cytoplasm; consequently, CTE-containing HIV-1
RNAs were transported in the cytoplasm directionally and clustered to centrosomes
that form the core of the microtubule-organizing center (MTOC). These studies sug-
gested that the export pathway used by the RNA has a profound impact on the
cytoplasmic trafficking and localization of RNA (33, 34).

To better understand how the nuclear export pathway affects HIV-1 RNA behavior,
in this report, we compared the cytoplasmic trafficking of HIV-1 RNA containing the
authentic RRE or the MPMV CTE in place of RRE. Using single particle tracking, we
followed individual RNA molecules in the cytoplasm and found that the vast majority
of the HIV-1 RNAs use diffusion as their transport mechanism. Interestingly, CTE-
containing HIV-1 RNA diffuses at a lower rate than RRE-containing HIV-1 RNA. Using in
situ hybridization, we analyzed cells dually infected with two proviruses, one containing
CTE and the other containing RRE. Our results showed that CTE- and the RRE-containing
HIV-1 RNAs have similar subcellular distributions. We measured the distances between
individual RNAs to the centrosomes and found little if any difference between the CTE-
and RRE-containing HIV-1 RNA. Thus, using live-cell imaging and in situ hybridization
approaches, we observed that HIV-1 RNA exported through different pathways use
similar RNA transport mechanisms and exhibit similar cytoplasmic distribution.

RESULTS
Detecting and tracking cytoplasmic HIV-1 RNA exported via distinct pathways.

To examine the effects of nuclear export pathways on cytoplasmic RNA trafficking, we
determined the mechanism of transport for HIV-1 RNA containing authentic RRE or
replacing RRE with CTE. For this purpose, we generated an HIV-1 construct, 1-AAG-CTE,
based on a previously described NL4-3-derived construct, 1-AAG (35) (Fig. 1A), by
replacing the authentic RRE sequence with four copies of MPMV CTE. Therefore, 1-AAG
and 1-AAG-CTE have similar structures, but their RNAs exit the nucleus using different
pathways. Construct 1-AAG contains all the cis-acting elements necessary for viral
replication and expresses Tat, Rev, and Nef. A T-to-A substitution of the gag translation
start codon in 1-AAG and 1-AAG-CTE converts AUG to AAG, which abolishes Gag
translation but does not interfere with RNA function, as the mutant RNA can be
efficiently packaged into viral particles and undergoes one round of replication when
essential proteins are provided in trans (35). These two constructs also contain a
truncated pol gene in which 18 copies of stem-loop sequences (BSL) were inserted; BSL
RNA is specifically recognized by the bacterial protein BglG (36, 37).

To visualize HIV-1 RNA, we transfected the 1-AAG-CTE construct into HeLa cells
along with a plasmid expressing Bgl-yellow fluorescent protein (YFP) fusion protein
(Fig. 1A), which binds to BSL-containing RNA (36, 37). The BSL is located in the pol gene
of 1-AAG-CTE and is only present in unspliced RNA; thus, this system allows specific
labeling of HIV-1 unspliced RNA. We visualized HIV-1 RNA in living cells using a spinning
disk microscope imaging system and captured signals from the YFP channel at 42 ms
per frame. As shown in representative images (Fig. 1B), multiple YFP puncta were
detected in the cytoplasm; these signals were specific to Bgl-YFP-tagged HIV-1 RNAs
because such puncta were not detected in the absence of Bgl-YFP or when HIV-1 RNAs
lacked BSL. We observed that these RNA signals display dynamic motion in a nondi-
rectional, random-walk manner (Movie S1). To better demonstrate the cytoplasmic
HIV-1 RNA movement, we performed single particle tracking to follow individual RNAs
shown in the box in Fig. 1B. The trajectories of these multiple RNAs during 100 frames
are illustrated in Fig. 1C; these trajectories are color-coded; signals at the beginning of
detection are shown as red, whereas the signals detected toward the end of the 100
frames are shown in yellow.

The behavior of the 1-AAG-CTE RNA observed was similar to the previously de-
scribed 1-AAG RNA movement (31). For a direct comparison, we studied 1-AAG RNA
using the same experimental conditions, including the imaging system. A representa-
tive image of 1-AAG YFP puncta in the cytoplasm is shown in Fig. 1D (also in the
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corresponding Movie S2); the movements of the individual RNAs are illustrated in
Fig. 1E. These images showed that 1-AAG RNAs also move in a dynamic, random-walk
manner, which is consistent with our previous studies (31).

Comparing mobility and directionality of cytoplasmic HIV-1 RNA exported via
different pathways. To better define the effects of the export pathway on HIV-1 RNA
movement, we performed single-molecule tracking to follow 19,530 tracks of 1-AAG-
CTE RNA from 52 cells and 35,766 tracks of 1-AAG RNA from 62 cells. We measured the
movement of individual RNAs from one frame to the next, defined as a step. As most
of the RNAs appeared to move in a nondirectional manner (Fig. 1), we measured the
mean squared displacement (MSD) an RNA traveled within a given time. The ensemble
MSDs for 1-AAG-CTE and 1-AAG RNA over four steps are shown in Fig. 2A. Results from
both 1-AAG-CTE and 1-AAG showed a linear relationship between MSD and time
(Fig. 2A), consistent with the observation that the majority of the RNAs move in a
random-walk manner. Based on these results, we calculated the diffusion coefficient of
these RNAs. Our results showed that the 1-AAG RNA diffused at a rate of 0.116 �m2/s,
which is similar to what we previously measured using a wide-field microscope system
(31). However, the 1-AAG-CTE RNA diffused at a rate of 0.065 �m2/s; which is close to
half of the speed of the 1-AAG RNA.

The ensemble MSD analysis represents the average behavior of RNA tracks but does
not distinguish whether there is more than one mobility behavior in the population. To
better understand how the export pathway affects mobility of the cytoplasmic RNA, we
calculated the jump distance traveled by each RNA track between two consecutive

FIG 1 Visualizing cytoplasmic trafficking of HIV-1 RNA exported via different pathways. (A) General
structures of the constructs expressing HIV-1 RNAs and RNA labeling protein. Both HIV-1 constructs
contain an ATG to AAG mutation to abolish the expression of functional Gag. Black box labeled 4XCTE,
four copies of CTE from MPMV; green stem loops, BSL sequences recognized by RNA-binding protein
BglG. NLS, nuclear localization signal. (B to E) Representative images of cells expressing 1-AAG-CTE RNA
(B) and 1-AAG RNA (D) are shown in the same scale; trajectories of RNA movement within 100 frames of
the selected region indicated in (B) and (D) are shown in (C) and (E), respectively. Trajectories are
depicted with the signals changing colors from start (red) to end (yellow). Panels C and E are shown at
the same scale.
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FIG 2 Mobility and directionality of cytoplasmic HIV-1 RNAs exported via different pathways. (A) Mean
square displacement (MSD) analyses of 1-AAG-CTE (red) and 1-AAG (black) RNA. D, diffusion coefficient.
(B and C) Distributions of the one-step jump distance of 1-AAG-CTE RNA (B) and 1-AAG RNA (C). Data
were binned (40-nm bin size) and normalized to the bin that contained the most events, which was set
to 100. x axis, one-step jump distance (displacement); y axis, frequency in arbitrary units (a.u.). The
distributions were fitted with a three-component model using a constant diffusion coefficient (D1 � 0.01
�m2/s) to represent the stagnant fraction or mobility under the detection limit in our system. The solid
red line represents the fitted curve, and the three dotted lines indicate distributions for each of the
mobility fractions. The percentages shown are proportions of each fraction. (D) Proportion of RNA tracks
with directional movement, which is defined as a segment that moved with a persistence index of �0.7
for �25 consecutive steps. Simulation was performed to generate 100 sets of random-walk tracks, with
each set containing the same number of tracks, distribution of track length, and the same proportions
of three diffusion coefficients based on results from 1-AAG-CTE or 1-AAG RNAs.
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frames within 42 ms of imaging time (one-step jump distance). A total of 528,579
one-step jump distances were obtained from the 19,530 1-AAG-CTE RNA tracks, and
635,465 one-step jump distances were obtained from the 35,766 1-AAG RNA tracks. The
distributions of these one-step jump distances are shown in Fig. 2B and C for 1-AAG-
CTE and 1-AAG RNAs, respectively. The jump distance (displacement) is displayed on
the x axis, and the frequency is displayed on the y axis, with the frequency of the
distance that was most often traveled set to 100. The distribution of the one-step jump
distances was heterogeneous and unlikely to fit the assumption of a single diffusion
coefficient for 1-AAG-CTE and for 1-AAG-RNAs (P � 0.0000001 and P � 0.000026,
respectively, chi-square analysis). As we previously described (31), we obtained a
satisfactory fit with the assumption that these RNAs could assume three mobility
fractions: stagnant, intermediate, and fast. The probabilities that the fitting describe the
RNA jump-distance distribution are P � 0.94 for 1-AAG-CTE and P � 0.97 for 1-AAG
(chi-square analysis). The stagnant fraction is defined by the localization precision of
our system, which was 40 nm, and yielded a diffusion coefficient of 0.01 �m2/s. Signals
in the small stagnant fractions (blue lines in Fig. 2B and C) were either static or moved
less than the localization precision of the system. The intermediate and fast fractions
(green and purple lines, respectively, in Fig. 2B and C), exhibited mobility with coeffi-
cients of 0.04 �m2/s and 0.17 �m2/s, respectively, for 1-AAG-CTE RNAs, and with
coefficients of 0.07 �m2/s and 0.30 �m2/s, respectively, for 1-AAG RNAs. These results
are consistent with the MSD analysis that the 1-AAG-CTE RNAs diffuse at about half the
rate of 1-AAG RNAs; however, both types of RNAs exhibited similar heterogenicity in
mobility behavior.

To analyze the directionality of RNA molecules, we performed a previously described
persistence index analysis (31), which examines whether an individual RNA travels
toward the same direction in consecutive steps. It is possible for an RNA molecule to
travel in the same direction for some steps during random-walk movement. To estimate
the expected movement toward the same direction during random-walk movement,
we used the measured mobility characteristics of the 19,530 1-AAG-CTE RNA tracks to
perform simulation studies to model the behavior of random-walk movement. In 100
simulations, we found that �0.014% of the RNA tracks would contain a segment that
exhibited a persistence index of �0.7 for 25 or more continuous steps, or an average
of 2.8 tracks among the simulated 19,530 tracks for 1-AAG-CTE RNAs (Fig. 2D). We also
performed simulations using the 1-AAG RNA mobility characteristics and found that
�0.0064% of the RNA tracks would contain a segment that exhibited a persistence
index of �0.7 for 25 or more continuous steps, or an average of 2.3 tracks among
the 35,766 tracks in 100 simulations (Fig. 2D). Thus, we use these criteria to analyze the
directionality of these two RNAs with our data sets. We found that 0.076% of the
1-AAG-CTE RNAs tracks (15 of the 19,530 tracks) and 0.039% of the 1-AAG RNAs tracks
(14 of the 35,766 tracks) contained a segment with a persistence index of �0.7 for 25
or more continuous steps (Fig. 2D). These measured directional movements are more
frequent than expected from random walks (P � 0.0038 for 1-AAG-CTE and P � 0.0037
for 1-AAG RNA, chi-squared test). However, 1-AAG-CTE RNAs do not move in a direc-
tional manner more frequently than 1-AAG RNAs (P � 0.064, chi-squared test). Thus, the
vast majority (�99%) of the HIV-1 RNAs use diffusion as a transport mechanism in the
cytoplasm regardless of whether they were exported by the CRM1 or the NXF1
pathway.

Effects of Gag expression on the cytoplasmic transport of HIV-1 RNA exported
via the NXF1 pathway. The HIV-1 structural protein Gag is an RNA-binding protein,
and its presence can potentially affect cytoplasmic RNA transport. To examine the
potential effects of Gag on the cytoplasmic trafficking of CTE-containing HIV-1 RNA, we
used two HIV-1 constructs that are structurally similar to 1-AAG-CTE but contain AUG
at the Gag translational start codon; 1-Gag-CTE expresses an untagged Gag and
1-Gag-mCherry-CTE expresses an mCherry tagged Gag (Fig. 3A). We transfected 1-Gag-
CTE, 1-Gag-mCherry-CTE, and Bgl-YFP into cells and monitored the appearance and
movements of the cytoplasmic RNA and the Gag signals. We found that HIV-1 RNA
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signals first appeared in the cytoplasm before the detection of Gag puncta near the
plasma membrane; furthermore, the numbers of both signals increased with time.
These findings are similar to those observed with HIV-1 RNA containing authentic RRE
and exported via the CRM1 pathway (31). To study the effects of Gag on cytoplasmic
RNA movement, we selected cells with detectable Gag puncta at the plasma mem-
brane, indicating the presence of sufficient amounts of Gag to support virion assembly
(Fig. 3B). As shown in Fig. 3C and Movie S3, some of the RNAs were colocalized with the
Gag puncta at the plasma membrane and lacked mobility, suggesting that these RNAs
were part of the assembly complexes. In contrast, other RNAs were not colocalized with
Gag puncta and moved dynamically in the cytoplasm; we followed the movements of
these RNA signals and analyzed 25,352 RNA tracks from 44 cells. To analyze the distance
individual RNAs traveled within a given time, we performed MSD analyses and found

FIG 3 The effects of Gag on the transport of cytoplasmic HIV-1 RNA exported via the NXF1 pathway. (A)
General structures of the HIV-1 constructs. (B) Representative images detected in YFP (RNA), mCherry
(Gag), and both (merged) channels. Arrows indicate two colocalized RNA:Gag signals at the plasma
membrane. An accompanying movie, Movie S3, shows 500 frames of the images. (C) Trajectories of HIV-1
RNA movement in the first 100 frames of the selected region (yellow boxes) indicated in panel B. Arrows
indicate the same two signals as in panel B. Trajectories are depicted with changing colors from start
(red) to end (yellow). (D) Persistence index analysis to detect tracks with directional movement.
Simulation was performed based on tracking results of 1-Gag-CTE/1-Gag-mCherry-CTE. (E) MSD analysis
of 1-Gag-CTE/1-GagmCherry-CTE RNA movement in the presence of Gag. D, diffusion coefficient. (F)
Distribution of the one-step jump distance of 1-Gag-CTE/1-Gag-mcherry-CTE RNAs. The solid red line
represents the fitted curve, and the three dotted lines indicate distributions for each of the mobility
fractions. The percentages shown are proportions of each fraction.
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that the MSD value exhibits a linear relationship with time (R2 � 0.9), indicating that
diffusion is the major transport mechanism. The diffusion coefficient calculated from
the ensemble MSD values is 0.059 �m2/s (Fig. 3E), similar to that of 1-AAG-CTE (Fig. 2A)
without the presence of Gag. We then analyzed the one-step jump distances of these
RNA molecules; a total of 589,606 one-step jump distances were generated, which
contained 5.2%, 60.9%, and 33.9% of stagnant, intermediate, and fast-moving popula-
tions, respectively; their distribution is shown in Fig. 3F. Using the mobility character-
istics of the 25,352 RNA tracks, we modeled the behavior of random-walk movement
and found that 0.01% of the RNA tracks was expected to have a persistence index
of �0.7 for �25 consecutive steps during random-walk movement. We then analyzed
the 25,352 tracks and found that 0.047% of the RNA tracks (12 of 25,352 tracks)
contained a segment with a persistence index of �0.7 for 25 or more continuous steps
(Fig. 3D), which is more frequent than expected from random-walk movement
(P � 0.01, chi-squared test) but similar to 1-AAG-CTE RNA (P � 0.21, chi-squared test).
Thus, similar to the movement of 1-AAG-CTE RNA in the absence of Gag, the vast
majority of the tracks moved in a diffusive manner, and a very minor portion, less than
0.1%, moved in a directional manner. Taken together, the MSD, the one-step jump
distance, and the persistence index analyses revealed that Gag expression does not
have significant effects on the mobility or directionality of the cytoplasmic HIV-1 RNA
exported via the NXF1 pathway. These results are reminiscent of our previous report
wherein Gag did not affect the diffusion rate of cytoplasmic HIV-1 RNA containing
authentic RRE that was exported by the CRM1 pathway.

System to study the impact of export pathway on HIV-1 RNA expression
kinetics and subcellular locations. To directly compare the expression and cytoplas-

mic distribution of the HIV-1 RNA exported through different pathways, we established
a cell line that expressed two proviruses, each using a different pathway to export its
RNA. The general structures of these two constructs are shown in Fig. 4A; these
constructs were modified from an engineered HIV-1 vector, HIV-rtTA, the expression of
which is under doxycycline induction (38, 39). Briefly, in HIV-rtTA, inactivating muta-
tions were introduced into tat and the Tat-binding site in the transactivation-response
(TAR) element; the rtTA gene was inserted into the nef gene, and the tet operator (tetO)
binding sites were inserted into HIV-1 LTR. Thus, the expression of HIV-rtTA is not
regulated by viral protein Tat but can be induced by the addition of doxycycline.
Importantly, HIV-rtTA generates a full-length RNA with an intact 5= untranslated region,
identical to wild-type HIV-1 except for several point mutations in TAR. HIV-rtTA was
modified to generate Gag-mCherry-RRE, which expresses a Gag fused to mCherry
fluorescent protein, Tat, and Rev and contains an authentic HIV-1 RRE. The construct
Gag-YFP-CTE has a similar structure (Fig. 4A); however, it expresses a Gag-YFP fusion
protein, and the RRE was replaced by four copies of MPMV CTE.

We generated a cell line that contained proviruses derived from Gag-mCherry-RRE
and Gag-YFP-CTE by sequentially infecting HeLa cells at a low multiplicity of infection
(MOI; �0.1). Infected cells were then enriched by repeated cell sorting until most of the
cells (�90%) were dually positive with mCherry and YFP expression. Because cells were
infected at low MOI, most of the infected cells contain only one of each provirus.

To detect HIV-1 RNA derived from Gag-mCherry-RRE and Gag-YFP-CTE, we used an
in situ hybridization assay, RNAscope, to detect mCherry and yfp sequences, respec-
tively. To determine whether this assay could distinguish between RNAs carrying
mCherry or yfp sequences, we first tested cells infected with either Gag-mCherry-RRE or
Gag-YFP-CTE. After the RNAscope procedure, we treated cells with DNA stain, DAPI
(4=,6-diamidino-2-phenylindole), and captured images of cells using a confocal micro-
scope in three channels to detect signals of probes targeting mCherry or yfp sequences
and DAPI signals. A set of representative images of the equatorial planes is shown in
Fig. 4B and C; for cells infected with Gag-mCherry-RRE, RNA signals were detected using
mCherry probes but not yfp probes. Similarly, RNA signals were detected using yfp
probes but not mCherry probes in cells infected with Gag-YFP-CTE. Thus, this assay can
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FIG 4 Experimental system used to study expression kinetics and cytoplasmic locations of HIV-1 RNA
exported via the CRM1 or NXF1 pathway. (A) General structures of inducible HIV-1 constructs. In these

(Continued on next page)
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detect HIV-1 RNA derived from our constructs; furthermore, it can distinguish RNAs
derived from Gag-mCherry-RRE and Gag-YFP-CTE.

Comparing the expression kinetics and cytoplasmic locations of HIV-1 RNA
exported using the CRM1 and NXF1 pathways. To examine the kinetics of HIV-1 RNA
expression, we treated the cells that were dually infected with Gag-mCherry-RRE and
Gag-YFP-CTE with doxycycline, fixed cells at different time points, performed RNAs-
cope, and captured images. Representative images are shown in Fig. 5A. Very few RNA
signals were detected in the dually infected cells without doxycycline induction (no
dox); after doxycycline induction, a few RNA signals could be detected at the 4 h time
point, and the numbers of RNA signals increased with time and were abundant at the
24 h time point.

To quantify the expression kinetics, a series of z-stack images were collected for each
field of view, and the images of the equatorial planes were selected for analyses. The
number of RNA signals from the equatorial plane of each cell was determined, and
results from 24, 45, 83, 56, and 34 cells for the no-dox (0 h), 4-h, 7-h, 12-h, and 24-h time
points, respectively, are summarized in Fig. 5B. These results show that both CRM1-
exported and NXF1-exported HIV-1 RNAs accumulate over time. The results in Fig. 5B
represent the total number of RNAs detected in each cell; to distinguish between
nuclear and cytoplasmic RNA, DAPI signals of each cell were used as a guide to
generate a mask, and the numbers of cytoplasmic and nuclear RNAs were determined.
Using these numbers, we calculated the proportion of RNA in the cytoplasm by dividing
the number of cytoplasmic RNAs by total RNAs (cytoplasmic RNAs plus nuclear RNAs);
these results are shown in Fig. 5C. The total numbers of RNAs from Gag-mCherry-RRE
and Gag-YFP-CTE were similar at 4 h (Fig. 5B); however, the distributions of these RNAs
differed. At the 4-h time point, �57% of the NXF1-exported Gag-YFP-CTE RNA was in
the cytoplasm, whereas only �27% of the CRM1-exported Gag-mCherry-RRE RNA was
in the cytoplasm. For both types of RNA, the proportion of cytoplasmic RNA increased
with time, and by 24 h there were similar proportions of NXF1- and CRM1-exported
HIV-1 RNA in the cytoplasm. These results indicate that both the NXF1 and CRM1
pathways export RNA efficiently; however, the export of the CRM1-dependent
Gag-mCherry-RRE RNA is slower than that of the NXF1-dependent Gag-YFP-CTE
RNA. These results are consistent with our understanding that a sufficient amount
of Rev needs to be accumulated before RRE-containing HIV-1 RNA is exported (40)
and with previous reports that CTE-containing RNAs are exported earlier than
RRE-containing RNAs (33).

It has been suggested that the use of a particular RNA export pathway could affect
the distribution of RNA in the cytoplasm (33). We reasoned that if RNAs exported by
different pathways were located at distinct compartments in the cytoplasm, then the
distances between RNAs exported using the same pathways should be shorter than
that between RNAs exported using different pathways. To test this hypothesis, we
measured the distances between each Gag-mCherry-RRE RNA to the nearest Gag-
mCherry-RRE RNA (RRE to RRE), as well as distances between each Gag-mCherry-RRE
RNA to the nearest Gag-YFP-CTE RNA (RRE to CTE). A set of representative results is
shown in Fig. 5D as “observed.” We also used the spatial information of the RNA
detected in the cytoplasm to perform a simulation assuming these two types of RNAs
are randomly mixed and calculated the expected distances between RNAs (shown as
“random” in Fig. 5D). Our results showed that the distances between Gag-mCherry-RRE
RNA to the nearest Gag-mCherry-RRE RNA or Gag-YFP-CTE RNA were not different from

FIG 4 Legend (Continued)
constructs, the rtTA gene was inserted into the nef gene, and the tet operator (tetO) binding sites were
inserted into the HIV-1 LTR. (B and C) Representative images of RNAscope detection of HIV-1 RNA derived
from Gag-mCherry-RRE provirus (B) or Gag-YFP-CTE provirus (C). Probes specific to the mCherry or yfp
gene used in the experiments are indicated above the panels. Channels used to detect signals are shown
on the side of the images. Signals from mCherry probes are shown in red, whereas signals from yfp
probes are shown in green. DAPI stains are shown in blue.
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those calculated based on random mixing of these two types of RNAs in a cell using
simulation (RRE to RRE observed versus random, P � 0.23; RRE to CTE observed versus
random, P � 0.78; one-way analysis of variance [ANOVA]). Additional data from analyses
of two other cells are shown in Fig. S1.

FIG 5 The expression kinetics and subcellular locations of HIV-1 RNA measured using a cell line dually
infected with Gag-mCherry-RRE and Gag-YFP-CTE. (A) Representative images of HIV-1 RNA detected by
RNAscope. Time points after doxycycline induction are shown to the left of the images. No dox, without
doxycycline induction. Signals from mCherry probes, yfp probes, and DAPI stain are shown in red, green,
and blue, respectively. (B) Quantitation of RNA accumulation after transcription induction. The number
of total RNA signals detected in the equatorial plane of each cell is shown. The results shown are
averages of 24, 45, 83, 56, and 34 cells for no dox (0 h) and 4 h, 7 h, 12 h, and 24 h after doxycycline
induction, respectively. Error bars, standard deviation. (C) Quantitation of the proportion of RNA signals
in the cytoplasm at the indicated hours postinduction. The proportion of cytoplasmic RNA is calculated
by dividing the number of cytoplasmic RNAs by the number of total RNAs (RNA in cytoplasm and
nucleus). (D) Spatial relationship between Gag-mCherry-RRE and Gag-YFP-CTE RNAs in the cytoplasm. The
distances of individual Gag-mCherry-RRE RNA signals to the nearest Gag-mCherry-RRE RNA signal (RRE to RRE)
or to the nearest Gag-YFP-CTE RNA signal (RRE to CTE) in the cytoplasm of a representative cell are shown.
To generate distances expected from a cell in which Gag-mCherry-RRE and Gag-YFP-CTE RNAs were mixed
randomly in the cytoplasm, we used the spatial information of Gag-mCherry-RRE and Gag-YFP-CTE RNAs.
Based on the number of Gag-YFP-CTE molecules in the cytoplasm of the cell, we randomly assigned a subset
of the total RNAs as Gag-YFP-CTE RNAs and measured the minimal distance of Gag-mCherry-RRE RNAs to
Gag-mCherry-RRE RNAs or Gag-YFP-CTE RNAs; these values are shown as “random.”
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It was suggested that the MPMV CTE element links HIV-1 RNA to the microtubules
in the cytoplasm, driving them to cluster at the centrosome (33). Analyses of our
RNAscope images showed that HIV-1 RNAs exported through the NXF1 pathway were
well mixed with RNAs exported through the CRM1 pathway in the cytoplasm. To further
study the distribution of the HIV-1 RNAs, we combined immunofluorescence and
RNAscope to detect centrosomes and HIV-1 RNA signals simultaneously in the same
cell. We acquired four-channel z-stack images with a confocal microscope and analyzed
the equatorial image plane with clearly identifiable centrosome signal(s). Our images
did not reveal accumulation or clustering of Gag-YFP-CTE RNAs or Gag-mCherry-RRE
RNAs at the centrosomes in cells (Fig. 6A). To quantify the spatial relationship of the
HIV-1 RNAs to the centrosomes, we measured the distances of all Gag-mCherry-RRE
RNAs and Gag-YFP-CTE RNAs to the two centrosomes in the cell and observed similar
distance distributions of Gag-mCherry-RRE RNAs and Gag-YFP-CTE RNAs to both cen-
trosomes (Fig. 6B; centrosome 1, Gag-mCherry-RRE RNA versus Gag-YFP-CTE RNA,
P � 0.98; centrosome 2, Gag-mCherry-RRE RNA versus Gag-YFP-CTE RNA, P � 0.99;
one-way ANOVA). Results from analyses of 27 additional cells are shown in Table 1. In
the analyzed image plane, both centrosomes were visible in 17 of the 27 cells, and only
one centrosome was visible in the equatorial plane in the other 10 cells. Along with the
cell shown in Fig. 6, we compared the distances of HIV-1 RNAs containing CTE or RRE
to centrosomes in 28 cells and 46 centrosomes. In all cases, the average distance of the
Gag-YFP-CTE RNAs to a centrosome is not significantly different than the distance of
the Gag-mCherry-RRE RNAs to the same centrosome. Thus, our results show that RRE-
and CTE-containing HIV-1 RNAs have similar subcellular distributions and do not display
differences in their localization relative to the centrosomes.

Taken together, these results indicate that the vast majority of the HIV-1 RNA
exported by CRM1- or NXF1-mediated pathways use diffusion to travel in the cyto-
plasm. However, the export pathways used by HIV-1 RNAs affect the mobility of the
RNAs in the cytoplasm; HIV-1 RNA using the NXF1 export pathway diffuses at a lower
rate than its counterpart exported by the CRM1 pathway. HIV-1 RNAs are exported
efficiently by both CRM1 and NXF1 pathways, although RNAs exported through the
CRM1 pathway accumulate in the cytoplasm more slowly than those exported through
the NXF1 pathway, most likely because sufficient Rev expression is needed for the RNA
transport. HIV-1 RNAs exported via the CRM1 or the NXF1 pathway have similar
cytoplasmic distributions and do not cluster near the centrosomes.

DISCUSSION

HIV-1 RNA must be exported into the cytoplasm to carry out its functions. Proper
nuclear export not only allows HIV-1 RNA to localize in the cytoplasm, but also affects
RNA functions and downstream events in viral replication. It has been shown that
although HIV-1 RNA lacking RRE or Rev can be detected in the cytoplasm, it was not
efficiently packaged or translated (41–43). Similarly, HIV-1 RNA is not properly exported
in murine cells because the mouse CRM1 protein does not efficiently multimerize on
the HIV-1 Rev/RRE complex; this defect not only resulted in inefficient export, but also
partly contributed to the observed Gag assembly defects in murine cells (20, 44, 45).
These defects can be rescued by the presence of CTE in the viral RNA; CTE-containing
HIV-1 RNA can be packaged into particles and efficiently translated to correct HIV-1
assembly defects in murine cells (20, 41, 46). Thus, CTE can functionally replace the
requirement for Rev/RRE in HIV-1 RNA. However, it was unclear whether the physical
properties of the HIV-1 RNA exported using these two pathways were different;
CTE-containing HIV-1 RNA was suggested to use a different mode of transport and have
distinct cytoplasmic locations (33). In this report, we compared the movements of CTE-
and RRE-containing HIV-1 RNAs using single-molecule tracking and showed that both
RNAs mainly use diffusion to travel in the cytoplasm. We also used RNAscope to identify
RRE- or CTE-containing HIV-1 RNA in the same cell and compared their subcellular
locations. Our studies show that these two types of RNAs are well mixed in the
cytoplasm and have similar subcellular distributions.
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To compare the movements of the RRE- and CTE-containing HIV-1 RNAs, we
performed single-molecule tracking to follow a large number of RNA tracks. We then
examined whether individual RNAs traveled in the same direction in consecutive steps
using persistence index analyses. We found that �99% of the CTE- and RRE-containing
HIV-1 RNA travel in a random-walk manner; furthermore, the proportion of CTE-

FIG 6 Distribution of HIV-1 RNAs relative to the centrosome. The expression of Gag-mCherry-RRE and Gag-YFP-CTE
proviruses were induced by the addition of doxycycline, and cells were fixed at 8 h, 16 h, and 24 h postinduction.
HIV-1 RNA was detected by RNAscope; Gag-YFP-CTE and Gag-mCherry-RRE RNA signals are shown in green and
red, respectively. Centrosomes were detected by immunofluorescence with antibody to �-tubulin. (A) Represen-
tative images showing HIV-1 RNA and centrosome signals. (B) The spatial relationship between Gag-mCherry RRE
and Gag-YFP-CTE RNAs to centrosomes in the cytoplasm of the cell. The distances of individual Gag-mCherry-RRE
and Gag-YFP-CTE RNAs to the two centrosomes detected from a representative cell are shown.
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containing RNA engaging in directional movement (0.076%) is not significantly differ-
ent than that of RRE-containing RNA (0.039%). These results are different than the
previous report indicating that CTE-containing HIV-1 RNA was transported in a direc-
tional manner (33). At this time, the reasons behind the observed differences are
unclear. One speculation is that the speed at which the RNA images were captured
could affect the ability to track RNA and influence data interpretation. HIV-1 RNAs move
dynamically in the cytoplasm, and we used high-speed imaging to capture their
movements (42 ms per frames or �24 frames per second). If the images of the RNAs
were captured with a long lag time between frames, such an approach could result in
difficulty tracking diffusive movement, thereby elevating the ratios of the observed
directional movement.

Although we observed that both CTE- and RRE-containing RNAs use diffusion to
travel within the cytoplasm, we observed that these two types of RNAs have different
diffusion rates. The diffusion rate of 1-AAG RNA (0.116 �m2/s) is faster than the rate of
1-AAG-CTE RNA (0.065 �m2/s). These results were generated from measuring the
distances traveled by these two types of RNAs in four steps and used the results to
calculate ensemble MSDs (Fig. 2A). We compared the results in each of the four steps
between these 1-AAG and 1-AAG-CTE and found that each of the four data points is
significantly different (P � 10�6, two-tailed unequal variance t test). The relationship
between mass and the rate of diffusion is cubed, suggesting that the mass of the
CTE-containing RNA is significantly larger than that of the RRE-containing HIV-1 RNA.
However, 1-AAG-CTE RNA is only 78 nucleotides (nt), or 1.5%, longer than the 1-AAG
RNA; thus, the difference in diffusion rates cannot be attributed to the difference in
length between the two RNAs. Most of the cellular mRNAs are associated with proteins
to form ribonucleoprotein (RNP) complexes. It is possible that the CTE- and RRE-
containing HIV-1 RNAs have distinct protein compositions; many aspects of the pro-
teins associated with cytoplasmic RNAs are undefined, including when the NXF1/NXT1
complexes dissociate from the exported HIV-1 RNA. Alternatively, it is also possible that

TABLE 1 Distances of CTE RNA and RRE RNA to centrosomesa

Cell no.

Distance of centrosome 1 to (�m): Distance of centrosome 2 to (�m):

CTE RNA (avg � SD) RRE RNA (avg � SD) P CTE RNA (avg � SD) RRE RNA (avg � SD) P

1 8.47 � 3.14 8.58 � 3.56 0.79 NA NA NA
2 10.06 � 3.70 10.22 � 3.60 0.64 10.06 � 3.76 10.18 � 3.67 0.73
3 9.89 � 4.72 9.94 � 10.01 0.51 11.05 � 8.35 10.85 � 11.04 0.37
4 14.50 � 6.22 16.08 � 5.69 0.10 NA NA NA
5 8.57 � 3.22 8.21 � 3.14 0.45 8.86 � 4.47 8.15 � 4.13 0.27
6 7.70 � 3.78 7.56 � 3.41 0.72 8.06 � 3.28 8.22 � 3.06 0.63
7 8.93 � 3.17 9.22 � 3.23 0.44 8.59 � 3.71 8.96 � 3.86 0.40
8 7.02 � 2.72 7.09 � 2.49 0.85 6.82 � 2.75 6.80 � 2.56 0.94
9 12.27 � 6.08 13.28 � 6.18 0.17 9.13 � 3.22 9.40 � 3.44 0.49
10 8.56 � 4.38 8.56 � 4.39 0.99 8.42 � 3.63 8.87 � 3.34 0.16
11 10.82 � 3.41 11.05 � 3.46 0.48 11.26 � 3.66 11.37 � 3.64 0.77
12 13.42 � 5.40 14.09 � 4.90 0.10 13.68 � 6.19 14.15 � 5.69 0.32
13 10.04 � 4.15 9.86 � 4.16 0.61 11.14 � 4.10 11.42 � 4.15 0.42
14 11.00 � 5.89 11.13 � 5.72 0.84 NA NA NA
15 11.24 � 4.38 12.08 � 4.62 0.07 NA NA NA
16 7.89 � 3.10 7.92 � 3.43 0.94 7.87 � 3.98 7.88 � 4.37 0.99
17 5.88 � 2.97 5.31 � 2.91 0.32 NA NA NA
18 9.84 � 9.40 10.17 � 2.98 0.48 NA NA NA
19 9.63 � 4.53 9.62 � 4.36 0.99 9.65 � 4.86 9.62 � 4.36 0.96
20 9.43 � 3.15 9.68 � 3.16 0.46 NA NA NA
21 11.23 � 5.85 12.00 � 5.86 0.34 NA NA NA
22 9.42 � 2.78 9.14 � 3.02 0.43 9.90 � 4.05 9.67 � 4.35 0.65
23 11.18 � 5.66 10.68 � 5.88 0.48 10.39 � 4.36 9.81 � 4.63 0.29
24 9.50 � 4.23 9.92 � 4.44 0.45 NA NA NA
25 7.03 � 3.83 7.23 � 3.78 0.63 7.12 � 3.45 7.35 � 3.38 0.55
26 14.16 � 5.00 13.72 � 5.41 0.41 7.68 � 3.87 7.86 � 3.52 0.64
27 7.24 � 4.00 7.67 � 3.86 0.40 NA NA NA
aNA, only one centrosome detected at the equatorial plane in those cells.
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HIV-1 RNAs exported through NXF1 pathways have distinct RNA folding and structures
from RNA exported via CRM1 pathway, resulting in the difference in diffusion rates.
Future experiments will be needed to identify the reasons for the differences in
diffusion rates.

We have also compared the subcellular location of CTE- and RRE-containing
HIV-1 RNAs using a cell line containing two doxycycline inducible proviruses. Using
RNAscope, we compared CTE- and RRE-containing HIV-1 RNAs in the same cells. In
these analyses, we examined whether RNAs exported through the same pathways
cluster together and whether the CTE- and RRE-containing RNAs have different dis-
tances to a centrosome. In these analyses we observed that CTE- and RRE-containing
HIV-1 RNAs are well mixed in the cytoplasm. It was reported that in �25% of the cells,
CTE-containing RNAs were clustered near centrosomes (33). We analyzed 28 cells and
did not observe clustering of CTE-containing RNA near centrosomes; this is significantly
different than expected from 25% of the cells exhibiting such a phenotype (P � 0.0047;
chi-square analyses with the assumption that 7 cells [25% of 28 cells] display clustering).
Thus, HIV-1 RNAs do not cluster near centrosomes in an export pathway-dependent
manner. These results are distinct from the previous observations (33). At this time, it
is unclear why the two studies have distinct findings; we speculate that experimental
systems used in the studies may contribute to the observed differences. In our studies
described in this report, HIV-1 RNAs were expressed from proviruses, whereas in the
previous study, HIV-1 RNAs were expressed from transfected DNAs. It is possible that
transfection resulted in RNA expression at levels higher than that from a provirus and
caused the observed differences. Alternatively, other distinct biological features in the
two experimental systems could have caused the observed differences.

We previously observed that HIV-1 RNAs containing CTE or RRE can both be
packaged into viral particles; however, these two types of RNA do not copackage
together efficiently (22). To explain this observation, we hypothesized that CTE- and
RRE-containing HIV-1 RNAs are segregated in the cytoplasm (22). Here, we showed that
CTE- and RRE-containing RNAs are well-mixed in the cytoplasm. Together with our
observation that HIV-1 RNA dimerization occurs at the plasma membrane, these results
suggest that the inefficient copackaging of the CTE- and RRE-containing RNAs is not
caused by spatial segregation of RNA in the cytoplasm. Further studies will be needed
to decipher the mechanisms by which export pathways affect RNA copackaging.

We also examined the expression and export kinetics of the RRE- and CTE-
containing HIV-1 RNA. The probes we used to detect mCherry or yfp sequences allow
us to only observe full-length unspliced RNAs. We observed that, after doxycycline
induction, there are similar total numbers of CTE- and RRE-containing full-length RNAs
between 4 to 24 h (Fig. 5B). However, the export of the RRE-containing HIV-1 RNA is
slower than that of the CTE-containing HIV-1 RNA (Fig. 5C). For the CTE-containing RNA,
the proportion of RNA increases in the cytoplasm with time; however, even at an early
time point, such as 4 h, �60% of the RNA is in the cytoplasm. In contrast, the majority
of RRE-containing HIV-1 RNAs are in the nucleus at 4 h, but the ratios of the cytoplasmic
RNAs increase with time, and by 24 h, most of the RRE-containing HIV-1 RNAs are
in the cytoplasm. The slower export kinetics of the RRE-containing HIV-1 RNA is
consistent with the requirement for Rev expression, which is translated from a
completely spliced RNA.

The nuclear export of HIV-1 RNA is important for its functions both as an encapsi-
dated virion genome and as a template for Gag/Gag-Pol translation. We have shown in
this report that whether RNA export is mediated by the CRM1 or the NXF1 pathway,
HIV-1 cytoplasmic RNA mainly travels by diffusion and results in similar distribution
patterns. These studies underscore the flexible nature of HIV-1 replication and the
ability of the virus to adapt.

MATERIALS AND METHODS
Plasmids. Plasmids 1-AAG and Bgl-YFP have been described previously (31, 35). Plasmid 1-AAG-CTE

was generated by replacing the SalI to NgoMIV fragment of 1-AAG with the corresponding fragment of
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GagCeFP-BglSL-CTE (22). Plasmid 1-GagmCherry-CTE was generated by replacing the SalI/NgoMIV frag-
ment of 1-GagmCherry-BSL (31) with the corresponding fragment of 1-AAG-CTE. Doxycycline-inducible
HIV-1 plasmids bearing RRE or CTE export signals were derived from HIV-rtTA (38, 39). Briefly, to obtain
Gag-mCherry-RRE, a large portion of the viral sequence (fragments SfoI to AgeI) including the gag-pol
sequence in HIV-rtTA was replaced by the counterparts (fragments SfoI to Agel) from 1-GagmCherry-BSL
(31). To obtain Gag-YFP-CTE, the mCherry sequence in Gag-mCherry-RRE was replaced with a YFP
sequence using XbaI/BsrG1, and the RRE sequence was replaced with a CTE sequence from GagCeFP-
BglSL-CTE (22) using AscI/SanDI sites. Molecular cloning was performed using standard techniques; the
general structures of all plasmids were verified by restriction enzyme mapping, and DNA sequences
generated by PCR were confirmed by DNA sequencing to avoid inadvertent mutations.

Cell culture, transfection, and generation of provirus-expressing cell lines. Human 293T cells
and HeLa cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum (HyClone), penicillin (50 U/ml; Gibco), and streptomycin (50 �g/ml; Gibco), and cells
were maintained in humidified 37°C incubators with 5% CO2.

Transient transfections were performed using FuGENE HD transfection reagent (Promega) according
to the manufacturer’s recommendations. HeLa cell lines that contain Gag-mCherry-RRE and Gag-YFP-CTE
proviruses were generated by sequential infection and cell sorting. Briefly, an HIV-1 construct was
cotransfected into 293T cells with pC-help and pHCMV-G plasmids, which express HIV-1 proteins (47) and
vesicular stomatitis virus G protein (48), respectively. Viruses were harvested from transfected cells 24 h
later, clarified through a 0.45-�m-pore-size filter to remove cellular debris, and used for infection. HeLa
cells were sequentially infected at low MOI (�0.1) to ensure that most infected cells only contained one
copy of each provirus. The dually infected cell pool contained at least 6,000 independently infected cells
and was enriched by repeated cell sorting until �80% of the cells in the population expressed Gag-
mCherry-RRE and Gag-YFP-CTE. Proviral expression was induced by the addition of 3 �g/ml doxycycline
(final concentration) to the cell culture.

RNAscope fluorescent multiplex and immunofluorescent assay. An RNAscope assay was per-
formed according to the manufacturer’s recommendation (ACDbio) with probes specific to the mCherry
gene (RNAscope Probe-mCherry-C2; product number 431201-C2) or the yfp gene (RNAscope Probe-EYFP;
product 312131). To detect centrosomes, following the RNAscope procedure, cells were treated with
phosphate-buffered saline with 3% bovine serum albumin for 45 min at room temperature, followed by
incubation with a mouse antibody against human �-tubulin (Sigma) for 2 h at room temperature. After
washing with phosphate-buffered saline containing 0.2% Tween 20, cells were incubated with Cy5-
tagged anti-mouse antibody for 30 min at room temperature and washed, and this was followed by DAPI
stain for 5 min. The cells were then mounted with mounting solution and sealed for imaging. Images of
3 or 4 channels to detect DAPI, Alexa 488 (for yfp sequence detection), Atto 550 (for mCherry sequence
detection), and Cy5 (centrosome) were acquired with a Zeiss Lsm780 confocal microscope. A customized
Matlab program was used to select the equatorial plane from acquired z-stack images based on the area
of nuclear DAPI stain. Gag-mCherry-RRE and Gag-YFP-CTE RNA signals were identified with the Localize
program (49). A customized Matlab program was used to sort the Gag-mCherry-RRE and Gag-YFP-CTE
RNA signals located in the nucleus and cytoplasm based on nuclear masks generated from DAPI staining.

Microscopy, imaging acquisition, processing, and data analysis. For live-cell imaging, spinning
disk confocal microscopy was performed using an inverted Nikon Ti microscope with the Yokogawa
CSU-X1 confocal scanner unit and a 100 � 1.45-numerical aperture (100 � 1.45-NA) total internal-
reflection fluorescence (TIRF) oil objective. Simultaneous imaging of YFP and mCherry was performed by
using two precisely aligned cameras (Andor iXon Ultra) on a Cairn image splitter (Optosplit II). Camera
alignments were performed using labeled HIV-1 particles as previously described (31). The YFP and
mCherry were excited with 514- and 594-nm lasers, respectively, whereas emission was detected by
using 542/27- and 650/75-nm filters, respectively. Rapid HIV-1 RNA movement was acquired by using
RAM capture with a 40-ms integration time and �2-ms overhead between frames, resulting in an overall
42-ms frame time. Subsequent image processing and analyses, including Laplacian of Gaussian (LoG)
filtering and movie encoding, were performed with ImageJ software.

Single-molecule tracking and analysis. Single-molecule tracking was performed with Matlab
(Mathworks) code (http://physics.georgetown.edu/matlab/) based on the available tracking algorithms
(50) with maximum single-step displacement of 4 pixels (0.52 �m) and minimum track length of 5
consecutive frames. The positions of the diffraction-limited spots in the trajectories were refined with
two-dimensional (2D) Gaussian fitting (51). MSDs were calculated from positional coordinates as previ-
ously described (52). In free diffusion, the MSDs [r2(t)], are linearly related to time (t) and the diffusion
coefficient (D) by the formula r2(t) � 4Dt.

In jump-distance analysis, the probability that a particle starting at a specific position will be
encountered within a shell of radius (r) and width (dr) at time (t) from that position is given as

p�r,t�dt �
1

4�Dt
e�r2⁄4Dt2�dr when starting at the origin. Experimentally, this probability distribution can be

approximated by a frequency distribution, which is obtained by counting the jump distances within
respective intervals (r, r 	 dr) traveled by a single RNA during a given time. When a population contains
multiple diffusive fractions, the jump-distance distribution cannot be fitted satisfactorily by the above
function with a single diffusion coefficient. Such different mobility fractions can be detected and
quantified by curve fitting, taking several diffusion terms into account (53).

The persistence index of a track between two points was calculated by dividing the net distance of

the track between two points by the total distance, using the formula Pindex �
d�p1, pL�

�i�1
L�1 d�pi, pi�1�

, where d
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represents the distance, p1 represents the initial point, and pL represents the last point. A computer
program based on Matlab was generated to simulate free diffusion in 2D. Using this program, and based
on Gaussian random-walk movement, we generated 100 sets of simulation with the same number and
length distribution of trajectories and proportion of the three diffusion coefficients as the 1-AAG,
1-AAG-CTE, and 1-GagmCherry-CTE data sets, respectively. To identify potential directional mobility, we
scanned the experimental trajectories and 100 sets of simulated trajectories for segments consisting of
10 to 48 consecutive steps with a persistence index � 0.7.
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