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Abstract: Background: In order to reduce the risk of work-related musculoskeletal disorders (WMSDs)
several methods have been developed, accepted by the international literature and used in the
workplace. The purpose of this systematic review was to describe recent implementations of
wearable sensors for quantitative instrumental-based biomechanical risk assessments in prevention
of WMSDs. Methods: Articles written until 7 May 2018 were selected from PubMed, Scopus, Google
Scholar and Web of Science using specific keywords. Results: Instrumental approaches based on
inertial measurement units and sEMG sensors have been used for direct evaluations to classify
lifting tasks into low and high risk categories. Wearable sensors have also been used for direct
instrumental evaluations in handling of low loads at high frequency activities by using the local
myoelectric manifestation of muscle fatigue estimation. In the field of the rating of standard methods,
on-body wireless sensors network-based approaches for real-time ergonomic assessment in industrial
manufacturing have been proposed. Conclusions: Few studies foresee the use of wearable technologies
for biomechanical risk assessment although the requirement to obtain increasingly quantitative
evaluations, the recent miniaturization process and the need to follow a constantly evolving manual
handling scenario is prompting their use.

Keywords: standardized biomechanical risk assessment methods; instrumental-based biomechanical
risk assessment; wearable sensors; sEMG; IMUs; hand-held dynamometers; grip force sensors

1. Background

In recent years, wearable sensors have been used for quantitative instrumental-based biomechanical
risk assessments in the prevention of work-related musculoskeletal disorders (WMSDs). Previously,
in the attempt to reduce the risk of WMSDs while handling materials, handling people in the
healthcare sector or while maintaining fixed postures, several methods have been developed, accepted
by the international literature and used in the workplace. These approaches have without doubt
facilitated prevention activities during the last decades by improving occupational health and safety of
people at work but, on the other hand, need a significant update based on two main aspects. First,
the standardized methods commonly used for biomechanical risk assessment are still mainly based on
observational and subjective approaches [1–4] and don’t include instrumentation-based tools. Second,
the recent widespread use of robots, automation and mechanization in industry for the reduction
of the physical effort has modified manual handling work activities. One of the key technologies
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driving this epochal change, the human-robot collaboration (HRC) technology [5,6], is invading several
areas of the industry and small-medium enterprises. The nascent nature of HRC in the workplace
conceives the safe coexistence and interaction of workers and robots within the same environment
allowing a significant transformation of the current static automation paradigms into adaptive, flexible
and reconfigurable ones. In particular, the presence of the most advanced remotely controlled robot,
occupational collaborative robots [7] and wearable trunk and upper-limb exoskeletons [8–12] will
assist more and more workers in performing their tasks reducing their exposure to the associated
physical demands.

In view of this new workplace setup there are some questions to ask: are the standardized
biomechanical risk assessment methods able to take into account all these new factors? Are the most
recent electronic wearable technologies used for biomechanical risk assessment? And again, can they
be considered the answer to the aforementioned advanced “Industry 4.0” manufacturing solutions?
The authors of this review propose that while advances in wearable wireless sensor networking and
ubiquitous computing have paved the way for new possibilities in sport performance measures [13–16]
and clinical applications [17–20], today their potential for biomechanical risk assessment is still largely
underexploited and the state of the art lags dramatically behind the expectations. The hypothesis
underlying this review is that the most innovative wearable technologies and electronic smart devices
such as smartphones and tablets may improve the biomechanical risk assessment by adapting it to
all the work conditions and overcoming the limits of the current standardized methods. For instance,
intelligent work environments [21,22] may represent the new scenario in which smart wearable sensors
with computational capabilities and network connection are sensitive, responsive, adaptive and
transparent [23] to workers’ movements allowing online, real-time monitoring of work activities.

Thus, these devices, without interfering with the typical movements performed by workers at the
workplace thanks to the miniaturization process and wireless protocols, would allow the estimation of
biomechanical risk in real-time providing a direct feedback to the end-user who would be constantly
monitored directly at work. In this way, the workers could modify their movements during the
execution of work tasks thereby reducing and preventing their exposure to the risk of WMSDs.

To shed light on this issue, the aim of this review was, through a literature research (Section 2),
to describe recent implementations of wearable sensors for quantitative instrumental-based biomechanical
risk assessments in the prevention of WMSDs. To do this, we have provided:

- A brief description of the WMSD problem and of some standardized methods used for biomechanical
risk classification, with their respective strengths and weakness (Section 3.1).

- An explanation of how wearable sensors work and measurements are performed, with particular
attention to inertial measurement units (IMUs), hand-held dynamometers and grip force devices,
and surface electromyography (sEMG) sensors (Section 3.2).

- A description of quantitative instrumental-based biomechanical risk assessment methods,
which have proved themselves significant for physicians, ergonomists and researchers.
These proposed tools have been analyzed for: (i) direct instrumental evaluations [24–26]
providing real-time measures of risk of exposure, requiring simple hardware setup and allowing
easy analysis and interpretation of data by workers (Section 3.3); (ii) rating standard methods for
biomechanical risk assessment (Section 3.4).

- Finally, a discussion covering current issues, future challenges and limitations is reported in
Section 4.

2. Materials and Methods

2.1. Variable of Interest

The variable of interest in this systematic review [27] was “wearable technologies for quantitative
biomechanical risk assessment in work activities (i.e., lifting tasks, pushing and pulling, repetitive
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work handling people manual tasks in an industrial environment) able to minimize the disturbance
caused by instrumentation to the user”.

2.2. Literature Search Strategy

The literature search was performed from date of inception until 1976 on the following
selected databases: Scopus, Web of Science, PubMed and Google Scholar. Weekly updates were
performed until 7 May 2018. The following keywords concerning wearable devices, biomechanical
risk assessment and work activities, were identified and combined: instrumental-based biomechanical
assessment methods, manual lifting, handling people, pushing and pulling, repetitive moments,
wearable sensors/devices/technologies, movement analysis, kinematics, kinetics, sEMG, IMUs,
hand-held dynamometers and grip force sensors.

Electronic searches were performed by one author (R.A.), who screened all potential titles,
abstracts, and if needed, full-texts for eligibility. The reference lists of all the selected articles were also
scanned to identify other eligible articles.

2.3. Review Process

The study was conducted using the systematic review method proposed by the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), as shown in Figure 1. The search
was limited to papers in journals, chapters of books and periodicals, conference proceedings and
Ph.D. dissertations. For all the duration of the screening selections were based on the significance
of the recognized articles regarding the matter of the review. Three independent reviewers (R.A.,
T.V. and A.S.) assessed titles and abstracts of the articles. The full text reading was done when titles
and abstracts offered satisfactory information. Disagreements among reviewers were resolved by
scheduling dedicated consensus meetings of all authors.
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3. Results

From the database search, after removing duplicates, 7221 references were retrieved and screened
for eligibility based on their titles (Figure 1). Following that, 357 abstracts and 106 full text articles were
assessed for eligibility. Articles were excluded due to the facts that wearable devices were not used in
biomechanical risk assessment or they were not used in work activities, biomechanical risk assessment
methods were not instrumental, there was no instrumental assessment of work activities, movement
analysis (kinematics, kinetics, sEMG, IMUs, hand-held dynamometers and grip force sensors) was
not in the work activities or instrumental approaches were not used. A total of 30 articles were finally
included in this review.

3.1. Work-Related Musculoskeletal Disorders (WMSDs)

WMSDs are widespread in many jobs and a constantly growing concern for health and safety
workers and for manufacturing system productivity [2,3]. The annual incidence of WMSDs in the
industrialized world accounts from a third to a quarter of all occupational diseases, making these
disorders the most expensive form of workplace disability [28–42].

Among WMSDs, work-related low-back disorders (WLBDs) and upper limb work-related
musculoskeletal disorders (UL-WMSDs) are the most common, with a 12-month worldwide prevalence
of almost 18% [43–51] and ranging from 12% to 41%, respectively [52]. In particular, the proportion of
the population exposed to ergonomic risk factors for WLBDs is 87% according to the Global Burden of
Disease 2016 [53]. Furthermore, WMSDs account for 64% of the total number of reported occupational
disorder cases [54].

WMSDs occur when the spinal load exceeds tissue tolerance [55,56], when the central nervous
system co-activates antagonistic trunk muscles in the attempt to stabilize the trunk in presence
of excessive external loads [57] or when the working tasks lead to local muscle fatigue [58–61].
For this reason, the relationship between manual handling tasks and musculoskeletal health is
considered multifactorial [62] although task features, individual biomechanical and physiological
factors accompanied by altered motor control mechanisms represent the main determinants [63].
Critical working tasks are predominantly manual lifting and patient handling, pushing and pulling
and repetitive activities, awkward and/or sustained postures and prolonged sitting [50,64–76].

The international standards 11228-1, 2 and 3, 11226, TR 12295 and TR 12296 [77–82] accept
and list the methods able to detect occupational physical risk factors and to evaluate the usefulness
of ergonomic interventions. These methods consider several indices to be measured, from motion
amplitude and frequency to exerted force [2].

The strength of these traditional approaches for biomechanical risk classification which can be used
in a wide range of professional conditions, is based on their inexpensiveness and non- invasiveness.
On the other hand, these methods have some weaknesses, mainly due by their observational nature and
subjectivity related to the practitioner’s expertise [1–4]. In most cases the worker’s behavior is evaluated
on pro-forma sheets either while observing in the field or replaying videos, an approach considered
inaccurate, imprecise and time consuming [2,83,84]. Furthermore, the scientific literature highlights
equations and parameter restrictions, with insufficient accuracy, unrepeatability and unreliability [4,85,86].
These concerns are mainly due to the necessity of assignment of scores to each risk determinant, such
as upper and lower limb joint angles and range of motions, loads displacement, forces, work cycles,
frequency of actions, forces and recovery times [85,87–94].

Accurate and precise results could be better achieved by means of modern measuring devices,
facilitating experts’ diagnostics [2]. In recent years, instrument-based techniques designed based
on current technological advances and performing direct measurements by using sensors attached
to workers’ bodies have been developed (see Table 1) and are now able to capture some or all of
the parameters needed in the computation of the risk level. These instrumental and quantitative
sensor-based tools might greatly increase the accuracy of these methods in ways that were not
previously available [25,69,70,95] and widely reduce the time that an expert needs to carry out the same
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assessment manually. Finally, the use of automatic online tools would give a meaningful evaluation by
gathering posture, kinematic, kinetic and muscular activity data in assessing WMSDs risk.

3.2. IMUs, Hand-Held Dynamometers and Grip Force Devices, sEMG Sensors: How They Are Made and Measure

Movement analysis systems allow, with a high accuracy and acquisition frequency,
the quantification of motor functions, motor abilities, pathological conditions, compensatory motor
strategies and improvements due to rehabilitation treatments and ergonomic interventions. However,
these systems can be easily used only within the laboratory and more difficult in the field. This difficulty
has led to the development, in the last decade, of accurate and reliable wearable human body
sensor-based tools for easy human motion analysis directly in the workplace. The main factor
allowing the abovementioned use has been, without doubt, the miniaturization of devices which
has allowed huge benefits over traditional approaches. Other factors are wireless connectivity, light
weight, small-size, low power consumption, portability, low-cost, comfort, and the possibility to
monitor subjects remotely and to provide feedback to the end-user [19,96–102].

Among wearable human body sensors, inertial measurement units (IMUs), dynamometers and
surface electromyography (sEMG) sensors (see Figure 2) allow a detailed estimation (compared to
traditional observational methods) of kinematics, kinetics and muscle behaviors without interfering
with the typical movements performed by workers in the workplace [103,104].
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Figure 2. Sensors in ergonomics application: (A) Inertial measurement units (IMUs) and electromyography
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In experimental settings, IMUs, dynamometers and sEMG sensors are placed and fixed on the
appropriate body segments to measure joint angles, forces and muscle behaviors, respectively. All the
sensors are commonly synchronized for data alignment in time [105]. Connection is always performed
by implementing one of two wireless protocols: Wi-Fi or Bluetooth. The former has an increased power
consumption, but a greater transmission speed and distance with respect to the latter. The sample
frequency of these sensors varies between 50 and 1000 Hz while the minimum number of bit is 12 [106].

3.2.1. IMUs

IMUs allow the measure of orientation, position, velocity and accelerations of each investigated
segment and whole body posture. The term “inertial” comes from the fact that these sensors use
the inertia principle: the acceleration can be related to the resistance to move (inertia) of a free mass
accelerated by an external force or torque. In the literature, the type of sensors used ranges from
uniaxial to triaxial accelerometers, gyroscopes and magnetic sensors [99]. Usually three orthogonal
accelerometers and three orthogonal gyroscopes are embedded within the probe to measure linear
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acceleration and angular velocity, respectively, along three orthogonal axes. Angular displacements
are obtained from numerical integration of the angular velocity while linear velocity and displacement
are estimated from first and second numerical integration of linear accelerations. IMUs can also embed
tri-axial magnetic sensors although their use turns out to be more critical in the workplace in presence
of electromagnetic fields.

3.2.2. Hand-Held Dynamometers and Grip Force Sensors

Hand-held dynamometers, already described at the beginning of the previous century [107],
are simple devices placed between a fixed place and the subject’s body part to assess the isometric
muscle (or muscle group) strength relevant as outcome measurements in studies evaluating changes
in the functional status of joints, lower and upper extremities and trunk [108–114]. These devices are
considered highly reliable [115], easy to use, portable, inexpensive and compacts if compared with
isokinetic systems [112]. Besides hand-held dynamometers, forces are also recorded by using superior
grip dynamometers although they can only be used for given hand sizes. Other critical issues related to
grip dynamometers are the inability to measure forces from multiple fingers simultaneously, difficulty
of use, low accuracy of grip force measurements and the difficulty to design appropriate handle
shapes [116–120]. The measure of the grip force is also provided by instrumented gloves (i.e., equipped
by force sensitive resistors) or by force sensor mats applied to handles [73,121–126]. Instrumented
gloves remove the need for the handle to be instrumented but disturb grasp interaction [127].
Furthermore, force sensor mats embedded within gloves acquire only normal forces, require calibration
and may shift during measurements. In order to overcome these limitations multi-dimensional grip
dynamometers have been developed to adapt to a wide variety of handle sizes and geometries
allowing a continuous measure of fatigue and forces [119,127,128]. Recently dynamometers able to
measure both angle and force with high levels of sensitivity and inter-examiner reliability have been
developed [129–132]. Finally, it is interesting to also report haptic tools which consist of physical
bendable strips allowing users to manipulate and apply deformations to digital surfaces and to move
and rotate virtual objects. Such device allows a continuous, free hand contact on a developable strip
bent allowing to industrial designers and stylists to perform an effective assessment of the aesthetic
quality of the shape of new products and also its modification, directly on the digital prototype without
the need to construct a physical prototype [133–135].

3.2.3. sEMG Sensors

sEMG provide the measure of electrical activity (on the skin) of the muscles involved in the
movement. Single- or double differential bipolar sEMG performed by using wet electrodes is widely
and easily used in ergonomics for research activities and directly at the workplace [136–141]. sEMG
allows the calculation of a lot of parameters regarding muscle behavior such as, among other features,
the “activation timing” [142–150], the amplitude (maximum values, average rectified values or ARVs,
root mean square or RMS) [137,146,151–155] and co-activations [57,66,156]. Multi-channel sEMG
performed by means of linear and two-dimensional electrodes arrays (high-density sEMG) allows
instead the estimation of the motor unit action potential analysis [157–161], the estimation of the local
muscle fatigue (the myoelectric manifestation of muscle fatigue) [60,138,162–167] and the analysis of
the instantaneous potential maps [160]. In particular the local muscle fatigue is estimated by measuring
the decrease in the fiber conduction velocity [168,169] which imply a scaling of the sEMG signal power
density towards the lower frequencies and an increase its amplitude [170–172].

3.3. Direct Instrumental Evaluations

In this section of the results we report papers whose aims were to propose instrumental-based
tools for biomechanical risk classification without using measured/calculated indices as input to
standardized methods. Instrumental approaches based on wearable sensors have been used to
classify lifting tasks into low and high risk categories. In a very recent study [173], IMUs and sEMG
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sensors have been used to monitor trunk inclination and trapezius and erector spinae muscle activity,
respectively, during the execution of several types of lifting tasks with different weights, horizontal
distance and technique executed by male office workers. The method proposed in this study allows,
with an acceptable accuracy, the automatic identification of the risk levels associated with the
lifting activities. Indeed, the lifting tasks were characterised by a feature vector composed of either
the 90th, 95th or 99th percentile of sEMG activity level and trunk inclinations during the task. Linear
Discriminant Analysis and a subject-specific threshold scheme were applied and lifting tasks were
classified. The authors of this study highlighted how the strength of this study lies on its objective
instrumental approach based on subject-specific thresholds and on the possibility to complement the
current standardized approaches usually used to detect biomechanical hazardous.

Another recent kinematic-based lifting tool has been designed by monitoring several lifting tasks
with growing lifting index (LI) computed by the revised NIOSH lifting equation [174]. Kinematic data
allowed the calculation of a mechanical lifting energy consumption (LEC) index which proved to be
significantly growing with the LI, discriminating all the risk condition pairs and well correlating with
compression and shear forces that determine injuries at the L5-S1 joint. The findings of this study
suggest a potential use of IMUs-based lifting tools in indoor and outdoor work environments for
risk estimation.

Furthermore, muscle coactivation has deeply been investigated [66] because it, being a
neuromuscular pattern needed to stabilize the trunk [57], represents one of the causal pathways
for WLBDs. The behavior of the cervical and lumbar spine has also been investigated in complex
multiplanar dynamic motions including lifting and pushing [175,176]. sEMG has been used to
develop a sEMG-based multi-muscle coactivation index that resulted usable to continuously assess the
neuromuscular effort and significantly sensitive to several factors. In particular the higher the speed,
complexity of the motion and head control are, the higher the coactivation index value is. Also, in this
case this simple approach has been proposed to be used for ergonomic assessments.

Another tool developed to calculate the simultaneous activation of trunk muscles is the
time-varying multi-muscle co-activation index (TMCi) which includes a sigmoid-weighting factor
dependent on relative differences between muscles that do not rely on a priori definitions of agonist
or antagonist behavior [156]. This index was evaluated during the execution of lifting task in
controlled conditions considering trunk muscles [156]. It has been shown that heavier lifting conditions
resulted in higher TMCi values and that significant correlations exist between the TMCi and other
agonist–antagonist methods. The same experimental setup used for LEC calculation [174] allowed to
understand that also simple sEMG parameter values (i.e., ARV and max), besides TMCi, increased
under heavier lifting conditions [177].

Moreover, sEMG data were also used in a study to implement tools based on an artificial neural
network [178]. In this study sEMG features (i.e., max, ARV, mean and median frequencies) were
evaluated during the execution of lifting tasks starting from the trunk muscles. Then, these features
were used as input variables of artificial neural network for the prediction of WLBDs. The results
show that sEMG time and frequency features are significantly related to lifting index for specific trunk
muscles. Furthermore, the findings show that a tool based on these machine-learning techniques and
sEMG feature, choosing a proper combinations of input features and a right network architecture,
can lead to an improved biomechanical risk classification. Moreover, the authors concluded that the
possibility to implement the integrated approach on electronic smart devices (smartphones, phablets,
tablets and smartwatches) would allow a simplified analysis of biomechanical risk at workplace.

Manual lifting has also been assessed by using muscle fatigue estimation. In a recent review regarding
this issue a list of methods was given, though the authors concluded that there are still many gaps to be
filled and further studies are needed to find better fatigue indices and improved techniques [179].

Besides lifting activities, wearable sensors have been used for direct instrumental evaluations in
handling of low loads during high frequency activities. For instance, local myoelectric manifestation of
muscle fatigue estimation [160,161,180] has been estimated in several conditions to investigate several
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groups of workers. In particular it was used to investigate: (i) the biomechanical exposure of younger
and older groups [181,182]; (ii) changes in fatigability in jobs with and without pause [166]; (iii) upper
limb and trunk muscles in simulations of assembly tasks and in different light levels of repetitive
work [162–165,167,182–185]. Further experiments have been designed and performed in a recent study
of Ranavolo and colleagues [58] in which the association between the local elbow flexor muscles
fatigue and physical demand has been investigated. The findings of this study showed that local
muscle fatigue estimated by using miniaturized sEMG sensors placed on the brachioradialis muscle is
a promising index because of its sensitivity to the risk classes. Kinematic and sEMG assessments have
also been performed in biomechanical evaluation of supermarket cashiers before and after a redesign
of the checkout counter, in analysis of post office employees’ workstations and in manual handling on
a supermarket greengrocery shelf [186–188].

Finally, the usefulness of wearable sensors has also been investigated in many work tasks which
require intensive and repetitive production of forces on the upper extremities in manipulating external
loads, wrists, palms, fingers and tendons [189–191]. In these cases, the role of wearable sensors,
in most cases hand-held dynamometers devices, is to measure the normal and shear forces created
between fingers and handles to assess muscle integrity and to determine the level of any strength
deficits [192,193] associated to clinical physical examination tests (i.e., the diagnosis of shoulder
pain [194]). A wearable, unobtrusive, wireless and accurate system (Activity Tracking with Body
Area Network) has been designed to operate autonomously to quantitatively measure the postures
and body motions of workers [2]. This system is meant to be used by workers to autonomously
monitor themselves on actual job sites over long periods of time. Different working processes in
a wood workshop have been evaluated by using three accelerometers and two microphones and
by correlating the worker’s motion and frequency and intensity of sounds [195]. IMUs were also
used in several work activities such as car assembly, hammering, screwing and drilling [196,197].
In construction activities IMUs [198–200] and sEMG has been used to monitor lifting and holding
loads activities to detect potential sources of WMSDs at neck [201] lower back levels [202].

3.4. Risk Assessment in the Context of Rating of Standard Methods

As done for direct instrumental evaluations, in this section tentative ratings of standard methods
using wearable technologies are analyzed. An innovative “on-body wireless sensors network”-based
approach for real-time ergonomic assessment in industrial manufacturing has been proposed by
Vignais and colleagues [84]. The sensor network was composed by IMUs and goniometers and the
body posture (joint angles) was assessed by using a ten rigid segment, twenty degrees of freedom
biomechanical model. IMUs were placed bilaterally on the upper arm and forearms, on the head,
trunk (on the chest) and pelvis (on the sacrum). Goniometers were placed on the hands and forearms
to measure wrist motions. Angle values were used as input within the Rapid Upper Limb Assessment
(RULA) method, whose global and local scores were continuously computed by a mobile processing
unit (a standard laptop) and fed back to the user via a see-through head-mounted display.

Moreover, a real-time body sensors network composed by IMUs and sEMG sensors has also been
used in real-time to monitor workers by measuring muscular efforts and postures (upper limbs have
been modeled as a 7-DoF kinematic chain) for WMSD prevention according to the RULA index and
the Strain Index (SI) [3]. An interesting index considered for this tool is the percentage of time spent in
every RULA score range by every worker, considering the whole experiment duration. The accuracy,
expressed as the number of correct assessments (with respect to those performed by two human
evaluators) of the system and the number of cycles, was 95% for RULA and 45% for SI, indicating
that the body sensor network is able to give a RULA score estimation congruent to the one given by
the human evaluators. As far as the SI score is concerned, the system gives a score congruent to the
evaluators’ evaluation in almost the 50% of the cases.

sEMG has also been used for complementing the RULA scoring system [203] and as an alternative
to the visual inspection according to the BORG scale. It is in fact demonstrated that the two
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assessments are strongly correlated [87]. An example of the latter application has been studied
by Cabeças [204] where sEMG was used as an alternative to observational methods in computing
the SI score. The authors concluded that, once appropriate trigger levels for the muscular activation
are defined, sEMG is a valid alternative to visual inspection in SI computation. This is true in
particular when efforts are not clearly associated to hand/wrist movements and when non-cyclical
high-frequency activities are assessed.

3.5. Main Findings

Among the 30 studies included in the review (Table 1), IMUs were used only in
five [3,58,84,174,175], and dynamometers were used only in four [58,182,194,205], while sEMG sensors
are used in 27 studies [3,57,58,65,66,87,156,162,164–167,173,175–179,182,183,186,188,201–205].

The results of these studies are mainly based on kinematic [3,84,173,174,183,186,188],
kinetic [58,177,182,194,205] and sEMG [3,57,58,65,66,87,156,162,164–167,173,175–179,182,183,186,188,
201–205] data. Among the most investigated indices there are those sEMG-based. In particular,
the most investigated indices are “muscle fatigue” (in nine studies [58,162,164–167,182,183,205]) and
“muscle coactivation” (in seven studies [57,65,66,156,175–177]).

Instrumental evaluations were performed in 13 studies [3,58,84,87,156,173,174,177,178,186,188,203,204],
muscle fatigue [58] by using kinematic data (i.e., joint angles [84] and range of motions [186,188], posture
and more complex kinematic indices [3,175], trunk inclination [173]), kinetic data (i.e., compression
and shear forces at the L5-S1 joint [174,177]) and sEMG data (i.e., time, amplitude and frequency
parameters [3,87,173,177,178,186,188,203,204], muscle fatigue [58] and coactivation [156,177]).

In these 13 studies, the most investigated working tasks are lifting tasks [156,173,174,177,178] and
manual handlings of low loads at high frequency [58,186,188]. As regards lifting tasks, all the results
of these studies show that kinematic [173,174] and sEMG-based [156,173,177,178] indices significantly
grow with the LI discriminating all the risk condition pairs. Moreover, when a correlation analysis
has been performed, results show a good correlation between kinematic and sEMG-based indices
and compression and shear forces [174,177]. Moreover, only one study [178] used machine-learning
techniques and sEMG features. Results of these studies led to an improved biomechanical risk
classification. As regard the studies regarding the manual handlings at low loads at high frequency,
the results show that sEMG indices were sensitive to the risk classes [58,186].

Many of these studies investigated specific work activities [3,84,87,186,188,204]: handling of low
loads at high frequency on a redesigned checkout counter [189], laparoendoscopic single-site surgery [203],
real-life operations of super-market cashiers [3], manual tasks in an industrial environment [84],
sawmill work [87], manual handling on a supermarket greengrocery shelf [186], cleaning activities [204].
The results of these show that kinematic [3,84,87,186,188] and sEMG [3,87,186,188,204] data could be used
in the risk assessment in work activities.

4. Discussion

In the attempt to reduce the risk of work-related musculoskeletal disorders several methods have
been developed, accepted by the international literature and used in the workplace. In the last years,
the most innovative wearable technologies and electronic smart devices, without interfering with
the work activities performed by workers, have been introduced to improve the biomechanical risk
assessment adapting it to all the work conditions and overcoming the limits of the current standardized
methods. Indeed, these devices allow the estimation of biomechanical risk in real-time providing a
direct feedback to the end-user who would be constantly monitored directly while at work.

In this review, we report on recent implementations of wearable sensors for quantitative
instrumental-based biomechanical risk assessments in the prevention of WMSDs. Their use is desirable
also in view of the concerns expressed within a recent article [206] regarding technical ISO standards
on ergonomics and physical workloads.
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Table 1. Instrument-based techniques designed on current technological advances and performing direct measurements by using sensors attached to the workers
body. M and F indicate male and female respectively. IMUs: inertial measurement units; sEMG: surface electromyography.

Wearable Sensors Author (Year) Sample Work Activity Body Part
Assessment Aim Findings Quantitative Data

IMUs Vignais et al.
(2013) [84] 12 M Manual tasks in an

industrial environment
Upper body
segment

Risk assessment of musculoskeletal disorders in
real-time with two feedback

A real-time feedback significantly decreased the outcome of
both globally as well as locally hazardous RULA values
associated with increased risk for musculoskeletal disorders

Joint angle

IMUs Ranavolo et al.
(2017) [174] 20 M Lifting task All body Biomechanical risk assessment using kinematic

parameters

Kinematic indices (Lifting Anergy Consumption) were
proved to be significantly growing with the LI,
discriminating all the risk condition pairs and well
correlating with forces that determine injuries at the
L5-S1 joint

Joint angles, Center of
Mass, Mechanical
Energy

IMUs and sEMG Peppoloni et al.
(2016) [3] 8 M, 3 F Real-life operations of

super-market cashiers Upper limbs

The system exploits IMU to reconstruct the
upper limb posture, modeled as a 7- degrees of
freedom kinematic chain. sEMG sensors are
used to assess forearm flexor muscles strain

The system was capable of autonomously segmenting the
cycles and giving a score for each cycle Joint angles, sEMG

IMUs and sEMG Brandt et al.
(2018) [173] 26 M Lifting task Trunk

To classify lifting activities into low and high
risk categories based on sEMG and trunk
inclination measurements

Lifting tasks were characterized by a feature vector
composed of either the 90th, 95th or 99th percentile of
sEMG activity level and trunk inclinations during the task
applying a linear discriminant analysis and a threshold
scheme to classify the lifting tasks with an accuracy of
65.1–65.5%

Trunk inclination,
sEMG

Dynamometer and
sEMG

Ranavolo et al.
(2017) [58] 7 M, 8 F Manual handling of low

loads at high frequency Upper limbs

To assess the muscle fatigue of the flexor
muscles before and after four levels of simulated
manual handling of low loads at high frequency;
to analyze the calculated fatigue indices to
understand whether they correctly classify the
risk; to correlate calculated fatigue indices to the
muscle behaviors during the execution of the
dynamic work task

Fatigue index calculated from the brachioradialis was
sensitive to the interaction among risk classes, session
and gender

Myoelectric
manifestation of
muscle fatigue

Hand-held
dynamometer

Cadogan et al.
(2011) [194] 23 M, 17 F Active and passive

shoulder motion Shoulder
To establish the reliability of measures of
shoulder range of motion (ROM) and
muscle force

Active ROM (flexion) demonstrated high levels of both
intra- and interexaminer reliability. Passive ROMs and
isometric force peaks shown acceptable levels of
intraexaminer reliability

Range of motion and
muscle force

Grip
dynamometer and

sEMG

Blackwell et al.
(1999) [205] 18 M

Isometric and
submaximal gripping
contractions

Flexor digitorum
superficialis
muscle

To investigate the effect of grip span on
isometric grip force and fatigue of the flexor
digitorum superficialis muscle during sustained
voluntary contractions

Fatigue of flexor digitorum superficialis did not change as a
function of grip size. Middle grip sizes allowed for greater
absolute forces than the small or large size. When
contractions are at 60–65% MVC and the muscle is allowed
to fatigue, grip size may be less infuential than when
maximal absolute force is required

Myoelectric
manifestation of
muscle fatigue

Dynamometer and
sEMG

Roman-Liu et
al. (2004) [182] 10 M

Exerting maximal force
and tests under specific
load conditions

Arm and hand
muscles

To discriminate fatigue of upper limb muscles
depending on the external load, through the
development and analysis of a muscle
fatigue index

External loads induced modifications in the fatigue of the
biceps brachii caput breve, extensor carpi radialis brevis,
and flexor carpi ulnaris muscles

Myoelectric
manifestation of
muscle fatigue

sEMG and
electrogoniometers

Granata and
Marras (2000)
[57]

10 M Lifting task
Trunk extensors
and flexors
muscles

To evaluate whether increased biomechanical
stability associated with antagonistic
co-contraction was capable of stabilizing the
related increase in spinal load

Coactivation was associated with a 12% to 18% increase in
spinal compression and a 34% to 64% increase in stability.
Spinal load and stability increased with trunk flexion

Muscle coactivation,
spinal load and
stability
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Table 1. Cont.

Wearable Sensors Author (Year) Sample Work Activity Body Part
Assessment Aim Findings Quantitative Data

sEMG Sundelin (1993)
[166] 12 F

Repetitive arm work
continuously without
pauses and with pauses

Trapezius and
infraspinatus
muscles

Fatigue assessment in shoulder and neck
muscles during continuous work and
during work with organized
pause activities

Muscle fatigue with a decrease in the mean power frequency and
an increase in root mean square amplitudes was found both
during continuous work and work with pause activities.
The muscle fatigue was less pronounced when pause activities
were introduced into the work. Fatigue patterns were lower
during the second hour, indicating adaptation to the work task
and work pace. The ratings of perceived exertion and discomfort
were similar during work with and without pauses and were
higher during the second hour of work

Myoelectric
manifestation of
muscle fatigue

sEMG
Sundelin and
Hagberg (1992)
[165]

6 F Repetitive arm work for
1 h

Trapezius and
infraspinatus
muscles

Fatigue assessment in shoulder and neck
muscles during work paced by the
methods–time measurement system

Muscle fatigue with a decrease in the mean power frequency and
an increase in root mean square amplitudes was found

Myoelectric
manifestation of
muscle fatigue

sEMG Hansson et al.
(1992) [167] 33 F Static endurance test Trapezius and

deltoid muscles

Muscular fatigue assessment during a
standardized isometric endurance test in
women with a static workload, with and
without neck/shoulder disorders

The endurance time for a group of women in industrial work
with repetitive short cycled work tasks who were diagnosed with
neck/shoulder disorders was significantly shorter than for a
group with the same work, but without neck/shoulder disorders
and shorter than for a control group. There were no significant
differences in muscle fatigue between the three groups
considered

Myoelectric
manifestation of
muscle fatigue

sEMG
Mathiassen
and Winkel
(1996) [164]

8 F

Assembly task with
different combinations
of work pace (120 or 100
according to the
methods-time
measurement system,
MTM), break allowance
and duration of the
working day

Trapezius muscle
Fatigue assessment in shoulder and neck
muscles in different industrial
assembly task

During 6 h of work at 120 MTM the EMG amplitude from the
upper trapezius muscle increased by about 11%, the EMG zero
crossing rate decreased by about 2.5%, and perceived fatigue
increased. When work pace was reduced to 100 MTM, the upper
trapezius EMG amplitude decreased by 20% and became less
variable, perceived fatigue decreased and shoulder tenderness
was reduced by about 5%. Added breaks, whether active or
passive, had no apparent effects on upper trapezius load during
work or on physiological responses

Myoelectric
manifestation of
muscle fatigue

sEMG Cabeças (2007)
[204] 1 M, 19 F Cleaning activities Wrist flexor and

extensor muscles

A modified application of the Strain Index
method, in evaluation of effort-related
variables in cleaning activities

EMG data were found to be a useful alternative to observational
methods. The most critical cleaning activities and that with
comparatively lower risk to distal upper extremity disorders
were individuated

sEMG data (time,
intensity, frequency
of efforts)

sEMG Bosch et al.
(2009) [183] 5 M, 5 M

Assembly task
(construction and break
down a tower)

Trapezius muscle

To determine whether muscle fatigue
develop in the upper trapezius muscle in
two assembly tasks involving contractions
of different low-intensity levels and
whether these indications of fatigue are
homogeneously distributed across
different muscle parts

Recordings during task and test showed a significant decrease in
the mean power frequency, at both intensity levels while the
amplitude remained constant. Significantly different temporal
patterns were found for the mean power frequency decrease. No
differences in manifestations of muscle fatigue development
were found between different parts of the muscle

Myoelectric
manifestation of
muscle fatigue

sEMG de Looze et al.
(2009) [162] - Repetitive

low-level force activities Shoulder muscles
Review of studies on objectively
measurable fatigue related changes in time
in low-level force activities

Electromyographic manifestations of fatigue in the trapezius
muscle appear in low-force activities like light manual work and
assembly when the intensity level is about 15–20% MVC.
The amplitude increases ranged from 3% to 27%, while the mean
power frequency decreases range from 0.9% to 11%.
Furthermore, local muscle fatigue seems to occur in some light
manual activities and could be considered a risk indicator

Myoelectric
manifestation of
muscle fatigue
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Table 1. Cont.

Wearable Sensors Author (Year) Sample Work Activity Body Part
Assessment Aim Findings Quantitative Data

sEMG
Jones and
Kumar (2010)
[87]

89

Sawmill work
(Board-edger operator;
Lumber grader; Saw
filer; Trim-saw operator)

Wrist flexor and
extensor muscles

To examine the agreement between 5
ergonomic risk assessment methods
calculated on the basis of quantitative
exposure measures and to examine the
ability of the methods to correctly classify
risk job

RULA and SI were best (correct classification rates of 99 and 97%
respectively). The quantitative ACGIH-TLV for monotask hand
work and Borg scale were worst (misclassification rates of 86 and
28% respectively)

sEMG and
electrogoniometric data

sEMG Nimbarte et al.
(2010) [201] 10 M, 5 F

Lifting tasks carried out
at shoulder height in
extended, neutral, and
flexed neck postures

Neck muscle
(sternocleidomastoid
and the upper
trapezius)

To evaluate physical risk factors (force and
posture) associated with neck disorders
among construction workers

Increase in the weight lifted increased the activation of the neck
muscles. The sternocleidomastoid muscle was most active at the
extended neck posture, while the upper trapezius muscle was
most active at the flexed neck posture

sEMG data

sEMG Jia et al. (2011)
[202] 19 M, 5 F Carrying, erecting,

lifting and moving tasks Trunk muscles
Using a model, to predict trunk
muscle forces and low back loads during a
wide range of panel erection tasks

Reasonable levels of correspondence were found between
measured and predicted lumbosacral moments, though
predictive ability varied between tasks and rotation planes

Trunk muscle forces
and low back loads

sEMG Draicchio et al.
(2012) [188] 10 F Work activities of

supermarket cashiers
Shoulder and
trunk muscles

To provide a biomechanical evaluation of
cashiers working at a checkout counter
before and after a redesign, on the basis of
changes induced in time, kinematic and
electromyographic variables

The ergonomics intervention (disk wheel) represented a valid aid
for reducing biomechanical overload in cashiers and the standing
position resulted biomechanically more advantageous. The range
of motion values of upper limb and trunk were lowest after the
intervention and in the standing position

Range of motion and
sEMG data

sEMG
Perez-Duarte
et al. (2014)
[203]

10 M, 4 F

Conventional
laparoscopic and
laparoendoscopic
single-site surgery

Upper body

To determine inherent risk levels for wrist
disorders assessing the degree of arm and
back muscle activity as well as spatial
configuration of hand and wrist

Muscular activity for trapezius and forearm extensor muscles
was significantly lower in conventional laparoscopy compared
with single-site approach. A better wrist position was found
during laparoendoscopic single-site surgery compared with
traditional laparoscopy

sEMG data

sEMG Ranavolo et al.
(2015) [156] 10 M Lifting task

Trunk extensors
and flexors
muscles

A method developing for the monitoring
of the co-activation of more than two
muscles during lifting task

Heavier lifting conditions resulted in higher co-activation values Muscle coactivation

sEMG Silvetti et al.
(2015) [186] 5 M

Manual handling on a
supermarket
greengrocery Shelf

Sholuder and
trunk muscles

To investigate the effect of different shelf
levels and load weights on the workers’
biomechanical load

Shelf level had a significant effect on most of the parameters
examined. Weight did not affect the biomechanical load

Ankle joint range of
motion and
sEMG data

sEMG Shair et al.
(2017) [179] - Manual lifting Arm and trunk

muscles

To review the impact of EMG processing in
fatigue assessment during manual lifting
and to determine the best possible
techniques for lifting applications

Bilinear Time-Frequency Distribution (TFD) could perform better
than the linear TFD such as Short-Time Fourier Transform (STFT),
spectrogram, and Wavelet Transform (WT). Bilinear TFD suffered
the cross term effects, that could be removed

sEMG data

sEMG Le et al. (2017)
[65] -

Isometric loading,
Lifting, Isometric
quasi-static exertions,
motions at different
speeds

All body

Understanding of the factors that may
influence coactivation and define the
necessary variables for a coactivation index
that can be used for a variety of tasks

The index appeared to be sensitive to conditions where higher
coactivation would be expected. These conditions of higher
coactivation included tasks involving higher degrees of control.
Precision placement tasks required about 20% more coactivation
than tasks not requiring precision, lifting at chest height required
approximately twice the coactivation as mid-thigh height, and
pushing fast speeds with turning also required at least twice the
level of coactivity as slow or preferred speeds

Muscle coactivation

sEMG Le et al. (2017)
[66] 7 M, 10 F

Lifting/lowerin,
pushing, and Valsalva
maneuvers

Trunk extensors
and flexors
muscles

To describe the development of an index to
assess coactivity for the lumbar spine and
test its ability to differentiate between
various complex dynamic tasks

Coactivity for dynamic tasks necessitates the understanding of
local maxima and minima, different phases of loading, its effect
on peak spinal loads, and cumulative responses. It was
postulated that a mind–body interaction exists which warrants a
continuously defined agonist/antagonist coactivation index
sensitive enough to detect those differences

Muscle coactivation
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Table 1. Cont.

Wearable Sensors Author (Year) Sample Work Activity Body Part
Assessment Aim Findings Quantitative Data

sEMG Le et al. (2018)
[175] 5 M, 7 F

Different combinations
of head posture and
speed of movement

Neck muscles
Develop a coactivation index for the neck
and test its effectiveness with complex
dynamic head motions

Complex motions involving twisting and higher speed had
higher magnitudes of coactivation than uniplanar motions in the
sagittal or lateral plane, which was expected. The coupled
motion of flexion and twisting showed four to five times higher
coactivation than uniplanar movements

Muscle coactivation

sEMG Ranavolo et al.
(2018) [177] 16 M Lifting task

Trunk extensors
and flexors
muscles

sEMG activities of the trunk muscles
and forces at the L5-S1 joint to identify
sEMG-based indices related to the risk
level and to the forces at the L5-S1 joint

sEMG indices were proved to be significantly growing with the
LI, discriminating all the risk condition pairs and well correlating
with compression and shear forces that determine injuries at the
L5-S1 joint

sEMG data, muscle
coactivation
and forces at the
L5-S1 joint

sEMG Le et al. (2018)
[176] 7 M, 10 F

Lifting/lowering,
pushing and Valsalva
manoeuvres

Trunk muscles

To provide an approach to assess
multi-muscle coactivation comparing
this index to a coactivation index defined
by a biologically assisted lumbar spine
model to differentiate between tasks

The EMG-based index was comparable to the index defined by a
biologically assisted model. The EMG-based index provided a
universal, usable method to assess the neuromuscular effort
associated with coactivation for complex dynamic tasks

Muscle coactivation

sEMG Varrecchia et al.
(2018) [178] 10 M Lifting task

Trunk extensors
and flexors
muscles

Biomechanical risk assessment using
sEMG and neural network

Approaches based on machine-learning techniques and sEMG
feature led to an improved biomechanical risk classification

sEMG data in time
and frequency domain
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In this “discussion paper” the authors underlined, among the others, how: (i) the production of
these standards differed substantially from evidence-based practical guidelines; (ii) it is not clear why
the ISO subcommittee preferred one method of risk assessment over others; (iii) some statements in ISO
11228 series appear to be based on personal opinions and in contrast with scientific evidence from the
literature; (iv) ISO standards are an effort by a self-identified committee of interested people to agree
on “how something should be made” in order to facilitate exchange of goods, services, or other similar
endeavors; (v) ISO standards should be used with caution. For these reasons instrumental-based
tool will play an increasingly important role in both direct evaluations and in the rating of standard
methods, also in consideration that several factors implying work-related musculoskeletal disorders
interact at the same time. Therefore, it will be crucial to monitor all of them by using more than one
method at the same time ensuring a more thorough evaluation of risk factors. On the other hand, a lot
of attention must be paid because the use of more than one method can rapidly lead to unacceptably
high costs for the practitioner, both from a time and money viewpoint [207,208].

In this context, the technologies accredited to be used are without doubt inertial measurement
units (IMUs), instrumented gloves and surface electromyography (sEMG) sensors, although other new
tools are appearing in research laboratories and the workplace. Among these, smart footwear-based
wearable systems [209] will surely be useful because they will permit, by recording ground
reaction forces through integrated tri-axial force sensors, an inverse dynamics analysis [210–212].
For their simplicity, vision-based tracking systems are also potentially useful for the rating of
standardized methods as proposed for assessing the movements of workers within quick exposure
check tools [83]. Wearable miniaturized sensors can monitor workers’ motor behavior if individually
placed on the body segments or embedded in elastic suits. The latter use is also the most probable
because the research activity is working fast on the development of artificial muscles, materials able
to reversibly contract, expand, and rotate due to an external stimulus [198,213,214]. These devices,
that can be enriched by several material characteristics, textile layers, elastic components, diagonal
and lateral seams and pneumatic mechanisms [215] are envisioned as actuators for silent, soft and
compliant assistive devices [216] acting as force multiplier systems by helping workers to reduce
their effort. These suits/devices can also embed miniaturized sensors which will also serve for their
control through, for instance, effective feedforward anticipation mechanisms. Furthermore, numerous
devices have been developed to support the trunk during dynamic lifting tasks. sEMG will allow
the detection of the early preparatory muscle activities to classify muscle loading and to initiate
appropriate device activation. It has been shown that preparatory muscle activity can be leveraged to
identify the intent to lift a weight up to 100 ms prior to load-onset [217]. The reduction of the effort
will also be guaranteed by highly adaptive production processes.

Although the use of new innovative technologies for biomechanical risk assessment is only at the
beginning (see Table 1), the literature shows that these instrumental approaches could be used to classify
lifting tasks into low and high risk categories. The reported studies used wearable sensors, such as
inertial measurement units, dynamometers and surface electromyography sensors, for biomechanical
risk assessment in different work activities: lifting tasks [58,65,66,173,176,177,201] manual tasks in
an industrial environment [84,164,183], manual handling [174,186], work in supermarket [3,188],
repetitive work [165,166], cleaning activities [204], surgery work [203].

The results of these studies show that the indices used for the instrumented-based approaches
are proved to correlate with the variables that determine the injuries. Particularly, two of the most
promising indices/approaches proposed in literature for a work activity such as manual lifting, are
the multi-muscle coactivation index [65,66,156,177] and machine-learning techniques based on sEMG
features [178] while for this work activity, the literature shows that the fatigue indices need further
elaboration [179]. Probably the most critical factor in lifting activities is the frequency of the lifting
action which at the current status cannot be determined by instrumental methods [177]. It is necessary
to be able to parameterize the risk levels associated to it. On the other hand, frequency of the actions is
taken into consideration in work activities concerning the repetitive movement when the assessment
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is performed by using fatigue estimation before and after the work activity [58]. In some studies,
wearable technologies are used for the rating of the standard methods (see Section 3.4). In these studies,
the observed discrepancies between the evaluators can be due to several factors related to both the
human and the procedural sides [203]: artifacts in the sEMG signals, difficulties in performing his
real maximal voluntary contraction for the muscles considered, and underestimation by the human
investigators of the actual efforts exerted by the workers.

From a technological point of view IMUs do not suffer from such limitations but if a high number
of units is required for whole-body bio-mechanical studies in ergonomics, a high data transfer time
could be required with both the Wi-Fi and Bluetooth protocols. Furthermore, IMUs fail to precisely
measure translational motion and suffer from drift. Finally, IMUs can fail in the presence of magnetic
fields in the workplace if they have embedded magnetic sensors. As regards limitations associated to
sEMG, crosstalk muscle signals, electrode–skin impedance, noise and problems related to the electrode
location, size, configuration and distance are the main critical factors [218]. To optimize the sEMG
measures it is essential to use reference books such as the “Atlas of Muscle Innervation Zones” [219].
For both IMUs and sEMG sensors the energy consumption and the consequent battery discharge
do not seem to be problems anymore, thanks to the long life of the most recent batteries. Two main
limitations are ascribable to dynamometers: forces are commonly measured in only one direction
and the form factor of the handles is not characteristic of most handles encountered during everyday
work activities [220–222].

Finally, the heterogeneity in experimental procedures of the articles included in this review such
as in working tasks, body segments, muscles and instrumental-based indices, has not allowed a valid
complex statistical analysis combining the results as in other systematic reviews. For this reason,
we have avoided a statistical pooling and summarized the data narratively [222–225]. The lack of a
meta-analysis can be considered a limitation of the study.

5. Conclusions

The analysis of the papers reported in this review sheds light on the fact that still too few
researchers foresee the use of wearable technologies for biomechanical risk assessment although the
requirement to obtain increasingly quantitative evaluations, the recent miniaturization process and
the need to follow a constantly evolving manual handling scenario is prompting their use. Therefore,
the use of new innovative technologies for biomechanical risk assessment is only at its initial stage,
but the authors of this review believe that this process is unstoppable, as it is happening in all the
other areas of medicine and beyond. Obviously, it will be necessary for any validation to follow
evidence-based medicine/policy/legislation multistep scientific approaches by designing rigorous
laboratory and epidemiologic studies, by replicating them by independent research groups and by
systematically evaluating them through transparent review processes. We are however convinced
that, even if such use should fail in ergonomic practice, the huge knowledge that will derive from its
experimentation will allow the optimization of the current standardized methods or the developments
of the new ones.
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Abbreviations

WMSDs work-related musculoskeletal disorders
HRC human-robot collaboration
WLBDs work-related low-back disorders
UL-WMSDs upper limb work-related musculoskeletal disorders
RNLE revised NIOSH lifting equation
KIM-MHO key indicator method
BIPP back injury prevention project
PTAI patient transfer assessing instrument
RAPP risk assessment of pushing and pulling tool
HAL hand activity level
SI strain index
OCRA occupational repetitive actions
QEC quick exposure check
OREGE outil de repérage et d’evaluation des gestes
PATH posture, activity, tools and handling
RULA rapid upper limb assessment method
REBA rapid entire body assessment method

ACGIH TLV
American conference of governmental industrial hygienist’s threshold limit value
for mono-task hand work

ART assessment of repetitive task
ULRA upper limb risk assessment
MAC manual handling assessment chart
ALLA agricultural lower limb assessment
IMUs inertial measurement units
sEMG surface electromyography
ARVs average rectified values
RMS root mean square
LI lifting index
LEC lifting energy consumption
TMCi time-varying multi-muscle co-activation index
ROM range of motion
MVC maximal voluntary contraction
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