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Abstract

A key goal of precision medicine is predicting the best drug therapy for a specific patient

from genomic information. In oncology, cancers that appear similar pathologically can vary

greatly in how they respond to the same drug. Fortunately, data from high-throughput

screening programs often reveal important relationships between genomic variability of can-

cer cells and their response to drugs. Nevertheless, many current computational methods to

predict compound activity against cancer cells require large quantities of genomic, epige-

nomic, and additional cellular data to develop and to apply. Here we integrate recent screen-

ing data and machine learning to train classification models that predict the activity/inactivity

of compounds against cancer cells based on the mutational status of only 145 oncogenes

and a set of compound structural descriptors. Using IC50 values of 1 μM as activity cutoffs,

our predictive models have sensitivities of 87%, specificities of 87%, and yield an area

under the receiver operating characteristic curve equal to 0.94. We also develop regression

models to predict log(IC50) values of compounds for cancer cells; the models achieve a

Pearson correlation coefficient of 0.86 for cross-validation and up to 0.65–0.73 against blind

test sets. Predictive performance remains strong when as few as 50 oncogenes are

included. Finally, even when 40% of experimental IC50 values are missing from screening

data, they can be imputed with sufficient reliability that classification accuracy is not dimin-

ished. The presented models are fast to generate and may serve as easily implemented

screening tools for personalized oncology medicine, drug repurposing, and drug discovery.

Introduction

A fundamental goal of precision medicine is to link genetic variability with clinical-pathologi-

cal indices to predict whether disease in a specific patient will respond to a specific treatment

[1–3]. Recent advances in sequencing techniques and broad-scale biologic databases have rap-

idly increased the amount of available disease-relevant information that can be used to tailor

therapy to the complex genomic context of the individual patient [4,5].

One area where precision medicine is of particular interest is cancer treatment. Cancers

that appear similar pathologically often respond differently to the same drugs, complicating
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therapy [6–8]. The applicability of precision medicine to oncology is highlighted by the fact

that patient-specific targeted therapy has already been implemented and is being developed for

an increasing number of cancers [8–12]. Large libraries of drugs and experimental compounds

have been screened against numerous cancer cell lines featuring heterogeneous genomic pro-

files [13], and recent studies have shown that high-throughput screening can identify novel

molecular genomic determinants of drug sensitivity [13–19]. Data sets generated by such

screening studies thus serve as crucial starting points for matching effective therapeutics with

specific cancers based on genomic profiles of cancer cells. For example, the Genomics of Drug

Sensitivity in Cancer (GDSC) project [20] data set contains experimental activity data

for> 200,000 drug-cancer cell combinations. Accordingly, several recent studies have used

the GDSC data set to train and test computational models that predict anti-cancer activities of

drugs [21–23]. Despite the growing body of available genomic data, however, methods to bet-

ter match patients to drugs remain in high demand.

A bottleneck in exploiting screening data for personalized medicine is generating accurate

computational models that link genomic profiles to drug response [4]. Several factors can con-

tribute to complicating this task. For example, the high-dimensionality of screening data

(when the number of reported gene-drug or gene-cell type combinations greatly exceeds the

number of samples) increases the chance of false positive associations [24]. A second compli-

cating factor is that relying exclusively on one specific type of genomic information, such as

gene mutation status, may have limitations, as many cancer gene mutations are merely passen-

gers and not drivers (i.e. not mutations that give a fitness advantage to the cells that carry

them) of cancer. The driver role of genes is frequently revealed only by information other than

mutation status, including epigenomic, copy number variation, and gene expression data [24].

An additional complicating factor is that many machine learning methods generally have

greater predictive power when trained with larger numbers of relevant descriptors (e.g. greater

volume of genomic information), yet it can be costly and time-consuming to experimentally

obtain a larger amount of genomic information for cell samples in a clinical setting. Accord-

ingly, it would be helpful if balance could be achieved between model accuracy and the com-

plexity and scale of data required by the model. It would be particularly beneficial to have

accurate predictive models that required only a small amount of genomic data as experimental

input.

Numerous computational methods for predicting cancer cell susceptibility to drugs have

already been developed [4,21–23]. Most of these methods involve machine learning algo-

rithms, including kernel-based methods, such as support vector machines and Bayesian effi-

cient multiple kernel learning (BEMKL) models, and feature selection-based methods, such as

random forests, elastic nets, neural networks, and more recently introduced deep-learning

approaches [25,26]. However, many of these methods require a large volume of genomic, epi-

genomic, and/or additional types of cellular data to train and to apply to test samples, rely on

prior information about the mode of action of drugs, such as their protein targets or biological

pathways, or are sufficiently complex to be beyond the ability of many clinicians and non-

computational researchers to apply. Moreover, many methods are tailored to specific cancer

types, including breast cancer [4] and leukemia [24]. Given that more rare cancer types are less

likely to have prediction methods devoted to them, a generalized prediction tool applicable to

multiple cancer types would be valuable. Finally, most previous computational studies [21,23]

that are based on the frequently applied GDSC data set involve earlier releases of the data set

that contain ~140 drugs and ~700 cancer cell lines, thus exploring narrower ranges of chemical

space and cell lines than are available in more recent releases. For these reasons, there remains

a need for robust models that (i) require a minimal amount of genomic data for a given cell

type, (ii) are generalizable across numerous cancer cell types, (iii) are trained and tested on as
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wide a range of drugs and cell lines as are currently available, and (iv) whose methodology is

simple enough to be employed by clinicians and researchers in non-computational

specializations.

To address this need, we have generated accurate machine learning models that predict

activities of small-molecule drugs against cancer cells using a limited quantity of genomic

mutation data as the only required experimentally derived input. Although relying on muta-

tion data alone may have limitations in some cases, we show that models that rely on such data

can nonetheless achieve high accuracy, provided that (i) the training set contains a sufficiently

large number of drug-cell line combinations and (ii) the training set is augmented by chemical

descriptors of the drugs’ structures. We selected random forests from the wide range of avail-

able machine learning methods because they rank among the most accurate methods, run effi-

ciently on large data sets, can handle large numbers of input variables without variable

deletion, estimate important features for classification, are simple to implement, are relatively

insensitive to noise and outliers, are nonparametric, and can effectively impute missing data

[27–29]. Moreover, random forests have ranked among the top-performing prediction algo-

rithms in the NCI-DREAM drug sensitivity prediction challenge [4,30], and they been applied

successfully in several other drug sensitivity studies [31–33].

Oncogenes are genes involved in regulating cell growth that can cause cells to grow contin-

uously to form a tumor if they become defective. The mutational status of oncogenes in cancer

cells can often predict how cancer cells will respond to specific drugs [11,34–37]. Accordingly,

we applied random forest machine learning to predict the activities of 225 approved and

experimental compounds against 990 cancer cell lines based on the mutational status of only

50 cellular oncogenes and ~1200 chemical descriptors. First, we used experimentally measured

IC50 values (the half-maximal inhibitory concentration of a compound with respect to cell via-

bility) to train random forest classification models that predict compound activity (active vs

inactive) against cancer cells irrespective of cancer cell line. The models have high sensitivity

and specificity, yielding an area under the receiver operating characteristic curve equal to 0.94.

Second, we show that up to 40% of experimental IC50 values can be imputed, if they are miss-

ing, prior to model training without decreasing model accuracy. The ability to accurately

impute IC50 values is useful in the common situation where compound activity values are

missing from experimental data sets. Third, we trained random forest regression models that

predict log(IC50) values based on the same set of descriptors as those used for the classification

models. These regression models achieve a Pearson correlation coefficient equal to 0.86 and a

Spearman rank correlation of 0.83 in 5-fold cross-validation and Pearson and Spearman rank

correlations of ~0.7 in blind tests against new compounds. Simple to train and apply, the pre-

sented models may serve as useful in silico tools in drug discovery, drug repurposing, and per-

sonalized oncology medicine.

Materials and methods

Experimental activity data set

Experimental data for cancer cell drug sensitivity were obtained from the 2016 release of the

Genomics of Drug Sensitivity in Cancer (GDSC) project [20]. This data set contains 1001 can-

cer cell lines and 225 drugs (S1 Fig), including experimental and approved anticancer drugs.

Each cell line is described by a set of genomic features pertaining to 19,100 genes, such as

mutation and methylation status and copy number variation. For most of the drug-cell line

combinations, the experimentally measured log(IC50) is reported, where IC50 is the drug con-

centration required to eradicate 50% of the cells in the cell line. We removed from the data

set all cell lines lacking mutation data for at least 20 genes and all drug-cell line combinations
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for which no IC50 values are reported. There remained a total of 990 cell lines (S2 Fig) and

180,000 drug-cell line combinations with measured IC50 values. IC50 values range from

5x10−11 M (the most sensitive drug-cell combination) to 0.4 M (the least sensitive drug-cell

combination).

Generating oncogene mutation profiles for cancer cell lines

Of the 19,100 genes in the GDSC experimental activity data set, 145 oncogenes were selected

(S1 Table), and all other genes were removed from the data set. The 145 selected oncogenes

are those that have the greatest information entropies, that is, the oncogenes for which the

number of cell lines having mutations is closest to the number of cell lines lacking mutations

across the 990 cell lines. For each cancer cell line, a 145-element vector describing its oncogene

mutational spectrum was generated. Oncogenes possessing any type of mutation (sequence

variation) were assigned a value of 1; oncogenes lacking mutations were assigned a value of 0.

Calculating chemical-descriptor fingerprints for drug molecules

The SMILES structures of the 225 drugs in the activity data set were retrieved directly from the

data set. The CheS-Mapper [38] application was used to generate a set of chemical descriptors

for each drug based on the drug’s two-dimensional structure. The descriptor set included 192

Chemistry Development Kit [39] (CDK) descriptors and 1024 Extended Connectivity Finger-

prints [40] (ECFP6) descriptors, yielding a fingerprint containing 1216 chemical descriptors.

Estimating oncogenes whose mutation statuses have highest predictive

value for cancer cell sensitivity to drugs

Out of the set of 145 oncogenes that we selected to describe the mutation profiles of cancer cell

lines, we sought to identify the subset of oncogenes whose mutation status is most highly pre-

dictive of cell sensitivity to anticancer drugs. We focused on oncogenes because many onco-

genic mutations have been shown to effectively discriminate between cells that are responsive

and unresponsive to chemotherapeutic agents [11,34–37]. For each of the 180,000 drug-cell

line combinations, the 145-element oncogene mutation vector for the cell line was joined with

the 1216-descriptor structural fingerprint of the drug, yielding a final vector containing 1361

total elements that combines cellular and chemical information. The vectors were combined to

yield a 180,000x1362 data matrix, in which the first column contains the activity class of the

drug. An IC50 of 1 μM was initially selected as the cutoff for active drugs, as 1 μM is a com-

monly used threshold for distinguishing activity vs inactivity in drug screening campaigns. If

IC50� 1 μM, the drug was designated as active against the cell line; otherwise, the drug was

designated as inactive. We applied the stand-alone C++ random forest program Ranger [41] to

the data matrix in order to construct a random forest binary classification model for predicting

drug activity class, using the oncogene mutation status and chemical-descriptor fingerprint

columns as descriptors. Five hundred trees were used, and a default mtry value of 37 was

applied. The relative importance of each oncogene’s mutation status for activity prediction was

measured by its computed Gini impurity index [42], where a greater index corresponds to

greater relative importance for prediction. The oncogenes were ranked in order of decreasing

Gini impurity index.

In addition to estimating the relative importance of each oncogene mutation status for the

complete set of drugs, we also calculated the relative importance of oncogene mutation status

for each drug individually. For each drug, a random forest model was trained using only the

subset of the full data matrix containing the drug, and the Gini impurity index was computed

for each oncogene mutation status.
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Training and validating random forest classification models to predict

drug activity

We applied random forest classification modeling to predict activity vs inactivity of drugs

against cancer cell lines based on a combination of mutation profiles of the 145 cellular onco-

genes and chemical fingerprints of drugs using the 180,000x1362 data matrix described above.

An IC50 of 1 μM was initially selected as the cutoff for active vs inactive drugs.

We generated a random forest classification model using 5-fold cross-validation. The first

80% (144,000) of the rows of the full matrix were selected as a training set, while the remaining

20% (36,000) of the rows were reserved as a test set. The Ranger program was applied to the

training data set in order to train a model for predicting drug activity status, using 500 trees

and a defaultmtry value of 37. The trained model was subsequently used to predict the activities

of the 36,000 drug-cell line combinations in the test set. We assessed the performance of the

model by computing the overall accuracy, sensitivity, specificity, false positive rate (FPR), neg-

ative predictive value (NPV), and Cohen’s kappa statistic [43] (κ), and negative predictive

value (NPV), which are given by

accuracy ¼
TPþ TN

TPþ TN þ FP þ FN
ð1Þ

sensitivity ¼
TP

TP þ FN
ð2Þ

specificity ¼
TN

TN þ FP
ð3Þ

FPR ¼
FP

TN þ FP
ð4Þ

NPV ¼
TN

TN þ FN
ð5Þ

k ¼ 1 �
1 � p0

1 � pe
ð6Þ

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives,

and false negatives, respectively, and p0 is the observed accuracy calculated in Eq 1. Given a

total number of instances N, the parameter pe is the hypothetical probability of chance agree-

ment, which is calculated as

pe ¼
ðTP þ FNÞðTP þ FPÞ

N2
þ
ðFPþ TNÞðFN þ TNÞ

N2
ð7Þ

This process was repeated such that each block of 20% of the data set rows had a turn being

reserved as the test set. Model performance was assessed for each round, and mean values for

accuracy, sensitivity, specificity, false positive rate, and kappa statistic for all five rounds were

calculated.

To further validate the classification models, we applied a stricter version of cross-validation

in which we ensured that the training set and test set never contain any drugs in common

(‘blind’ testing). In the cross-validation scheme described previously, it is possible for a given

drug D to be found in both the training and test sets. For the stricter cross-validation, however,
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every drug-cell line combination involving drug D occurs exclusively in the training set or in

the test set. For each of 20 rounds of cross-validation, we randomly selected 10 (out of 225)

drugs to withhold from the training set, leaving 215 drugs in the training set with which a new

random forest classification model was trained. The activities of the 10 withheld drugs were

then predicted using the new model. This scheme allowed us to simulate a scenario where the

active/inactive class needs to be predicted for a new drug that has not been involved in any

prior model training. The strict cross-validation was performed using an IC50 activity cutoff of

1 μM.

As a final validation step, we applied y-randomization, a method to control for the possibil-

ity that strong model performance is attributable to chance correlation between descriptors

[44]. After the training and test sets were generated, the class labels (active and inactive) in the

training set were randomly shuffled, and the model computed from the shuffled training set

was tested on the non-shuffled test set. This process was repeated five times, and statistical

metrics for model performance were computed for each iteration.

We further assessed the performance of binary classification models over a wide range of

IC50 cutoff values. The method described above was repeated using each of the following cutoff

values (in μM): 0.01, 0.05, 0.08, 0.1, 0.5, 0.6, 0.7, 0.8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30,

40, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 2500, 3000,

4000, 5000. The extreme cutoff values lead to large class imbalance, in which one class (active
or inactive) is significantly more numerous than the other class. Large class imbalance can

impair the performance of random forest and other machine learning models, especially for

predicting the minority class [45]. To address the issue of large class imbalance, for all cutoff

values at which the minority class constitutes <20% of the total instances, we applied the syn-

thetic minority over-sampling technique (SMOTE) [46] using five nearest neighbors during

sampling, as implemented using the smotefamily package in the R statistical software (http://

www.R-project.org/). SMOTE achieves a more balanced data set by creating synthetic minor-

ity class examples in order to over-sample the minority class and by under-sampling the

majority class. The balanced data sets were subsequently used for building random forest mod-

els applying 5-fold cross-validation and 500 trees.

To quantify the overall performance of the classification models, a receiver operating char-

acteristic curve was generated from the complete set of false positive rates and sensitivities

computed across all the IC50 cutoffs. The area under the curve was calculated using the Desc-
Tools package in R.

Finding minimum set of oncogene mutations for drug activity prediction

We hypothesized that a set of oncogenes whose mutation status is least important for accu-

rately classifying drug activity could be omitted from the data matrix while still allowing strong

model performance. To test this hypothesis, we selected the N (N = 5, 10, 15, . . ., 100) onco-

genes whose mutation status had the greatest Gini impurity indices (determined as described

previously) and retained only those oncogenes and the 1216 chemical fingerprints in the

matrix. For each value of N, random forest models were generated from the reduced matrix

using 5-fold cross-validation with 500 trees, and the same set of IC50 cutoff values as listed pre-

viously were utilized. The area under the receiver operating characteristic curve was calculated

for each N value.

Imputing missing experimental IC50 values

To simulate the effects of missing experimental IC50 values in the raw data set, we randomly

removed 10%, 20%, 30%, and 40% of the IC50 values from the 180,000x1362 data matrix. The
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missing values were subsequently imputed using four different methods implemented in R

software packages: (i) missForest, which imputes values using random forests (applying 500

trees and 10 iterations); (ii) k-nearest neighbors (k = 9) using the impute package; (iii) logistic

regression with lasso [47] (‘lassoC’) using the imputeR package with 100 maximum iterations;

and (iv) recursive partitioning with regression trees [48] (‘rpartC’) using the imputeR package

with 100 maximum iterations. The imputed IC50 values were compared to the true values.

Random forest classification models were subsequently trained by 5-fold cross-validation

using 80% of the instances in the imputed-data matrices as training data. IC50 cutoffs of 1 μM

were applied for separating active from inactive compounds. Model performance statistics

were calculated using test sets taken from the original (non-imputed) data matrix. This process

was repeated for the matrices containing reduced numbers of oncogene mutation descriptors

described in the previous section.

Training and validating random forest regression models to predict drug

activity

We trained random forest regression models to predict log(IC50) values directly using the data

matrix containing all drug-cell line combinations but only the 50 most important oncogene

mutation statuses and the 1216 chemical descriptors. Random forests used 500 trees, and

5-fold cross-validation was applied. Pearson correlation coefficients and Spearman rank corre-

lation coefficients were computed for the predicted and actual values of log(IC50). Further vali-

dation was performed using y-randomization, in which the original log(IC50) values of the

training sets were randomly shuffled prior to model training. Similarly to our classification

model validation process, we also performed stricter leave-drug-out cross-validation on the

regression models. A hold-out drug was randomly selected, all records involving the drug were

removed from the full data set, and a regression model was trained on the data set containing

the remaining 224 drugs and 990 cell lines. Pearson correlation coefficients and Spearman

rank correlations were subsequently computed for the predicted and actual values of log(IC50)

for the eliminated drug. This process was repeated for a total of nine separate randomly

selected drugs.

Assessing baseline performance of classification and regression random

forest models using dataset-based methods

To estimate the baseline performance of our classification random forest models, we applied

several dummy classifiers, including the zero rule algorithm [49], stratified prediction, uniform

random prediction, and the k-nearest neighbors algorithm. Each baseline assessment was per-

formed with 10-fold cross-validation. For the zero rule algorithm baseline estimation, the

majority compound activity class (inactive) was assigned to every instance of the test set pre-

dictions. For the stratified baseline estimation, the active-vs-inactive distribution among the

test set predictions was set equal to the active-vs-inactive distribution among the training set,

and predictions were randomly assigned to the test set following this distribution. For the uni-

form random baseline estimation, active vs inactive classes for the test set were predicted at

random with equal probability. In the k-nearest neighbors algorithm, the prediction for each

instance of the test set was set equal to the majority class of the 9 nearest neighbors in the train-

ing set (k = 9). Classification performance was assessed for each baseline method by the met-

rics of overall accuracy, negative predictive value, and kappa statistic, calculated at IC50 cutoff

values of 0.1 μM, 1 μM, and 10 μM.

Similarly, to estimate the baseline performance of the regression random forest models, we

applied three dummy regressors, including the zero rule algorithm, quantile prediction [50],
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and the k-nearest neighbors algorithm (k = 9). For the zero rule algorithm baseline estimation,

the mean log(IC50) from the complete data set was assigned to every instance of the predic-

tions. For the quantile prediction method, each test set prediction was assigned as a specified

quantile of the log(IC50) distribution of the training set, with the specified quantiles ranging

from 5% to 95% at increments of 5%. In the k-nearest neighbors algorithm, the predicted log

(IC50) for each instance of the test set was set equal to the average log(IC50) of the 9 nearest

neighbors in the training set. Regression performance was evaluated by the root-mean-square

error (RMSE).

Assessing baseline performance of classification and regression random

forest models by comparison to other machine learning methods

We also sought to establish a method-based baseline against which to assess the classification

and regression performance of random forest models on the GDSC data set. Accordingly, we

used the same data set to classify drug activity/inactivity with IC50 cutoffs of 0.1 μM, 1 μM, and

10 μM and to predict log(IC50) values by regression, applying a few commonly used machine

learning algorithms, including support vector machine (SVM), single-layer artificial neural

network, and multi-layer deep-learning neural network.

The SVM classification and regression models were trained using the sofia-ml suite of algo-

rithms (https://code.google.com/archive/p/sofia-ml/). The single-layer neural network and

deep-learning network classification and regression models were trained using the R interface

to the scalable, open-source H2O machine learning platform (https://cran.r-project.org/web/

packages/h2o/index.html). For the single-layer neural network, 900 neurons were used in the

hidden layer, as this value is ~2/3 the total number of descriptors (1362) used in the data set.

For the deep-learning network, two hidden layers were applied, each of which likewise con-

tained 900 neurons. In each neural network, tanh was used as the activation function and 1

million iterations were performed. A stochastic gradient descent learner type and a stochastic

loop type were applied in conjunction with a regularization parameter (lambda) equal to 0.1.

Data set and script availability

The 180,000x1362 GDSC data set used in this study and execution and analysis scripts are

available at the protocols.io repository: dx.doi.org/10.17504/protocols.io.3j9gkr6

Results

Most important oncogene mutations for predicting cancer cell sensitivity

to drugs

The mutational statuses of the 145 analyzed oncogenes from the GDSC data set have a wide

range of relative importance for predicting cancer cell sensitivity to anticancer drugs (Fig 1).

Here, the sensitivity of a cancer cell line to a drug was evaluated according to whether the drug

is active against the cell line (IC50� user-specified cutoff). An activity cutoff IC50 of 1 μM was

applied to separate active from inactive compounds. We estimated the relative importance of

each oncogene’s mutational status for correctly classifying a drug as active or inactive against

the cell lines by calculating its Gini impurity index during random forest generation.

For the complete data set including all 225 drugs and 990 cancer cell lines in the GDSC data

set, the mean Gini impurity index and standard deviation among all 145 oncogenes are 36 and

18, respectively (Fig 1A). The four oncogenes whose mutational statuses are the most impor-

tant variables for predicting cell line sensitivity to the 225 drugs collectively are TP53, BRAF,

MYC, and CREBBP, which have Gini impurity indices of 108, 105, 96, and 86, respectively.
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For predicting sensitivity of the 990 cancer cell lines to each drug individually, TP53 likewise

ranks as the most important oncogene (Fig 1B). For each of the individual 225 drugs in the

GDSC data set, we generated a separate random forest model to predict its activity against the

cell lines. All oncogene mutation statuses whose Gini impurity indices are greater than two stan-

dard deviations above the mean Gini impurity index for the drug were designated as top-rank-

ing oncogenes. TP53 is top-ranking for 217 out of the 225 drugs, followed by KRAS, APC,

ROS1, CREBBP, andMYC, which are top-ranking for 122, 91, 85, 81 and 79 drugs, respectively.

These findings are consistent with known associations between TP53 and MYC mutation

status and drug sensitivity [14,51], as well as associations between BRAF-mutated cell lines and

sensitivity to several types of anticancer drugs, including MEK1/2 inhibitors [14,52].

Fig 1. Relative importance of mutation statuses of oncogenes for predicting drug activity against cancer cell lines. (A)

Gini impurity indices calculated for entire data set consisting of 225 drugs and 990 cancer cell lines. The 50 most important

oncogenes are shown. (B) The top-ranking oncogenes for each individual drug were computed as those whose relative

importance is>2 standard deviations above the average oncogene importance for that drug. The 20 oncogenes that are top-

ranking for the greatest number of drugs are shown. Gini impurity indices for the mutation statuses were computed from

random forest classification models at an IC50 activity cutoff of 1 μM.

https://doi.org/10.1371/journal.pone.0219774.g001
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Predicting drug activity vs inactivity against cancer cell lines based on

mutational status of 145 oncogenes and chemical descriptors of drugs

We trained random forest binary classification models that predict the activity/inactivity class

of anticancer drugs against cancer cell lines using as input the mutational status of 145 cellular

oncogenes and 1216 drug chemical descriptors. Models were trained using 5-fold cross-valida-

tion, where the test set of each fold was withheld from training in order to measure the predic-

tive power of the model. We initially selected 0.1 μM, 1 μM, and 10 μM as IC50 cutoff values

that distinguish active from inactive compounds, such that the compound is considered active

against the cell line if its IC50� cutoff. At these cutoff values, all of the models have strong per-

formance statistics, achieving >80% accuracy, sensitivity, and specificity and Cohen’s kappa

statistic (κ) >0.60 (Table 1). As shown in Table 1, at IC50 cutoff values of 0.1 μM, 1 μM and

10 μM, the values of Cohen’s kappa statistic for the random forest classification models are

greater than their respective baseline values of 0.67, 0.68 and 0.60 yielded by the k-nearest

neighbors algorithm (k = 9). The kappa statistic gauges overall prediction strength, including

the tradeoff between specificity and sensitivity, in a single metric. These greater values of the

kappa statistic indicate that the random forest models offer a better balance between sensitivity

and specificity than baseline, particularly at lower IC50 cutoffs.

As a further validation step beyond 5-fold cross-validation, we performed y-randomization.

The active and inactive class labels in all the original training sets were randomly shuffled, new

random forest classifier models were trained, and the new models were tested on the original

test sets. The mean accuracies of the new models at IC50 cutoffs of 0.1 μM, 1 μM, and 10 μM

fell to 62%, 49%, and 50%, respectively, from the values of>80% for the original models. Simi-

larly, the mean values of κ fell to 0 at all cutoffs. This major decline in performance helps to

rule out the possibility that the better performance of the original models can be attributed to

chance correlations between descriptors [44].

We evaluated the performance of the classifier models over a wide range of IC50 cutoff val-

ues between 0.01 μM and 5000 μM. The random forest classification models perform strongly

overall, yielding an area of 0.96 under the receiver operating characteristic curve (Fig 2A).

In addition, we compared the classification performance of random forests with that of a

few other machine learning algorithms that are frequently used in personalized medicine,

including support vector machines, single-layer neural networks, and multi-layer deep neural

networks (S2 Table). At the three tested IC50 activity cutoffs of 0.1 μM, 1 μM, and 10 μM, the

Table 1. Performance metrics for random forest binary classification models. Models were trained at IC50 cutoff values of 0.1 μM, 1 μM, and 10 μM, using 145 cellular

oncogene mutation statuses among the set of predictors. Reported errors are calculated as standard deviations from 5-fold cross-validation. Baseline values of accuracy,

negative predictive value, and Cohen’s kappa statistic at each cutoff value are shown in parentheses. The kappa statistic gauges overall prediction strength, including the

tradeoff between specificity and sensitivity, in a single metric. The first baseline value within each set of parentheses is the average baseline value calculated using the tested

dataset-based baseline method (dummy classifier) that leads to the highest baseline performance, as measured by Cohen’s kappa statistic; for the GDSC data set, the highest

dataset-based baseline performance is yielded by the k-nearest neighbors algorithm (k = 9). The second baseline value within each set of parentheses corresponds to the

overall best-performing classification machine learning method (other than random forest) that we tested for the GDSC data set, as evaluated by the kappa statistic (S2

Table). The machine learning method yielding the highest kappa statistic and overall performance other than random forest is the support vector machine.

IC50 Cutoff 0.1 μM 1 μM 10 μM

Accuracy (%) 93 ± 2 (93; 93) 87 ± 1 (82; 87) 82 ± 1 (80; 82)

Sensitivity (%) 88 ± 4 87 ± 2 80 ± 1

Specificity (%) 94 ± 2 87 ± 1 83 ± 1

False positive rate (%) 6 ± 2 13 ± 1 17 ± 1

Negative predictive value (%) 98 ± 1 (97; 98) 97 ± 1 (92; 97) 82 ± 1 (81; 82)

Cohen’s kappa statistic (κ) 0.86 ± 0.04

(0.67; 0.86)

0.74 ± 0.02

(0.68; 0.73)

0.64 ± 0.02

(0.60; 0.63)

https://doi.org/10.1371/journal.pone.0219774.t001
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support vector machine classification model has kappa values of 0.86 ± 0.04, 0.74 ± 0.02, and

0.64 ± 0.02, respectively. Interestingly, these values are identical to those of the random forest

classification model (Table 1) and are considerably higher than those of the classification mod-

els generated by the single-layer neural network and the multi-layer deep-learning network,

which range from as low as 0.38 to 0.60. These data indicate that for the GDSC data set, ran-

dom forest classification models and support vector machine classification models perform

comparably well, providing roughly equal measures of accuracy, negative predictive value, and

kappa statistic at each cutoff, and perform better than the tested neural and deep-learning

networks.

Predicting activity of ‘new’ drugs that have not been seen in prior training

The random forest classification models perform strongly even when they are tested on drugs

that are missing from the training sets, that is, when the trained models are ‘blind’ to the tested

drugs. In order to test model performance for drugs that have not been involved in prior train-

ing, we removed randomly selected sets of 10 drugs from the full data set, leaving 215 drugs

and 990 cancer cell lines. A random forest classification model was trained on the remaining

data using an IC50 cutoff of 1 μM, and the activities of the withheld set of drugs were predicted

from the model. This stricter validation process was repeated 20 times. Mean accuracy, sensi-

tivity, and specificity for the activity predictions for the withheld drugs were 85%±7%, 79%

±15%, and 84%±5%, respectively, which are only slightly lower than their corresponding val-

ues of 87% for the less strict cross-validation used previously, in which a given drug D can be

present in both the training and the test sets. These performance metrics show that the classifi-

cation models’ predictive performance remains strong regardless of whether the models are

trained using drugs included in the test sets.

Finding minimum set of oncogene mutations for predicting drug activity

The random forest classification models for predicting drug activity perform with roughly the

same level of accuracy until only the 50 most important oncogene mutations (shown in Fig

2A) remain. We systematically eliminated from the full data matrix the least important onco-

gene mutation statuses (as measured previously by their Gini impurity indices) five at a time

Fig 2. Receiver operating characteristic plots for random forest binary classification models. Random forest models were

generated using (A) all 145 cellular oncogene mutation statuses and (B) the 50 most important cellular oncogene mutation

statuses.

https://doi.org/10.1371/journal.pone.0219774.g002
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and trained a new model on each reduced data set at IC50 cutoffs of 1 μM and 0.1 μM, evaluat-

ing the accuracy, sensitivity, specificity, and κ for each resulting model. Relative to the full data

matrix containing all 145 oncogenes, there is no decline in performance until fewer than 50

oncogenes remain (Table 2).

When fewer than the 50 most important oncogene mutation statuses remain in the data set,

the accuracy, sensitivity, specificity, and κmetrics for the classification models begin to

decline. We selected the set of 50 oncogenes as the optimum number to use in the final classifi-

cation models, as this number allows the models to maintain maximal performance while min-

imizing the amount of required input data. The receiver operating characteristic plot for the

models using the 50 top oncogenes yields an area under the curve of 0.94, showing overall per-

formance that is almost identical to that of the original models using the full set of 145 onco-

genes (Fig 2B).

Imputing missing IC50 values and building classification models using

imputed data

Clinical and genomic research commonly involves missing data, and missing data can compli-

cate and undermine the validity of research results [53]. Accordingly, we simulated the pres-

ence of missing IC50 data in the GDSC data set by randomly discarding 10%, 20%, 30%, and

40% of the IC50 values and subsequently imputing the missing values by random forest regres-

sion models. The logistic regression with lasso (‘lassoC’) and k-nearest neighbors (k = 9) algo-

rithms impute missing IC50 values with sufficient accuracy that random forest classification

models trained on the imputed-data sets have high mean accuracy (89%-90%), sensitivity

(71%-73%), specificity (95%), and Cohen’s kappa statistic (0.69–0.70) even when up to 40% of

experimental activity data are missing (Fig 3). The missForest R package performs slightly

worse for the GDSC data set, yielding mean accuracies < 90% and mean kappa

statistics� 0.66. Moreover, the performance of missForest deteriorates when 40% of the IC50

values are missing, whereas the logistic regression with lasso and k-nearest neighbors algo-

rithms maintain constant performance metrics across all tested percentages of missing data.

Predicting log(IC50) values using random forest regression

In addition to generating classification models for predicting activity vs inactivity of drugs

against cancer cell lines, we trained random forest regression models that directly predict log

(IC50) values, applying 5-fold cross-validation such that predictions were made for all drug-

cell line combinations. The models were trained using the data set containing the mutation sta-

tuses of the top 50 oncogenes and the drug chemical fingerprints. The regression models yield

Table 2. Mean performance metrics for random forest binary classification models as a function of number of oncogenes in training data set. IC50 activity cutoff val-

ues of 1 μM and 0.1 μM were applied. Values in parentheses correspond to an IC50 activity cutoff of 0.1 μM.

Oncogene subset size Accuracy (%) Sensitivity (%) Specificity (%) κ

125 oncogenes 87 (93) 87 (88) 87 (94) 0.74 (0.86)

110 oncogenes 87 (92) 87 (87) 86 (94) 0.74 (0.84)

95 oncogenes 88 (92) 88 (88) 87 (93) 0.76 (0.84)

80 oncogenes 87 (93) 88 (88) 87 (94) 0.74 (0.86)

65 oncogenes 87 (92) 86 (87) 87 (94) 0.74 (0.84)

50 oncogenes 87 (93) 87 (88) 87 (94) 0.74 (0.86)

40 oncogenes 84 (89) 83 (88) 84 (89) 0.68 (0.78)

30 oncogenes 81 (86) 81 (86) 82 (86) 0.62 (0.72)

https://doi.org/10.1371/journal.pone.0219774.t002
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a root-mean-square error of 0.62 ± 0.02 log(IC50) unit, a Pearson correlation coefficient of

0.86, and a Spearman rank correlation of 0.83 (Fig 4). By comparison, the mean dataset-based

(dummy regressor) baseline root-mean-square error of regression models is 0.89 log(IC50)

unit for the k-nearest neighbors algorithm (k = 9) and 1.2 for both the zero rule algorithm and

for the quantile prediction method.

Fig 3. Mean performance metrics for random forest binary classification models trained on data sets containing

imputed IC50 values. IC50 values were imputed by the k-nearest neighbors (k = 9) algorithm (left) and the logistic

regression with lasso (‘lassoC’) algorithm (right). Percentages of imputed values range from 10% to 40%. An IC50 activity

cutoff of 1 μM was applied. The kappa statistic (κ) has been multiplied by 100 for scaling.

https://doi.org/10.1371/journal.pone.0219774.g003

Fig 4. IC50 values for all combinations of drugs and cancer cell lines in the GDSC data set as predicted by random

forest regression models. Predictions of log(IC50) were achieved using 5-fold cross-validation. Performance statistics

are calculated for the test sets. The RMSE, Pearson correlation (RP), Spearman rank correlation (ρ), and corresponding

regression line are shown.

https://doi.org/10.1371/journal.pone.0219774.g004
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To perform a more rigorous test of the regression models’ predictive value, we also per-

formed leave-drug-out cross-validation. For each of nine individual drugs that are part of the

GDSC data set, a ‘blind’ random forest regression model was trained using no instances of the

drug while retaining the other 224 drugs, and the predictive performance of the trained model

for the omitted drug was assessed. The RMSE for the nine leave-drug-out models range from

0.6 to 2.1 log(IC50) units and have an average RMSE of 0.9 log(IC50) units (Fig 5). The Pearson

correlation coefficients and Spearman rank correlations range from 0.65 to 0.73 and from 0.61

to 0.73, respectively, having averages of 0.67 and 0.66. As expected, these correlations are

weaker than those for the 5-fold cross-validation, since the 5-fold cross-validation involves

Fig 5. Predicted vs. observed log(IC50) for leave-drug-out cross-validation. Randomly selected drugs were omitted from the GDSC data set, and random forest

regression models were trained using the data set containing the remaining 224 drugs and 990 cell lines. This process was performed for each of 9 drugs. The RMSE,

Pearson correlation (RP), Spearman rank correlation (ρ), and corresponding regression line are shown for each omitted drug. Structures of the omitted drugs are

depicted in the insets.

https://doi.org/10.1371/journal.pone.0219774.g005
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instances of each drug in both the training and test sets. Nevertheless, the Pearson correlation

coefficients are comparable to or greater than those reported for leave-drug-out validation

tests performed in several previous drug sensitivity-prediction studies applying machine learn-

ing [23,24,54–56]. The observed correlations suggest that the regression models may be

applied with reasonable accuracy to predict relative activities of new compounds.

Additionally, we compared the regression performance of the random forest models with

that of models generated by support vector machine, single-layer neural networks, and multi-

layer deep-learning networks. The average RMSE of predicted log(IC50) values from 5-fold

cross validation of these models are 1.10 ± 0.02, 0.72 ± 0.02, and 0.70 ± 0.01 log(IC50) units,

respectively. For the GDSC data set, these methods thus yield higher RMSE values than does

the random forest regression model, which has an RMSE of 0.62 ± 0.02 log(IC50) unit.

Required computation time for random forest generation

On a desktop computer featuring two Intel 2.4 GHz processors and 12 GB of RAM, the mean

wall-clock time required to train random forest classification models using the stand-alone C+

+ Ranger program distributed over 16 threads was 9.7 minutes. The mean wall-clock time

required to train SVM classification models using the sofia-ml package was 0.1 minute, while

the mean times required for the single-layer neural network and multi-layer deep-learning net-

work using the R interface to the H2O machine learning platform were 9.5 minutes and 42.0

minutes, respectively. The mean wall-clock times required for training random forest, SVM,

single-layer neural network and multi-layer deep-learning network regression models using

the same programs as above were 11.8 minutes, 0.1 minute, 8.0 minutes, and 25.0 minutes,

respectively.

Discussion

An overarching goal of precision medicine is to match drugs to the specific genomic profiles

of patients in order to maximize the effectiveness of treatment for the individual. In oncology,

the availability of large data sets obtained from high-throughput screening campaigns against

cancer cell lines has made it possible to decipher relationships between cancer cell genomic

data and cellular drug sensitivity. Although many excellent computational methods have been

developed to identify these relationships from experimental data, including several used in the

NCI-DREAM drug sensitivity prediction challenge, they are often specialized for a small sub-

set of cancer types, involve complex modeling techniques, and/or require large volumes of het-

erogeneous genomic and extra-genomic information obtained from disparate data sets. For

instance, information involving RNA sequence, methylation status, copy number variation,

reverse phase protein array, and biological pathway annotations is often required for maximal

performance.

In an effort to create as simple a sensitivity prediction method as possible, we sought to

leverage the large quantity of current publicly available screening data to create computational

models that (i) are applicable to a broad range of cancer types, (ii) require only a minimal

amount of experimental data to train and apply, and (iii) involve a non-parametric, well-vali-

dated machine learning technique that is simple to implement ‘out of the box’ for clinicians

and researchers, including those without computational expertise.

We have shown that the activities of 225 drugs against 990 cancer cell lines can be predicted

by random forests with high accuracy using only the mutation status of 50 oncogenes and

~1220 easily computed chemical descriptors of drug structures. To our knowledge, the muta-

tion status of only 50 oncogenes is the smallest quantity of experimental data required for any

recently published method. We used the GDSC data set to train binary classification random
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forest models that achieve overall accuracy, sensitivity and specificity>80% and an area under

the ROC curve of 0.94, as well as regression random forest models that predict log(IC50) values

with a Pearson correlation of 0.86. Interestingly, this Pearson correlation coefficient is the same

as that of a previously reported regression model trained on an earlier version of the GDSC

screening data set containing 608 cancer cell lines and 111 drugs [54]. Moreover, several rounds

of leave-drug-out cross-validation, in which trained regression models are completely ‘blind’ to

test compounds, achieve Pearson correlation coefficients and Spearman rank correlations

between predicted and observed log(IC50) values that range from 0.65 to 0.73. The ability to pre-

dict and rank new drug activity against annotated cancer cell lines suggests that the models may

serve as a useful tool in drug discovery and clinical settings when novel drugs become available

but have not yet been subjected to high-throughput cell screening.

Additionally, we have demonstrated that when up to 30% of experimental IC50 values are

missing from the GDSC data set, they can be imputed without compromising the accuracy of

the classification models. This capability means that in the common scenario where the activi-

ties of a subset of drug-cell line combinations have not been experimentally measured in a data

set, these combinations need not be discarded; rather, the activities can be estimated from

existing data with reasonable accuracy, maximizing the size of the data set available for model

training.

The overall predictive strength of our models likely stems from both the large number of

drug-cell line combinations (180,000) in the GDSC data set and the broad chemical space cov-

erage that is afforded by the 225 drugs in the data set. However, model performance likely

could be improved as screening data sets continue to become larger and capture a broader

range of drug chemical space and greater cancer cell line diversity. In addition, we focused

exclusively on oncogene mutation status as predictive genomic cell features, but the mutation

status of other types of genes may be even more highly predictive of cell sensitivity and drug

activity. Finally, as demonstrated by a recent study [32], cell sensitivity prediction accuracy can

be enhanced by incorporating relationships between different output responses, as imple-

mented by multivariate random forests. In the context of the present work, incorporating rela-

tionships between drug pair sensitivities using multivariate random forests may boost the

models’ predictive power.

Random forests, which we applied in the present study, offer the advantage of requiring lit-

tle, if any, data preprocessing, have few parameters for the user to adjust, and compute the rela-

tive importance of individual descriptors, potentially allowing the least important descriptors

not to be required as part of experimental data sets. For example, in the present study, we dis-

carded 95 oncogene mutations from the original descriptor set of 145 oncogenes without

compromising classification accuracy, minimizing the volume of required experimental data.

These strengths make random forests valuable and a suitable choice for generating drug sensi-

tivity prediction models for both clinicians and researchers.

In conclusion, we highlight the potential of the presented classification and regression mod-

els–and the methodology used to generate them–to accurately predict and rank the activities

of drugs against a given cancer cell line, provided that the mutation status of at least the 50

most relevant oncogenes reported here has been determined for the cell line. These predictions

may help guide drug discovery programs, assist in drug repurposing, and inform clinical deci-

sions concerning effective drug treatments for specific cancer patients.
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