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Introduction: Cancers presenting at advanced stages inherently have poor prognosis. High grade serous
carcinoma (HGSC) is the most common and aggressive form of tubo-ovarian cancer. Clinical tests to accu-
rately diagnose and monitor this condition are lacking. Hence, development of disease-specific tests are
urgently required.
Methods: The molecular profile of HGSC during disease progression was investigated in a unique patient
cohort. A bespoke data browser was developed to analyse gene expression and DNA methylation datasets
for biomarker discovery. The Ovarian Cancer Data Browser (OCDB) is built in C# with a.NET framework
using an integrated development environment of Microsoft Visual Studio and fast access files (.faf). The
graphical user interface is easy to navigate between four analytical modes (gene expression; methylation;
combined gene expression and methylation data; methylation clusters), with a rapid query response
time. A user should first define a disease progression trend for prioritising results. Single or multiomics
data are then mined to identify probes, genes and methylation clusters that exhibit the desired trend. A
unique scoring system based on the percentage change in expression/methylation between disease
stages is used. Results are filtered and ranked using weighting and penalties.
Results: The OCDB’s utility for biomarker discovery is demonstrated with the identified target OSR2.
Trends in OSR2 repression and hypermethylation with HGSC disease progression were confirmed in
the browser samples and an independent cohort using bioassays. The OSR2 methylation biomarker could
discriminate HGSC with high specificity (95%) and sensitivity (93.18%).
Conclusions: The OCDB has been refined and validated to be an integral part of a unique biomarker dis-
covery pipeline. It may also be used independently to aid identification of novel targets. It carries the
potential to identify further biomarker assays that can reduce type I and II errors within clinical
diagnostics.
Crown Copyright � 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epithelial ovarian cancer (EOC) is one of the most common
causes of cancer death in women. The most common and most
deadly type being high grade serous carcinoma (HGSC). It makes
up � 70 % of all EOCs and � 90 % of advanced stage. From a molec-
ular perspective, the presence of p53 mutations is ubiquitous and
germline mutations in the BRCA1 or BRCA2 genes are present in
6.5–19 % [1–3]. In sporadic cases the presence of BRCA dysfunction
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and loss of function (BRCAness) is observed at relatively high fre-
quency [5–6].

Until recently, the underlying molecular mechanisms of HGSC
development remained unknown. The development of HGSC was
previously attributed to errors in cell replication associated with
the repair of the recurrent trauma endured by the ovarian surface
epithelium (OSE) incurred by ovulation [7–13]. In recent years,
compelling pathological evidence has emerged that supports the
theory that the distal fallopian tube is the origin of most extra-
uterine HGSC [14]. Extensive pathological research, initially of
risk-reducing salpingo-oophorectomy (RRSO) specimens in women
at high risk of hereditary breast and tubo-ovarian cancers, has
revealed most HGSCs arise from the distal fallopian tube from a
precursor referred to as serous tubal intraepithelial carcinoma
(STIC) [15–16]. The presence of identical p53 mutations in STIC
and its adjacent HGSC confirms clonality and a link between STIC
and HGSC [17]. Previously, we have performed gene expression
profiling, subsequent bioinformatic analysis and in-vitro valida-
tion, of a unique six-patient HGSC dataset [18]. This study provided
further strong evidence that extrauterine HGSC arises from the
fimbria of the distal fallopian tube.

Currently there is no effective screening method for EOC. Ovar-
ian Cancer screening trials, in both the United States (US) and Uni-
ted Kingdom (UK), with pelvic ultrasound scanning and, the
biomarker, serum CA125 were inconclusive [19–21]. Pelvic ultra-
sound in expert hands is a highly sensitive diagnostic method for
EOC [22]. Unfortunately, because it relies heavily on individual
expertise, discrimination between benign and malignant pelvic
masses in routine clinical practice is challenging. Serum CA125 is
most effective as a marker of disease status in patients undergoing
chemotherapy treatment for EOC. It is not particularly specific to
malignancy and is elevated by several benign conditions including
endometriosis, pelvic infection, and uterine leiomyomata. CA125 is
elevated in only 50 % of early stage EOCs and using it for screening
can cause unnecessary medical intervention and significant patient
distress [23]. Early diagnosis of HGSC is complicated by the fact
that small tubal lesions can disseminate widely without the forma-
tion of a large tumour mass.

A novel approach, to combat this, would be the development
of disease-specific molecular assays as an alternative, or comple-
mentary, diagnostic tool to radiological or serum biomarkers. A
fast emerging area of tubo-ovarian cancer diagnostics is that of
the liquid biopsy [24]. One novel methodology is the use of cir-
culating free DNA (cfDNA) quantification and/or molecular pro-
filing. Interrogating tumour specific cfDNA, known as
circulating tumour DNA (ctDNA), for disease-specific genomic
alterations carries the potential to significantly improve EOC
diagnostics [24].

Expression profiling of genes at a transcriptional level, in a
specific cell at a specific time can provide a global picture of cellu-
lar function [25]. Gene expression data has identified novel
biomarkers that molecularly classify several cancers according to
stage, recurrence potential, prognostic outcome and response to
therapy [26–29]. Similarly, DNA methylation profiling can identify
disease-specific aberrations and provide a better understanding of
the molecular events that promote disease survival/progression.
DNA methylation at CpG sites is not evenly distributed throughout
the genome. Regions with a higher frequency of CpG sites are ter-
med as CpG islands [30] and most methylation occurs close by in
‘‘shores” or more distantly in ‘‘shelves” [31–33]. CpG islands often
reside within the promoter region of genes. Large genome-wide
methylation studies have shown that CpG methylation close to
the transcriptional start site of a gene may result in repression of
the gene [34]. Methylation within the region of the gene body usu-
ally results in stimulation/overexpression of the gene [35]. Methy-
lation data can also be used to identify biomarkers.
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The identification of disease-specific genetic aberrations
requires in-depth mining of multiomics data. Whilst a wealth of
big data has been collated for many cancers using third generation
sequencing approaches, biomarkers are still lacking. Analytical
tools to easily, and rapidly, analyse these large datasets are not
readily available. New tools could identify genetic aberrations with
disease-specific biomarker potential. Subsequent bioassay valida-
tion could be progressed on multiple markers concurrently with
focussed confirmatory bioinformatics carried out on those with
the most promise. A pipeline like this is needed to facilitate bio-
marker discovery in EOC.

Herein, the Ovarian Cancer Data Browser (OCDB) was developed
to analyse multiomics data (gene expression, methylation) from a
unique HGSC patient cohort [18]. The aim was to gain greater
understanding of the underlying molecular biology that defines
the HGSC carcinogenic pathway and, ultimately, refine a biomarker
discovery pipeline. The OCDB was built in C# with a.NET frame-
work using an integrated development environment of Microsoft
Visual Studio. The OCDB allows users to rapidly and easily mine
multiomics datasets. Trends of gene expression and methylation
for a probe over the course of disease progression for each patient
can be explored. The OCDB automatically calculates a score for
each probe to reflect how consistently it shows an increasing or
decreasing trend in expression or methylation between each dis-
ease stage. After scores are calculated, a sorted array is created
which ranks results for probes, genes or methylation clusters.
Results can be further filtered using weightings and penalties to
adjust probe scores. The development of the OCDB and its perfor-
mance and utility in a biomarker discovery pipeline is described.
Validation of an example biomarker, OSR2, identified by the OCDB
using bioinformatic, wet lab, and analysis of an independent data-
set is also outlined.
2. Methods

2.1. Patient sample preparation, data collection and analytical pre-
processing of data for the OCDB browser

The Northern Ireland Biobank provided six cases of sporadic,
stage III + HGSC, who underwent primary cytoreductive surgery
at the Northern Ireland Gynaecological Cancer Centre, for the study
(Ethical approval: NIB11:005, NIB13:0094). The cases were chosen
on the basis of the availability of the following tissue within their
resectional specimen: normal OSE, normal FT, STIC, primary HGSC,
and omental metastases. All cases had fully anonymised, matched
clinico-pathological data [18].

An H&E stained slide was prepared from each of the relevant
formalin fixed paraffin embedded (FFPE) blocks from all six cases.
The cohort slides were pathologically reviewed and annotated for
each of the five tissue types by a specialist Gynaecological Pathol-
ogist (WGM). Subsequently, ten 5 lm sections were taken from
each tissue block for macrodissection and RNA preparation. Finally,
a further H&E stained slide was prepared to confirm the annotated
regions were still present and therefore, present throughout the
sections for RNA preparation. The process was repeated for DNA
preparation.

RNA preparation and gene expression profiling, using the Xcel�

array (ALMAC, Craigavon, UK), was performed on the dataset as
previously described [18,36]. The array was validated using Quan-
titative reverse transcription PCR (RqPCR) [18]. The raw gene
expression data in.CEL files was processed using the makecdfenv
R package. This reads the AffymetriX array and creates a chip
description file (.cdf). The.cdf file consists of a hash table environ-
ment containing the location/probe set membership mapping
information. Gene expression data was background corrected and
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normalised using the justRMA function from the affy Bioconductor
R package [37] and saved as a CSV file.

DNA preparation for bisulphite conversion and DNA methyla-
tion profiling was also performed on the same sample set using
standard approaches and the Infinium HumanMethylation 450 K
BeadChip array (Illumina� Inc., California, USA) [36]. Methylation
arrays were validated using pyrosequencing [36]. The DNA methy-
lation.idat files underwent a vanilla analysis using the RnBeads R
package [38]. The methylation data passed quality control assess-
ment for bisulphite conversion. The Greedycut algorithm was
employed to filter out unreliable probes. Following this, the back-
ground was subtracted using the methylumi package (method
‘‘noob”) and the methylation b-values were normalized using the
BMIQ normalization method [39]. The remaining probes were
assessed for batch effects and corrected where necessary. Methyla-
tion values for probes were saved as a CSV file. The descriptor files
for the probe genomic location within promoter, genebodies and
CpG islands were saved as CSV files, as well as a sample identifica-
tion file (sample_annotation.csv).

3. Data transformation and loading

Data for the three disease progression stages, normal FT (NFT),
STIC and HGSC, from each of the six patients, was transformed into
fast access files (.faf). Fast access files have a binary format suitable
for highperformanceaccess anddataprocessingefficiency. To trans-
form data, a custom CSVSplitter programwaswritten specifically to
handle the normalised gene expression andmethylation data as CSV
files as well as the output descriptor files. The .cdf file and the sam-
ple_annotation.csv descriptor files were necessary for correct sam-
ple identification and interpretation of results. CSV files for the
annotation of methylation probes location within gene bodies,
islands and promoters were also processed. In all, expression values
for 110,961 gene transcripts and methylation values for 424,583
CpG probes for each patient and disease stage were compiled as fast
access files. Given the small dataset, patientswere arbitrarily named
patients 1 to 6. After the data has been loaded, the OCDB interface
opens and calculations are automatically implemented. Somebrow-
ser features require the internet, therefore the userwill be alerted at
this stage if the PC is not connected to the internet.

3.1. Data mining for expression/methylation probes associated with
disease progression

3.1.1. Score calculations and ranking of probes
The OCDB aims to identify probes with consistently increasing

or decreasing gene expression/methylation with disease progres-
sion. The approach used to estimate a probe’s score was consistent
for gene transcript expression and methylation data and involved
three stages of calculations. Firstly, the percentage change in score
is estimated between disease stages. To estimate this, the gene
transcript expression/ methylation values for each probe for the
six patients are summed and a total is also calculated for each of
the three disease stages. The percentage change in score (+/-) from
NFT to STIC, from STIC to HGSC and from NFT to HGSC is then cal-
culated. The final score is determined by adding the percentage
changes together. The default browser setting is to treat each of
these percentage changes equally. However, using two additional
stages scores can be further calculated to prioritise probes that
exhibit a particular directional change in expression/methylation
and/or to filter results from the analysis.

3.1.2. Adjusting probe scores using weightings and penalties to filter
results for reliability

In the ‘‘Sort Criteria” interface, users can specify to apply
weightings to each of the disease progression changes to prioritise
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probes for that transition (Fig. 1a, 2a). Using the ‘‘Points per %
change” settings, weightings can be applied as multipliers to each
of the three scores independently. Consider a probe whose per-
centage change in expression/methylation increased by 8 %
between NFT to HGSC disease transition. To prioritise identifying
probes with this trend, the weighting setting for ‘‘Points per %
change NFT to HGSC” is increased from the default of 1 to 4. The
weightings for the ‘‘Points per % change” for the other disease tran-
sitions are not adjusted so they remain at 1. In this case, the 8 %
percentage change is multiplied by 4 to give a score of 32 points
for NFT to HGSC. Points for each of the three percentage changes
are estimated using the weightings. If the ‘‘Direction of Progres-
sion” is left at the default of ‘‘Either” and if no ‘‘Patient Inconsis-
tency Penalty” is applied, then the final score for a probe is
simply the points for the three weighted percentage changes added
together as a total. In this case, probes for NFT to HGSC will have
higher scores and hence will be prioritised and ranked higher.

Next, probes can be further filtered using the ‘‘Direction of Pro-
gression” option, which can omit scores between disease stages
depending on the setting. If the ‘‘Direction of Progression” is set
to ‘‘Increasing only”, then decreasing scores are ignored from the
probes total. A probe with a percentage decrease between stages
will have those scores omitted from the total score. Similarly, if
the ‘‘Direction of Progression” is set to ‘‘Decreasing only”, then a
probe with an increase in percentage change between stages will
have those scores omitted from the total score. In the special case
of ‘‘Unchanging”, then ordering is effectively reversed and the
gene/methylation probes that changed the least in relation to dis-
ease stage transition are ranked highest enabling the lowest-
scoring probes to be ranked highest. This feature is useful to iden-
tify probes whose expression /methylation patterns are not associ-
ated with disease change that would be excluded as potential
biomarkers.

Finally, probes can be further filtered for their consistency in
trends with disease progression using the ‘‘Patient Inconsistency
Penalty” option. The Patient Inconsistency Penalty is a value (not
a percentage) that is deducted from the probes score for each
patient, and for each of the three disease stage transitions for pro-
gression (NFT to STIC, STIC to HGSC, NFT to HGSC). This feature
allows probes that show consistent increases or decreases in gene
expression or methylation with disease progression to be priori-
tised. The penalty is only deducted if the patient’s interim change
in stage progression is opposite to the overall direction for an ‘‘in-
creasing” or ‘‘decreasing” trend. Thus, the value of change from NFT
to HGSC will determine whether the direction of change is consid-
ered ‘‘inconsistent” for the interim NFT to STIC and STIC to HGSC
stages.

Consider an example where probes with a consistent ‘‘increas-
ing” trend in expression/methylation with disease progression
should be prioritised in the results. Following assessment for the
three disease stages, Probe A has total score values of 1.8, 1.4, 3.9
and Probe B has scores of 1.8, 2.5, 3.9. In this case, Probe B expres-
sion/methylation values rise steadily with disease progression
therefore it is considered to show greater evidence of association.
Implementing the ‘‘Patient Inconsistency Penalty” option here
would cause a value set to be deducted from Probe A’s score,
thereby allowing Probe B to be prioritised in the ranking system.
Note that the ‘‘Patient Inconsistency Penalty” does not apply when
the ‘‘Direction of Progression” is set to ‘‘Unchanging”. Once the
probes total score is calculated, the probes are sorted, ranked,
and provided as a scrollable list for the user to select and evaluate.
The score’s value will highly depend on the settings used for an
analysis and their values are not necessarily of interest they are
for comparative purposes only. Of greater importance is the rela-
tive ranking of results produced by the collated array of scores,
provided in the scrollable list.



Fig. 1. The Gene Sort criteria interface for mining the Gene Expression Data (a).
Options are available to filter probe results to prioritise a disease stage using the
‘‘Points per % change” and a disease ‘‘Direction of Progression” as expression
increasing, decreasing or either. Results can be further filtered for consistency by
applying the ‘‘Patient inconsistency penalty”. The Gene Expression Data interface
displaying results at the probe level (b). The ranked gene transcript probes are
presented on the left as a scrollable list and results for the selected probe
ADXECCRS.32699_at are displayed. The ‘‘Apply Filter” feature can be used to search
the ranked list of probes. Expression values are provided for each patient at each
disease stage as a data matrix. Expression trends in relation to Progression across
disease stages are displayed for patients as line graphs and boxplots. The boxplot
represents the median and interquartile range with the maximum and minimum
values shown. The percentage change in expression between disease stages NFT to
STIC and STIC to HGSC are also displayed. Above the boxplots panel, the ranking
score for the selected probe is displayed as 376.798.

Fig. 2. The Meth Sort criteria interface for mining the Methylation Data (a). Options
are available to filter probe results to prioritise a disease stage using the ‘‘Points per
% change” and a disease ‘‘Direction of Progression” as methylation increasing,
decreasing or either. Results can be further filtered for consistency by applying the
‘‘Patient inconsistency penalty”. The Methylation Data interface displaying results
at the probe level (b). The ranked methylation probes are presented on the left as a
scrollable list and results for the probe cg06825142 are displayed. The ‘‘Apply
Filter” feature can be used to search the ranked list of probes. Methylation values
are provided for each patient at each disease stage as a data matrix. Methylation
trends in relation to Progression across disease stages are displayed for patients as
line graphs and boxplots. The boxplot represents the median and interquartile
range with the maximum and minimum values shown. The percentage change in
methylation between disease stages NFT to STIC and STIC to HGSC are also
displayed. Above the boxplots panel, the ranking score for the selected probe is
displayed as 1722.603.
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3.2. Data mining for reliable biomarkers associated with disease
progression using combined expression and methylation probes score
calculations

A combined score is also calculated for a gene based on both the
gene expression and the methylation data. The aim of this measure
is to try to identify the key genes involved in driving carcinogenesis
during disease progression. The combined score is based on the
total scores for all of the gene expression and methylation probes
associated with a gene. Thus, the combined score measure should
reflect the strength of the gene’s association with and between
each stage during carcinogenesis. The combined score is estimated
using the same approach as that previously described for individ-
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ual probes. All probes associated with a gene are automatically
identified by using their genomic location information from the
descriptor files. For methylation probes, its location within a gene
promoter, body or CpG Island is also noted. The scores for the iden-
tified probes are estimated individually and then added together
for the combined score for a gene. Similarly, using the ‘‘Sort Crite-
ria” a user can also specify whether to prioritise only increasing or
decreasing trends associated with disease progression (Fig. 3a).
Scores can also be adjusted using the ‘‘Points per % change” settings
to apply weightings in order to prioritise probes for specific disease
progression stages. Lastly the user can decide whether to include
gene probes only, methylation probes only, or both in the calcula-
tion for the combined scoring of a gene.



Fig. 3. The Combined Sort criteria for mining the Combined Gene Data (a). Options
are available to filter probe results to prioritise a disease stage using the ‘‘Points per
% change” and a disease ‘‘Direction of Progression” as expression/methylation
increasing, decreasing or either. Results can be further filtered to include/exclude
Gene Probes and Methylation probes based on increasing or decreasing trends in
their expression/methylation. The Combined Gene Data interface displaying results
for genes based on cumulative scores for all associated probes (b). The ranked genes
are presented on the left as a scrollable list. The ‘‘Apply Filter” feature can be used to
search the ranked list of genes. All of the associated expression and methylation
probes included in the scoring for the PTPRN2 gene are displayed in the lower left
panel. The ‘‘Gene Exp” line displays the expression probes, and other lines display
the methylation probes listed based on their genomic location within Promoter,
Gene Body and CpG Islands 1, 2 etc. The panel is interactive and each of the probes
listed can be selected to examine their results. A probes score is indicated by the
intensity of its shading in green or red. A green probe indicates it is positively
related to disease progression, and a red one means the probe is negatively related
to disease progression. By default, results for the first probe associated ‘‘Gene Exp
Probe: ADXECAD.11185_at” with a probe score of 19.11234 are initially displayed.
Probes listed with a zero score in parenthesis will have been excluded from the
combined score based on the Sort Criteria. Expression/methylation trends in
relation to Progression across disease stages are displayed for patients as line
graphs. In the upper right panel, an interactive methylation map is provided for the
region. This map illustrates the gene’s promotor initially followed by 2,000 genomic
positions arranged as 40 consecutive rows of 50 positions each and the methylated
positions are shaded green. The percentage change in methylation between disease
stages NFT to STIC and STIC to HGSC are also displayed. Specific probes can be
explored further individually using the Gene Expression Data and Methylation Data
screens. The ‘‘UCSC” button can be selected to visualise the genomic region for the
CpG probe of interest utilising the online UCSC Genome browser. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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3.3. Data mining for methylation clusters associated with disease
progression to identify target regions for assay design

Methylation clusters are identified and ranked using a scoring
calculation that sums the total change values for all of the methy-
lation probes that occur within the target region. Using the ‘‘Sort
Criteria”, the user can specify the particular trend of interest
including ‘‘Direction of Progression” (increasing, decreasing,
either), disease Progression stage (i.e. NFT to STIC, STIC to HGSC,
or NFT to HGSC) and a ‘‘Minimum change threshold (%)” (Fig. 4a).
Once the selection is made, only the relevant probes are included
in the scoring calculation using their total change values. Target
regions can be further restricted to occur within promoter, gene
bodies or CpG islands, or alternatively outside of these regions.
To facilitate assay development, target regions can be specified to
be 250, 200, 150 or 100 bp in ‘‘Cluster length”. Threshold cut-off
values for a probe to be considered as ‘‘non-methylated” or
‘‘methylated” can also be specified. The current default values for
these are <0.1 and >0.2, respectively, however the methylated
threshold could be raised to 0.6 or higher to provide greater confi-
dence (see 39). An option to deduct points for non-conforming
sites is also available. This feature imposes a penalty for probes
inconsistent with the specified trend. The scoring calculation and
ranking of methylation clusters by default is based on the summed
total methylation values. An alternative ranking method is avail-
able that is based on scoring Methylation Clusters using the total
number of probes within a target region. This method can be
selected using the ‘‘Look only at Methylated/Non-Methylated”
option in the ‘‘Sort Criteria”.
3.4. Example of performance of OCDB pipeline: identification and
validation of potential biomarker using pyrosequencing and RqPCR
assays

To evaluate the performance of theOCDB, and the associated bio-
marker discovery pipeline, a CpG site, and its associated gene, were
identified from the OCDB using the methodology described above.
To confirm trends for the marker, expression values for the tran-
script andmethylation values for the CpG site, for each patient sam-
ple and disease progression stage were plotted as line graphs. Mean
values (and interquartile range) for all patients for eachdisease stage
were also plotted as boxplots. The specific genomic sequence and
gene of interest identified using the OCDB was further evaluated
using bioassays. Thesewere performed on FFPE tissue samples from
the six patient cohort in the OCDB as well as on a larger validation
cohort (N = 100), which consisted of 50 cases with advanced HGSC
and 50 unmatched controls with no current or previous history of
cancer. The validation cohortwas also provided by the Northern Ire-
land Biobank (Ethical approval: NIB11:005, NIB13:0094).

Expression patterns of the gene of interest were validated using
RqPCR as previously described [18]. A RealTime� Ready Custom
assay (Roche, UK) was designed for the gene of interest and per-
formed on a LightCycler 96 platform (Roche, UK) according to man-
ufacturers’ guidelines. Pre-amplified cDNA was prepared following
RNA extraction and cDNA synthesis of normal FT, STIC, and HGSC
samples. The RqPCR assay assessed the gene of interest and two
controls in duplicate using 200 ng cDNA as input. Relative gene
expression was calculated from the mean RqPCR cycle threshold
data using the ddCt method. NFT was used as the calibrator in
results calculations. Statistical analysis of gene expression between
disease stages was performed using GraphPad Prism version 5 soft-
ware (La Jolla, California, USA).
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Methylation patterns of the CpG sites of interest were validated
using pyrosequencing. Initially, the relevant DNA sequence con-
taining the CpG site was visualised using the UCSC feature in the
OCDB. The genomic region was further examined using the Inte-
grative Genomics Viewer (IGV�, Broad Institute, Massachusetts,
USA) [40–41]. Next, site-specific primers were designed for the
identified target sequence using the Pyromark Assay Design Soft-
ware 2.0 (Qiagen UK, Manchester, UK). All FFPE samples under-
went DNA preparation, quantification and bisulphite conversion
using standard approaches. The bisulphite converted DNA samples
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were first amplified using a standard PCR reaction, and prior to
proceeding, the products were electrophoresed through a 1 % agar-
ose gel to confirm successful amplification. Following confirma-
tion, the pyrosequencing assay was carried out using a Pyromark
Q-24 Instrument (Qiagen UK, Manchester, UK) according to manu-
facturer’s guidelines. The mean percentage methylation across the
target sites for each tissue type was calculated and analysed. As
with the validation of gene expression data, NFT was used as the
calibrator in results calculations. Statistical analysis of DNAmethy-
lation between disease stages was performed using GraphPad
Prism version 5 software (La Jolla, California, USA).
4. Results

4.1. Overall OCDB design and analytical modes

The OCDB has four modes for data mining: 1) Gene Expression
Data; 2) Methylation Data; 3) Combined Gene Data; and 4) Methy-
lation Clusters. Biomarkers can be mined from gene expression
data alone and methylation data alone in modes 1 and 2, respec-
tively, or using the combination of both data together in mode 3.
Mode 4 focusses on identifying clusters of methylated CpG sites
in genes to assist with bioassay design. The ‘‘View Data” interface
is for displaying results, whereas the ‘‘Sort Criteria” is for specifying
the desired trends in disease progression using the settings,
weighting and penalties. The radio buttons at the top of the screen
allow the user to toggle between the four modes and also between
the ‘‘View Data” and ‘‘Change Sort Criteria” interfaces (Fig. 1a).
Each mode has its own ‘‘Sort Criteria” interface with particular
options. After a mode is selected, the results output are calculated
according to the ‘‘Sort Criteria” settings page and ranked with the
highest score first. Results can be explored in more detail by select-
ing them from the ranked list, at which point the OCDB updates to
display more detail for the selected entry.

4.2. Mining gene transcript expression and methylation data for probes
associated with disease progression

Fig. 1b illustrates the ‘‘Gene Expression Data” interactive screen
displaying results at the probe level obtained using default settings
3

Fig. 4. The Sort Criteria for mining for Methylation clusters (a). Options are
available to filter probe results to prioritise particular disease ‘‘Progression Stages”,
the ‘‘Direction of Progression” as the ‘‘Minimum change threshold (%)” required. To
facilitate assay development, methylation target regions can be specified to a
particular ‘‘Cluster Length” between 100 and 250 bp. Methylation probes included
can be restricted to Promoter, Gene Body, CpG Island regions or none of these.
Upper and lower thresholds for considering a probe as Non-methylated/Methylated
can be specified. The scoring calculation can include all probes or only those that
are Methylated/Non-methylated. Probes from certain patients can be included or
excluded from the scoring calculation. The Methylation clusters interface displaying
results for methylation probes ‘‘From cg16265906 to cg23180938” (b). The ranked
Methylation clusters and their genomic locations are presented on the left as a
scrollable list. The ‘‘Apply Filter” feature can be used to search the ranked list. The
‘‘Summary of methylation progression” displays as a line, a probes methylation
status across each of the patients. The methylation status of a probe during disease
progression is indicated with shading that is explained in the ‘‘Methylation Colour
Guide” legend. Overall mean values for the methylation cluster for disease stages
for each patient are provided in the table. All probes associated with a Methylation
cluster are displayed in the lower right panel and the intensity of the green shading
is reflective of a probes’ score and how positively its trends in methylation related
to disease progression. The panel is interactive, and a probe can be selected to
examine its results in detail. After probe selection, results in the ‘‘Methylation
Clusters” interface are updated with probe specific results (c). The ‘‘UCSC” button
can be selected to visualise the genomic region for the CpG probe of interest
utilising the online UCSC Genome browser. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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in the ‘‘Sort Criteria”. The ranked gene transcript probes are pre-
sented on the left-hand side as a scrollable list. The ‘‘Apply Filter”
feature can be used to search the list of probes. The panels display
information for the selected probe, ADXECCRS.32699_at. Trends in
expression of the gene transcript probe during disease progression
are visualised for each patient as a line graph in the upper left panel.
The expression of ADXECCRS.32699_at decreases during disease
progression for five patients. For patient six, expression increases
slightly between STIC and HGSC disease stages, as evidenced by
the orange line graph. The raw gene expression values for
ADXECCRS.32699_at at each disease stage for each patient are pre-
sented in the table below. Boxplots representing the median
expression across all patients for each disease stage are displayed
in the upper right panel. The interquartile rangewith themaximum
and minimum values are also shown. ADXECCRS.32699_at had
median expression values of 9 to� 4 to� 2 for NFT, STIC and HGSC,
respectively. Thus, expression of the ADXECCRS.32699_at probe
appears to decrease with disease progression. Above the boxplots
panel, the ranking score for the selected probe is displayed as
376.798. If the user selects another result in the scrollable list on
the left-hand side, then they will notice that this ranking score
increases or decreases depending on the probe being higher or
lower in the list. The increase/decrease percentage change in
expression between disease stages NFT to STIC and STIC to HGSC
is displayed in the lower right panel. For NFT to STIC and STIC to
HGSC disease stages transition there is a median change in expres-
sion of � -2% and � -4%, respectively for ADXECCRS.32699_at.

Fig. 2b illustrates the ‘‘Methylation Data” interface displaying
results at the probe level obtained using default settings in the
‘‘Sort Criteria”. The ranked methylation probes are presented on
the left as a scrollable list. The ‘‘Apply Filter” feature can be used
to search the ranked list of probes. The panels display information
for the selected probe, which in this example is cg06825142. The
trends in methylation of a probe during disease progression are
visualised for each patient as a line graph in the upper left panel.

Patients display differing trends in methylation of cg06825142
with disease progression. Methylation seems to increase with dis-
ease progression for patients 1, 3 and 5 only. Patients 2 and 4 show
no association of methylation with disease progression, while
methylation is highest for STIC for patient 6. The raw methylation
values are presented for each patient at each disease stage in the
table below. Boxplots representing the median methylation values
for all patients at each disease stage are displayed in the upper
right panel. The interquartile range with the maximum and mini-
mum values are also shown. Above the boxplots panel, the ranking
score for the selected probe is displayed as 1722.603. Similarly, if
the user selects another result in the scrollable list on the left-
hand side, then they will notice that this ranking score increases
or decreases depending on the probe being higher or lower in
the list. Probe cg06825142 is relatively unmethylated for NFT for
all patients and then increases to a median methylation value
of � 0.25 for both STIC and HGSC disease stages. The increase/de-
crease percentage change in methylation between disease stages
NFT to STIC and STIC to HGSC is displayed in the lower left panel.
For NFT to STIC and STIC to HGSC transition in disease stages there
is a median change in methylation of � 0.2 % and � 0.1 %, respec-
tively, for probe cg06825142.

For both ‘‘Gene Expression Data” and ‘‘Methylation Data”
modes, the user can alter the ‘‘Sort criteria” to prioritise results
for probes that exhibit specific trends in disease progression
(Fig. 1a, 2a). Altering the ‘‘Points per % change” (0–100) from the
default of 1 to a higher number for one of the different disease
stage transitions of NFT to STIC, STIC to HGSC and NFT to HGSC
is useful for prioritising probes that show the greatest change
depending on that disease transition stage. The ‘‘Patient inconsis-
tency penalty” can be increased or decreased. This feature is useful
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to exclude any outlier patients that have expression/methylation
patterns that behave differently to the rest of the cohort. This fea-
ture will be particularly useful when larger patient cohorts are
introduced to the platform. The direction of the disease progres-
sion can also be set to increasing, decreasing or either. This is use-
ful to identify probes most associated with a particular disease
progression trend.

4.3. Mining genes associated with disease progression using
multiomics

Fig. 3b illustrates the ‘‘Combined Gene Data” interactive screen
displaying results for genes based on cumulative scores for all their
associated probes. Results were obtained using default settings in
the Sort Criteria. The ranked genes are presented on the left as a
scrollable list. The ‘‘Apply Filter” feature can be used to search the
ranked list of genes. The gene PTPRN2 is selected and the 30,285
indicates the combined data score for this gene. In the lower left
panel, all of gene’s associated probes are displayed as well as its
Ensembl identifier and chromosome location. Each of these probes
listed were included in the combined scoring of PTPRN2. Probes
comprised of seven transcript expression probes and 17 + methyla-
tion probes located within promoter [4], gene body (8 + ), CpG
Island 1 [1] and Island 2 [4] regions. Three methylation probes
had green shading indicating a strong association with the desired
trend in disease progression. All the transcript expression probes
were shaded grey indicating no association. No probes were shaded
red, which would have indicated that they were negatively related
to the specified trend in disease progression. The lower left panel is
interactive and each of the probes can be selected to examine their
result summaries. Probes shaded green would be worthy of further
investigation within this mode and also individually using the
‘‘Gene Expression Data” and ‘‘Methylation Data” modes.

Results for the first probe listed are displayed by default initially
in the other three panels. In this case, results for ‘‘Gene Exp Probe:
ADXECAD.11185_at” with a probe score of 19.11234 are displayed.
Expression of ADXECAD.11185_at seems to decrease with disease
progression for patients 2, 3, 4 and 5, while expression remains
equivalent between NFT and HGSC stages for patients 1 and 6 as
seen in the upper left panel. The median change in expression from
NFT to STIC and STIC to HGSC disease stages transition for probe
ADXECAD.11185_at is �0.5 % and 0.1 %, respectively.

In the top right panel, a Methylation map displays the first
2,000 genomic positions (from left to right) of a region of the
PTPRN2 gene with the location of overlapping methylation probes
identified. By default the Methylation map displays the promoter
region initially, followed by 40 rows of 50 positions, with each
row immediately following the row above. The methylation map
is useful to identify clusters of methylation probes by eye. Those
shaded green would be indicative of a positive association with
the increasing or decreasing trend with disease progression trend
as specified in the ‘‘Sort Criteria”. The Methylation map panel is
interactive and the other regions for Gene Body, CpG Island1 or
Island2 can be selected to jump to their genomic location to view
overlapping methylation probes. This map provides a guide for
the level of methylation of a gene. For a more in-depth analysis,
the ‘‘UCSC” button can be selected to visualise the genomic region
of interest online utilising the UCSC Genome browser (https://gen-
ome.ucsc.edu/). This call-out feature requires the PC to have inter-
net connectivity.

4.4. Data mining for methylation clusters associated with disease
progression to identify target regions for assay design

Fig. 4b illustrates the ‘‘Methylation Clusters” interactive screen
displaying results for methylation probes ‘‘From cg16265906 to

https://genome.ucsc.edu/
https://genome.ucsc.edu/
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cg23180938”. The ranked Methylation clusters and their genomic
locations are presented on the left as a scrollable list. The ‘‘Apply
Filter” feature can be used to search the ranked list. Overall mean
values for the methylation cluster for disease stages for each
patient are provided in the table in the lower left panel. The ‘‘Sum-
mary of methylation progression” displays as a line, a probes
methylation status summary for each of the patients. In this exam-
ple, the five lines represent the five probes associated with this
methylation cluster. The summary status of a probe during disease
progression is indicated with shading as explained by the ‘‘Methy-
lation Colour Guide” legend. Probes have nine possible outcomes
based on a disease progression transition from the normal state
NFT, which may be methylated or de-methylated. Methylation sta-
tus summaries for a probe include: 1) Methylated at STIC plus; 2)
Methylated at HGSC-STIC non; 3) Methylated at HGSC-STIC partial;
4) Methylated temporarily at STIC; 5) De-Methylated at STIC plus;
6) De-Methylated at HGSC-STIC meth; 7) De-Methylated at
HGSCSTIC partial; 8) De-Methylated temporarily at STIC; 9) None
of the above. Table 1 provides further explanation of the methyla-
tion summary status for a probe during disease progression. Deter-
mination relied on thresholds to define a probe as methylated or
non-methylated in the ‘‘Sort Criteria”. If a probe’s methylation
value fell between the two thresholds it was deemed to be a partial
methylated probe.

All probes associated with a Methylation cluster are displayed
in the lower right panel. Probes shaded green are positively associ-
ated with the desired methylation trend in disease progression.
This panel is interactive and a probe can be selected to examine
its results in more detail. After selection for probe cg02792792,
results in the ‘‘Methylation Clusters” interface panels are updated
(Fig. 4c). The summary of methylation progression for the probe
is now highlighted with an arrow. The table now displays the
methylation values for probe cg02792792 for each patient at each
disease stage. A summary of the probes methylation status as
methylated or de-methylated at each of the disease stages is pro-
vided as shading in both the table and the upper right hand panel.
Green shading represents a methylated probe status, while red
shading represents de-methylated status. Probes shaded grey were
deemed neither methylated nor de-methylated because their
methylation values were between the threshold cut-offs.

4.5. Example of performance of the OCDB pipeline to identify OSR2

The OCDB was utilised to identify probes that exhibited
decreasing gene expression and increasing methylation with dis-
ease progression. Sort Criteria were specified accordingly to priori-
tise probes displaying underexpression and hypermethylation
from NFT through to HGSC. Amongst the top ranked genes identi-
fied for the specified trend was OSR2 (Odd-Skipped Related Tran-
scription Factor 2; ENSG00000164920).

Examination of the microarray data confirmed that gene
expression of the OSR2 transcript (ADXEC7060C1_s_at) decreases
Table 1
The methylation status summary of a cluster during disease progression is summarised usin
methylation status compared to the NFT disease stage.

Methylated at NFT Methylated at STIC

N Y
N N
N Partial
N Y
Y N
Y Y
Y Partial
Y N
Any other combination
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with disease progression from NFT to HGSC consistently for each
patient (Fig. 5a). Overall mean values at each disease stage also
decreased, and the variation in expression values for STIC and
HGSC was relatively high compared to NFT (Fig. 5b). Examination
of the methylation array data for the CpG site associated with
OSR2 (cg08202494) confirmed that methylation increased with
disease progression consistently for each patient (Fig. 5c). Overall,
mean methylation values for each disease stage also increased
(Fig. 5d).

The RqPCR bioassay of OSR2 expression in the six patient cases
included in the OCDB confirmed repression of OSR2 from NFT to
HGSC (P-value = 0.0008; Fig. 6a). The DNA methylation of OSR2
of the six patient cases included in the OCDB was assessed using
a pyrosequencing assay that examined five ‘target’ CG dinu-
cleotides across the genomic region (�50 bp; Fig. 6b). The mean
percentage methylation across the target sites for each tissue type
was calculated and analysed. The first three target dinucleotides
(positions 66 – 68) were consistently reliable across all samples
compared to the fifth target site (position 70) which was more
variable. Results indicated that OSR2 was progressively hyperme-
thylated between NFT and HGSC (P-value < 0.0001; Fig. 6c). STIC
samples were statistically significant compared to both NFT and
HGSC, suggesting this intermediary disease stage may have poten-
tial for biomarker testing of early-stage disease.

The consistency of OSR2 hypermethylation in HGSC was further
validated in a larger sample set comprising 50 cases of HGSC and
50 unmatched cases with no current or previous history of cancer.
The pyrosequencing assay was performed as previously outlined.
Prior to bisulphite conversion, two samples from each cohort were
excluded due to having extremely low DNA concentrations. Prior
to sequencing, three samples from the normal FT group and four
samples from the HGSC group were excluded because of inade-
quate bisulphite conversion and/or failed PCR. Forty-five normal
FT and forty-four HGSC samples were included in the final compar-
ison. Mean methylation score from each sample was calculated
and showed accurate discrimination between normal FT
(31.49 %) and HGSC tissue (69.38 %; Table 2). As with the six
patient cohort results, the fourth and fifth target sites were unreli-
able. Hence, the mean methylation of target dinucleotides 66, 67,
and 68 (Fig. 7A) was calculated for each sample, and compared
to the total score and again for dinucleotide 66 alone (Fig. 7B). It
is evident that results of the pyrosequencing assay of OSR2 methy-
lation focussing on sites 66–68 is the most precise (P-value < 0.0
001) and also has the narrowest range (Table 2).

A receiver operator characteristic (ROC) analysis of OSR2
methylation (dinucelotides 66 – 68) and normal FT was performed.
It returned an area under the curve (AUC) of 0.9573 (P-value < 0.
0001) (Fig. 7c). The sensitivity and specificity of the OSR2 methyla-
tion assay was calculated on an upper limit diagnostic threshold
(Diagnostic Threshold = Mean Methylation of Normal Cohort +
(2 � Standard Deviations of Mean). This equates to a diagnostic
threshold of 34.952 %. At a clinically relevant specificity (95 %),
g the ‘‘Methylation Colour Guide” legend. Classification is based on the clusters probes

Methylated at HGSC Summary for disease progression

Y Methylated at STIC plus
Y Methylated at HGSC-STIC non
Y Methylated at HGSC-STIC partial
N Methylated temporarily at STIC
N De-Methylated at STIC plus
N De-Methylated at HGSC-STIC
N De-Methylated at HGSC-STIC partial
Y De-Methylated temp at STIC
None of the above



Fig. 5. Validation of the OCDB results for the OSR2 gene expression and methylation array data. The trend of OSR2 repression with tubo-ovarian cancer disease progression
for the associated probe ADXEC7060C1_s_at. Each line represents one patient from the cohort and there is an obvious downward trend from NFT to HGSC (a,c). Conversely,
the trend towards global hypermethylation of the OSR2 associated CpG site with disease progression is equally obvious (b,d). The lack of overlap between confidence intervals
of HGSC and NFT in both boxplots is indicative of statistical significance.
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sensitivity was 93.18 % at a diagnostic threshold of 36.33 % (see
Table 3). Serum CA125 results were available for all 44 HGSC cases
but only 43 % of the normal cases. Serum CA125 level below 35
U/ml is deemed ‘‘normal” in clinical practice. A review of patholog-
ically ‘‘normal” cases with borderline/high (>35 U/ml) CA125 (false
positives) showed all cases were OSR2 methylation assay ‘‘nega-
tive” (i.e. < 36.33 %). This indicates the potential of OSR2 assay at
reducing type I and II error within clinical diagnostics.
5. Discussion

Multiomics approaches can provide greater insight into the
underlying biology of malignant processes.

Analyses can identify disease-specific oncogenes and the key
pathways involved in disease progression. Aberrant genomic
sequences can also be identified as potential druggable targets
and/or biomarkers of therapeutic response, minimal residual dis-
ease, or even early-warning diagnosis. However, there is a need
for bespoke tools to interrogate data to gain valuable knowledge
for translational research, especially for diseases with poor progno-
sis, such as HGSC. In this study, a novel genomic discovery pipeline
for biomarkers is presented. The pipeline was facilitated by the col-
lection of a unique dataset for an aggressive cancer, HGSC, as well
as the development of the OCDB a bespoke multiomics analytical
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tool, and the optimisation of validation bioassays. Results are pro-
viding a better understanding of the carcinogenic pathway of HGSC
and the underlying mechanisms that are the hallmarks of this
disease.

This is the first study to gather matched genomic and epige-
nomic profiles of patients over the course of HGSC disease progres-
sion. The samples, spanning from normal FT to HGSC, were
identified with highly accurate pathological annotation. Whilst
the study cohort is small, the gene expression and DNA methyla-
tion datasets are unique and allowed for the development of the
OCDB. The OCDB can quickly interrogate multiomics datasets to
identify HGSC-specific gene targets associated with disease pro-
gression. The graphical user interface is easy to navigate and has
rapid query response time due to the file format of the data as fast
access. Data mining can be carried out using four analytical modes:
1) Gene Expression Data; 2) Methylation Data; 3) Combined Gene
Data; and 4) Methylation Clusters. These provide alternative
options for probe identification correlated to progression through
the three disease stages. Single omics with the gene expression
and the methylation data can be analysed independently or using
multiomics with both data types together in the combined data
mode. Results from the Gene Expression Data mode lists the genes
whose expression correlate (positively/negatively) with progres-
sion from NFT to STIC to HGS. The Methylation Data mode is extre-
mely similar, except that it lists methylation points, and changes in



Fig. 6. RqPCR confirmed repression of OSR2 across the carcinogenic pathway (a) and the hypermethylation of its associated CpG site was confirmed using pyrosequencing (c).
A sample pyrogram from an OSR2 methylation assay in normal FT sample (b). Sequence analysed is along the bottom of figure. The blue bars represent the target CpG
dinucelotides and the figures above these represent the percentage methylation at that position. A figure highlighted in red indicates a result that needs review and may
constitute a failed reading. In the initial validation within the ‘‘study cohort” all values were included, and a mean methylation calculated for each sample. However, within
the larger validation sample set combinations of the methylation position scores were assessed to confirm which was most discriminatory. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Comparison of mean methylation scores (%) of all, 66–68, or 66 only positions of the OSR2 assay in Normal FT versus HGSC samples of the larger validation cohort.

Target CpG Dinucleotide NORMAL FT (n = 45) HGSC (n = 44)

Mean SEM (+/-) Range CV (%) Mean SEM (+/-) Range CV (%)

All 31.49 0.7374 23.2 – 48.4 15.71 69.38 2.605 26.2 – 90.8 24.9
66 – 68 25.09 0.7351 13.33–38 19.65 67.63 3.137 18.67 – 95.67 30.77
66 Only 22.73 1.105 12 – 38 32.61 69.20 3.730 10 – 100 35.75
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methylation in place of genes and gene expression. The Combined
Gene Data mode is more complex. For each gene, it takes the gene
expression data changes, together with methylation changes for
methylation points within the gene to give a combined correlation
against progression through disease stages. The details of this and
the weightings applied can be adjusted by the user. The combined
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mode has the potential to suggest genes which may be relevant to
the disease mechanisms that would perhaps not be identified
otherwise using gene expression or methylation data alone. The
Methylation Clusters mode should identify sets of CpGmethylation
sites that were correlated to disease progression and were located
close enough together in a genomic region to be suitable as the



Fig. 7. Further validation in a larger validation cohort, comprising 50 cases of HGSC
and 50 unmatched cases with no current or previous history of cancer. Results of
the pyrosequencing assay for OSR2 can consistently discriminate between normal
FT and HGSC tissue across the first three methylated positions (A; P-value < 0.0001,
t-test) and also with only the first methylated position (B; P-value < 0.0001, t-test).
ROC analysis shows an AUC of 0.9573 (C; P-value < 0.0001).

Table 3
ROC analysis of the OSR2 methylation biomarker (AUC 0.9573, P < 0.0001) for
reported sensitivity and 629 specificity of methylation score thresholds � 35 %.

Methylation Score (%) Sensitivity Specificity

>34.33 93.18 % 93.33 %
>36.33 93.18 % 95.56 %
>37.67 90.91 % 97.78 %
>38.5 88.64 % 100 %
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basis for a biomarker assay. This could be used for patient diagno-
sis and stratification to guide their treatment. The methylation
cluster mode is therefore used to identify a set of candidate marker
regions, and then the other analytical modes can be used for fur-
ther investigations of those regions for example.

The OCDB implements a scoring system that was developed to
identify and rank probes and or genes that show consistency with
the specified trends. The scoring system involves summing either
for or across probes and disease stages and ranking results. The
combined score is based on the percentage change in expression
/methylation between disease stages. The combined score is there-
fore scaled to the gene’s own expression or methylation. Thus, the
strength of the expression or methylation would not influence the
results, only the difference in change. Moreover, results for genes
are not biased by some sort of filter for minimum thresholds such
as those applied in differential expression analyses, for example.
For the combined score, all the transcript expression and methyla-
tion probes associated are considered and summed. Whilst the
scoring system is cumulative it isn’t necessarily biased towards
ranking genes or methylation clusters with a greater number of
probes higher. This is because scores can be positive or negative
depending on whether they are consistent with the desired trend.
So, if a gene has many probes but some are not related to HGSC
cancer progression, the average change of those should be zero.
Thus, a gene with more associated probes would not have an ‘‘ad-
vantage” in the ranking if probes vary in their trends. However,
probes and or genes with a greater number of probes showing con-
sistent trends would have greater evidence and hence be priori-
tised. The scoring system of the OCDB is relatively simple.
Despite its simplicity, many considerations have been given to
the criteria available for filtering results using weighting and pen-
alty options. The score values for probes, genes or methylation
clusters will depend on the user’s settings and are only of interest
to compare and rank results from individual analyses. The ranked
results obtained by the OCDB are very specific to the desired trends
defined in the ‘‘Sort Criteria” options. The user can prioritise results
from early disease transition stages using the options, providing an
ability to identify biomarkers for early intervention. To our knowl-
edge, other data browsers or softwares do not exist that analyse
cancer disease progression multiomics datasets for biomarker
identification or employ similar scoring systems for analysis.

The genomic discovery pipeline employing the OCDB is partic-
ularly suited to identifying two trends associated with disease
progression: (a) unique hypermethylated CpG sites and (b) genes
transcriptionally silenced by DNA hypermethylation. Unique CpGs,
if HGSC-specific, carry distinct potential as future biomarkers,
whereas characterising the role of transcriptionally silenced genes
in HGSC may identify new disease-specific drug targets. One
example of this, presented in this paper, is OSR2, which is a mam-
malian homolog of the Drosophila odd-skipped family of tran-
scription factors. Until now, OSR2 has not been identified as
having an association with gynaecological malignancy. The OCDB
identified OSR2 as becoming repressed and hypermethylated with
disease progression to HGSC. Trends were confirmed in the brow-
ser samples and a larger patient cohort using RqPCR and pyrose-
quencing bioassays. Interestingly, results of the OSR2
methylation assay in the larger patient cohort revealed its poten-
tial as an HGSC specific biomarker. The assay could detect HGSC
with high accuracy, sensitivity and specificity, indicating its utility
for clinical diagnostics.

The future development for the OCDB is to revise and further
update this version with more data. The newer version would be
populated with more advanced multiomics data for a larger cohort
of patients, with the same uniquely matched tumour samples. This
would require some development and re-design of the OCDB
framework and the graphical user interface (e.g. scrollbar, colour
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palette) to enable the import of new data sets including patient
labels. Currently, the OCDB browser requires file input as a data
matrix together with annotation and descriptor files all as CSV file
format. Therefore, data from other sources that could also be pro-
vided in this format could in principle also be incorporated into the
browser framework (e.g. GeneChipTM Human Transcriptome Array,
Infinium Methylation EPIC array). These updates should allow a
secondary layer of validation of novel transcripts identified from
the initial six patient cohort and, consequently, more focussed dis-
covery of disease-specific targets or biomarkers. Once identified,
targets can be progressed into the laboratory validation stage of
the pipeline. The identification of a more refined and focussed tran-
script will increase the likelihood of successfully translating such a
discovery into a useful research or clinical tool; whether it be new
knowledge on a particular biological pathway or identification of a
transcript suitable to act as a biomarker of therapeutic response.
Additional developments of the analytics of the OCDB could also
be implemented. At present the combined method for a gene con-
siders multiple transcripts. Depending on disease progression, it
may be that different gene transcripts differ in their roles in car-
cinogenesis during disease progression. An alternative scoring sys-
tem could be considered to assess transcripts individually. This
may not be easily implemented given that transcripts can comprise
of all or just a portion of gene exons. Nevertheless, a combined
scoring system that appraises transcripts individually, considering
their exonic structure with overlapping methylation probes, could
provide superior results for revealing the underlying biology of
carcinogenesis of HGSC at the transcript level. Results for tran-
scripts could also provide more accurate targets for therapeutic
interventions.
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