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Photoplethysmography (PPG) has been widely used in noninvasive blood volume and blood flow detection since its first ap-
pearance. However, its noninvasiveness also makes the PPG signals vulnerable to noise interference and thus exhibits nonlinear
and nonstationary characteristics, which have brought difficulties for the denoising of PPG signals. Ensemble empirical mode
decomposition known as EEMD, which has made great progress in noise processing, is a noise-assisted nonlinear and non-
stationary time series analysis method based on empirical mode decomposition (EMD). *e EEMD method solves the “mode
mixing” problem in EMD effectively, but it can do nothing about the “end effect,” another problem in the decomposition process.
In response to this problem, an improved EEMDmethod based on support vector regression extension (SVR-EEMD) is proposed
and verified by simulated data and real-world PPG data. Experiments show that the SVR-EEMDmethod can solve the “end effect”
efficiently to get a better decomposition performance than the traditional EEMD method and bring more benefits to the noise
processing of PPG signals.

1. Introduction

PPG [1] is a promising biometric technique based on
Lambert–Beer’s law [2] and the difference in spectral ab-
sorption characteristics of human skin and blood to convert
optical signals into blood volume and blood flow in-
formation. It can be used for noninvasive detection of
microvascular blood flow changes, providing quantities of
possibilities in detecting blood volume and blood flow pa-
rameters [3–5]. Unfortunately, the noninvasiveness of PPG
has both advantages and disadvantages: PPG signals are
susceptible to disturbances from external environment and
thus it causes inaccuracies to the measured results and those
disturbances, including respiratory activities (RA), motion
artifacts (MA), power line interference, and high-frequency
noise generated by electronic components, tend to cause
PPG signals to be doped with nonlinear and nonstationary
components, which can result in spectral aliasing and dis-
tortion when processed with traditional methods.

*e EMD method proposed by Huang et al. [6] in 1998
decomposes the time series into a set of intrinsic mode

functions (IMFs), and noise can be eliminated by selecting
appropriate IMFs. However, some drawbacks impede its
further development. Several years later, a more powerful
ensemble EMD [7] method called EEMD is presented and
solves the “mode mixing” problem, one of the major
drawbacks of the original EMD. *e EEMD method has
proven to be quite versatile in a broad range of applications
such as geology [8, 9], banking [10], machinery [11, 12], and
medicine [13] for extracting signals from data generated in
noisy processes. Respecting the denoising of PPG signals,
lots of researches have also been carried out. Sweeney et al.
[14] used EEMD with canonical correlation analysis to
remove artifacts both from electroencephalography (EEG)
and functional near infrared spectroscopy (fNIRS) single
channel data; Liao et al. [15] used the EEMD method to
achieve accurate analysis for PPG signals and implemented it
on a specific platform; Chuang et al. [16] analyzed the high-
frequency band (0.4–0.9Hz) of IMF5th decomposed by
EEMD to measure pulse rate variability (PRV); Motin et al.
[17] proposed an algorithm based on EEMD with principal
component analysis (EEMD-PCA) as a novel approach to
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estimate heart rate (HR) and respiratory rate (RR) simul-
taneously from PPG signals; Sadrawi et al. [18] used PPG
data corrupted by vertical MA noise to evaluate the per-
formance of EEMD filtering.

*e EEMD method overcomes the “mode mixing”
problem in EMD, but it does not consider the second
problem existing at the same time: “end effect,” which causes
the two ends of the time series to diverge when spline in-
terpolation. In order to solve this problem, this paper
proposes an improved EEMD method (SVR-EEMD) based
on support vector regression extension and verifies its
denoising performance by simulated data and real-world
PPG data.

*is paper will first describe the experimental materials
and introduce the principle of the SVR-EEMD method and
its implementation steps. *en, we will report the results of
the proposed method on the simulated data and real-world
PPG data and compare the denoising performance of dif-
ferent methods, and further advices on the necessary re-
search are also discussed. Finally, we will draw the
conclusion part to clarify the effectiveness and efficiency of
this method.

2. Materials and Methods

2.1. SimulatedData Acquisition. *e simulated signal which
is sampled at 1 kHz for a duration of one second consists of a
sinusoidal signal of 5Hz and a cosine signal of 20Hz. It can
be expressed by equation (1), where n(t) is the superimposed
Gaussian white noise to ensure that the signal-to-noise ratio
(SNR) of the simulated signal is 15 dB:

y(t) � sin(2∗ π ∗ 5∗ t) + cos(2∗ π ∗ 20∗ t) + n(t). (1)

*e SNR is calculated by equation (2), in which s(t) is the
signal component that is equal to the first two parts on the
right-hand side of equation (1) and n(t) is the noise com-
ponent. Accordingly, we can calculate the noise intensity
which is 0.0316 in the simulated signal:

SNR � 10∗ log
􏽐 s(t)2

􏽐 n(t)2
. (2)

2.2. Real-World PPG Data Acquisition. *e real-world PPG
data are obtained from BIDMC PPG and Respiration
Dataset of PhysioBank, which is supported by the National
Institute of Medical Sciences (NIGMS) and National In-
stitute of Biomedical Imaging and Bioengineering (NIBIB)
and whose data were originally acquired from critically ill
patients during hospital care at the Beth Israel Deaconess
Medical Centre (Boston, MA, USA) [19, 20].*ere are a total
of 53 sets of patient data in the dataset, each of which records
some basic information of the patient and a series of
physiological data of certain duration. *ese physiological
data include respiratory activity data, EEG data, PPG data,
and so on. We picked 10 sets (2, 5, 33, 34, 37, 38, 43, 45, 50,
and 53) of PPG data to carry out the real-world PPG data
experiment of this study.

2.3. )e Proposed SVR-EEMD Method. *e SVR-EEMD
method can be generally implemented by two steps: firstly,
construct a training set based on the original signal to train
the SVR model and use the trained SVR model to extend a
finite number of maxima and minima time series, re-
spectively, to the left and right ends of the original signal;
then the EEMD algorithm is performed on the extended
signal and appropriate IMFs are selected for reconstruction
when the extension part is truncated. *e implementation
process is shown in Figure 1.

2.3.1. Signal Extension Based on Support Vector Regression.
Support vector regression is a “tolerant” regression model,
which maps the data x ∈ Rn to a high-dimensional feature
space H through a nonlinear mapping function φ and
performs the linear regression in this space correspond-
ingly [21]. It can be abstracted into the following
expression:

(x) � w · φ(x) + b,

φ: x⟶ H,
􏼨 (3)

where w is the normal vector of the regression hyperplane
and b is the threshold. Based on this algorithm, we extend
the time series by steps (1) to (4):

(1) Construct a training set T� {(x1, y1), . . ., (xn, yn)}
using the left-end data of the time series

(2) Select precision parameter “ε”, error penalty factor
“C”, loss function “e,” and kernel function k(xi, xj)

to construct the SVR model

f(x) � 􏽘

n

i�1
a
∗
i − ai( 􏼁k xi, x( 􏼁 + b, (4)

where a∗i , ai i � 1, 2, . . . , n are Lagrange multipliers and
only a small part which corresponds to the so-called
support vector (SV) is not zero
In this step, the SMO [22] algorithm, the key point of
which is to decompose a complex optimization
problem into several suboptimization problems that
are often easy to solve, is performed by iteratively
selecting subsets of {a∗i , ai} only of size 2, leaving all
the other kept fixed and optimizing the sub-
optimization problems of equation (5) until a set of
{a∗i , ai} is optimized:

min
0≤a∗

i
,ai≤C

1
2

􏽘

n

i,j�1
a
∗
i − ai( 􏼁 a

∗
j − aj􏼐 􏼑k xi, xj􏼐 􏼑⎛⎝

+ ε􏽘
n

i�1
a
∗
i + ai( 􏼁 − 􏽘

n

i�1
yi a
∗
i − ai( 􏼁⎞⎠.

(5)

*e threshold b is derived by
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1
NSV

􏽘
0<ai<C

yi − 􏽘
xj∈SV

a
∗
j − aj􏼐 􏼑k xj, xi􏼐 􏼑 + ε⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

+ 􏽘
0<a∗

i
<C

yi − 􏽘
xj∈SV

a
∗
j − aj􏼐 􏼑k xj, xi􏼐 􏼑 − ε⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎬

⎪⎭
,

(6)

where NSV is the number of support vector samples
(3) Use the trained SVRmodel to extend a finite number

of maxima and minima points to the left end of the
time series

(4) By repeating steps (1)–(3) for the right end data, we
can get the left and right ends of the time series being
extended

Considering that SVRmodel is to seek a linear regression
function to fit all the samples to minimize the total variance
of the sample from the hyperplane, we let C equal to infinity
and ε be zero to improve the regression accuracy. Fur-
thermore, we have also used the commonly used ε-in-
sensitivity loss function and linear kernel function for the
sake of convenience.

2.3.2. Signal Decomposition and Reconstruction Based on
EEMD. In the first step of EEMD, an independent identi-
cally distributed and zero mean white noise whose intensity
(Np) should match the noise intensity in the signal as much
as possible is added and then EMD is applied to drive a set of
IMFs. *ese steps are repeated for N times to conclude an
ensemble of IMF sets and, finally, the ensemble should be
averaged to receive one set of IMFs.

EMD of the main work is performed basically by a sifting
process as follows:

(1) Assign the original signal to y(t).
(2) Find the local maxima and minima of the signal y(t).

(3) Interpolate (cubic spline interpolation here) between
the local maxima and minima to generate upper and
lower envelops: emax(t) and emin(t).

(4) Subtract the mean value of envelops from y(t)

c(t) � y(t) −
emax(t) + emin(t)( 􏼁

2
. (7)

(5) Calculate the sift relative tolerance (rtol), the stop
criterion of IMF, which is set to 0.2 in this paper

rtol �
ci− 1(t) − ci(t)( 􏼁

2

ci(t)2
, (8)

where ci(t) and ci− 1(t) denote the current and
previous c(t), respectively.

(6) Determine if rtol is less than 0.2, and if so, terminate
the loop and treat the current c(t) as an IMF;
otherwise assign c(t) to y(t) and continue iterating
the steps from (2) to (6)

(7) Subtract c(t) from the original signal and repeat the
steps from (1) to (7) until y(t) can never be
decomposed, then the original signal can be
expressed as

y(t) � 􏽘
n

i�1
IMFi(t) + r(t), (9)

where n is the total number of IMFs and r(t) is the residual
component

Typically, the original signal will be decomposed into
several IMF components, and the first few correspond to the
high-frequency band of the time series and the last few
correspond to the low-frequency band. As a result, we can

Y(t)

SVR extension

EEMD

Result

Training set

Train SVR

Extension

Output

X(t)

Reconstruction

X(t)

N, Np, i = 0

Sum and average

Output

i++
X(t) = X(t) + n(t)∗Np

i > N?

EMD
Yes

No

Figure 1: Implementation process of the proposed SVR-EEMDmethod.*e left part describes the signal extension procedure, and the right
part describes the signal decomposition procedure.
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obtain the denoised signal by selecting the target IMFs for
reconstruction based on the signal and noise frequency
distribution characteristics; that is to say, if the noise fre-
quency is in high-frequency band or higher than the signal
frequency, we can zero the first few IMFs and reserve the
other IMFs where the signal is located and vice versa.

3. Results and Discussion

To demonstrate the denoising performance of the proposed
SVR-EEMDmethod, we applied it to the simulated data and
real-world PPG data. For the simulated data, we use SNR
and correlation coefficient (Corr) to evaluate the effective-
ness of this method and select precision rate (P) and recall
rate (R) of the pulse wave peak as estimations of this method
on the real-world PPG data.

3.1. Experiments for the Simulated Data. We choose N� 100
and Np � 0.0316 to make sure that the EEMD and SVR-
EEMD methods are under the same decomposition con-
dition. Figure 2 depicts the IMF components of the simu-
lated signal decomposed by those two methods in detail.

In Figure 2, we can discover that, first, unlike the general
mirror extension or zero-padding operation, our SVRmodel
can predict the previous and future trend of the signal and
extend it accurately. Second, the IMFs are arranged in order
of frequency from high to low and in this decomposition,
IMF3rd and IMF4th correspond to the signal components of
the simulated signal with frequencies of 20Hz and 5Hz,
respectively, while the other corresponds to the noise
components. *ird, all the IMFs (left) decomposed by
EEMD have different degrees of divergence at the left and
right ends, especially the left. In contrast, the SVR-EEMD
method suppresses this effect to a large extent.

Figure 3 compares the processed signals by FIR low-pass
filter (cutoff frequency at 22Hz), EEMD, and SVR-EEMD
method. Due to the “end effect,” the signal reconstructed by
EEMD has severe distortion at both sides and the filtered
data also have small deviation from the original signal be-
cause of phase shift, in which circumstances only the signal
reconstructed by SVR-EEMD maintains a high degree of
consistency with the original signal as the left and right
subgraphs show. We calculated the SNR and Corr listed in
Table 1, which proves the SVR-EEMD an effective method to
significantly suppress the “end effect” and filter out noise in
the signal.

3.2. Experiments for the Real-World PPG Data.
Figures 4(a) and 4(b) briefly describe the time-frequency
distribution of the PPG signal of the patient 25 during the
345–370 s period. We can see that there was a strong motion
disturbance (red arrow) around the 362 s and the PPG signal
was completely submerged in the noise. In addition, we can
clearly see that the respiratory activity (red elliptical area) is
superimposed on the PPG signal, which is also confirmed in
Figure 4(b). In Figure 4(b), the respiratory rate is about
0.27Hz consistent with the dataset record and the signal also
contains a large number of harmonics in addition to PPG

signal (about 2.08Hz).We use the proposedmethod (N� 30,
Np � 0.6) to decompose the data, and results are shown in
Figure 5(a). Additionally, we draw the power spectral density
(PSD) map of each IMF in Figure 5(b).

It can be seen from Figure 5(a) that the left and right
ends of the original PPG signal are accurately extended by
three peaks (red rectangular area) after the SVR extension,
and the extended signal is decomposed into seven IMF
components in different frequency bands by EEMD. Among
the IMFs, there is no divergence at each component, which
proves that the SVR-EEMD method can solve the “end
effect” problem in EMD when decomposing PPG signals.
From the perspective of IMF frequency, IMF1st and IMF2nd

are mainly random noise and harmonics with relatively
higher frequency and lower intensity compared with IMF3rd

and IMF4th (the maximum intensities of IMF1st and IMF2nd

are 0.01 and 0.72 with corresponding frequencies of
12.57Hz and 8.33Hz, respectively, while the maximum
intensities of IMF3rd and IMF4th are 126.5 and 245.9 with
corresponding frequencies of 4.18Hz and 2.08Hz, re-
spectively). IMF4th is the peak position of PPG signal whose
details can be found in IMF3rd. IMF6th and IMF7th are the
least lower frequency bands corresponding to the re-
spiratory activity elliptically annotated in Figure 4(a), and
the frequency of IMF5th is the most mixed with two distinct
ripples at 362 s and 369 s. We reconstructed the PPG signal,
respiratory signal, and interference signal shown in Figure 6
with these IMFs. It can be found that the two evident
motion artifacts (red elliptical area) in the original signal
have been decomposed into the MA signal, and the
reconstructed RA signal (black solid curve) is also in good
agreement with the respiratory activity (red dotted curve)
recorded in the dataset. Compared with the original signal,
the reconstructed PPG signal not only filters out most of the
interference but also successfully recovers the PPG signal
(red rectangular area) that is submerged in MA noise.
However, at the 362 s moment, the interference is too strong
to recover the PPG signal clearly but enough to detect the
PPG peak position.

We count the ratio of the number of successfully rec-
ognized peaks to the total number recognized as the pre-
cision rate and to the actual number in PPG data as the recall
rate to verify the performance of the FIR filter (cut-off
frequency at 12Hz according to PPG signal frequency
range), EEMD, and SVR-EEMD method again using the
patient data, and the results are listed in Table 2.

It can be found statistically from Table 2 that the EEMD
method is slightly better than the FIR filter in terms of
precision and recall. For data of patients 2, 5, 34, 38, 43, and
50, the EEMDmethod works better than the FIR filter, while
for patients 33 and 45, the FIR filter does indeed better than
the EEMDmethod. Unsurprisingly, the SVR-EEMDmethod
is more often outstanding than the previous two methods.
*e reasons we analyzed for this result may be that first, the
frequency components in PPG signals of different patients
are different, especially those whose pulse rate is extremely
unstable, resulting in different methods with different
treatment results; second, the “end effect” causes the signal
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to diverge during decomposition and leads to false peaks or
missing peaks, to make matters worse, and this divergence
may penetrate into the signal and contaminate the entire
data sequence. *ird, the random nature of the auxiliary
added Gaussian white noise may cause large fluctuations at a
certain position of the signal, which could make the
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Table 1: SNR and Corr of the processed signals.

Method SNR Corr
FIR 37.83 0.9886
EEMD 18.35 0.9203
SVR-EEMD 44.54 0.9978
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effectiveness of the EEMDmethod not as effective as the FIR
filter. Furthermore, we calculated the correlation coefficient
and mean delay time (MDT) of the data processed by those
three methods as shown in Table 3.

*e mean delay time is calculated by equation (10),
where n is the total number of peaks for successful recog-
nition at tEig in the processed data and tEig′ is the time at
which the peaks of the original data are located is defined as
the average of the sum of the absolute time difference be-
tween the successfully identified peaks and the corre-
sponding peaks in the original data:

MDT �
􏽐

n
i�1abs tEig − tEig′􏼐 􏼑

n
. (10)

We can see that, due to the phase shift effect, the FIR
filtered data have a significant time delay phenomenon, thus
with a relatively lower correlation coefficient. Inversely, the
EEMD and SVR-EEMD methods have higher correlation
coefficients while achieving lower latency. Moreover, the
SVR-EEMD method solves the “end effect” problem and
improves both the MDT and Corr indicators.

3.3. Discussion. In Table 2, the EEMD method is generally
better than the FIR filter, except for patients 33 and 45.

Taking the data of patient 45, Figures 7(a) and 7(b), re-
spectively, describe in detail the comparison of the left and
right ends between the processed data and the original
data.

It can be seen that the data filtered by the FIR filter have a
serious phase delay problem, which is the reason why the
MDT is longer and the Corr is lower in Table 3. *e left and
right ends of the data reconstructed by the EEMD method
also have different degrees of divergence and deviate from
the original data trend. Even worse, a false peak appears in
the right end data, which reduces the precision and recall of
the EEMD method to some extent. In contrast, the SVR-
EEMD method does not have these two problems and has
achieved good results.

In addition, the intensity of noise superimposed on the
signal has an important influence on the decomposition
effect of the EEMDmethod. For the simulated signal, we can
calculate the relative energy of noise and select appropriate
noise intensity. However, for the real PPG data, we have no
prior knowledge of the noise in the data, but we can estimate
the noise intensity distribution range by posterior statistics.
Figure 8 shows the averaged correlation coefficient, pre-
cision, and recall of the 10 sets of data processed by the SVR-
EEMD method applying different noise intensities ranging
from 0.15 to 2.25 and the suitable noise intensity range is
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Figure 5: IMFs and PSD of PPG signal decomposed by SVR-EEMD. (a) Time series of IMFs.*e first row is the extended version of the PPG
signal shown in Figure 4(a). (b) PSD of each IMF.*e corresponding maximum frequency point is marked with a red asterisk and values in
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0.75–1.25, the key point of which is that how much it should
be applied needs further study.

Although the phase shift characteristic of the FIR filter
makes the filtered data less correlated with the original data,
the filter is simpler and easier to use. If a low phase shift or
zero phase shift filter is used, the result will be improved, but
the signal and noise in the data cannot be decomposed into

different intrinsic mode functions like the EEMD method
does.

4. Conclusions

In order to solve the “end effect” problem in the EEMD
method, this paper proposes an SVR-EEMD method based
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original signal, and the red dotted curve presents the recorded respiratory activity in the dataset. *e two red rectangles indicate the
recovered peaks of the reconstructed PPG signal by IMF3rd plus IMF4th.

Table 2: P and R when PPG signals are dealt with different
methods.

Num Peaks
P R

FIR EEMD SVR-
EEMD FIR EEMD SVR-

EEMD
2 454 0.960 0.980 0.981 0.998 0.989 1.000
5 524 0.994 0.996 1.000 0.985 0.985 0.996
33 633 0.962 0.957 0.965 0.964 0.959 0.967
34 219 0.991 0.995 0.995 0.991 0.986 0.995
37 645 0.994 0.994 0.995 0.989 0.989 0.998
38 641 0.954 0.958 0.964 0.969 0.964 0.969
43 717 0.986 0.993 0.996 0.983 0.991 0.997
45 526 0.945 0.936 0.947 0.941 0.939 0.949
50 293 0.983 0.986 0.993 0.973 0.997 1.000
53 626 0.957 0.957 0.963 0.957 0.958 0.963

Table 3: Corr and MDTwhen PPG signals are dealt with different
methods.

Num
MDT(s) Corr

FIR EEMD SVR-EEMD FIR EEMD SVR-EEMD
2 0.121 0.012 0.008 0.337 0.968 0.977
5 0.126 0.010 0.009 0.342 0.997 0.998
33 0.218 0.010 0.008 0.013 0.982 0.999
34 0.123 0.010 0.009 0.114 0.969 0.995
37 0.118 0.014 0.008 0.336 0.984 0.987
38 0.070 0.002 0.002 0.488 0.988 0.991
43 0.145 0.022 0.019 0.321 0.656 0.916
45 0.117 0.052 0.049 0.442 0.991 0.993
50 0.160 0.026 0.022 0.146 0.977 0.991
53 0.133 0.011 0.005 0.301 0.986 0.991
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on support vector regression extension and applies it to the
denoising of PPG signals. Both simulated data and real-
world PPG data are used to compare the denoising per-
formance of the FIR low-pass filter, EEMD, and SVR-EEMD
methods. For the simulated data, the SNR of which pro-
cessed by the SVR-EEMD method improves nearly three
times higher with a correlation coefficient over 0.99. For the
real-world PPG data processed by the SVR-EEMD method,
not only the precision and recall are higher than the other
two methods but also it maintains high consistency with the
original PPG data.*e results of the simulated data and real-
world PPG data prove that the proposed method can
overcome the “end effect” problem of the traditional EEMD
method in decomposition, which can improve the de-
composition performance and bring beneficial results for
nonlinear and nonstationary signal analysis.
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*e simulated data used to support the simulation part of
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https://www.physionet.org/physiobank/database/bidmc.
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