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Abstract: Cellular communications play pivotal roles in multi-cellular species, but they do so
also in uni-cellular species. Moreover, cells communicate with each other not only within the
same individual, but also with cells in other individuals belonging to the same or other species.
These communications occur between two unicellular species, two multicellular species, or between
unicellular and multicellular species. The molecular mechanisms involved exhibit diversity and
specificity, but they share common basic features, which allow common pathways of communication
between different species, often phylogenetically very distant. These interactions are possible by the
high degree of conservation of the basic molecular mechanisms of interaction of many ligand–receptor
pairs in evolutionary remote species. These inter-species cellular communications played crucial roles
during Evolution and must have been positively selected, particularly when collectively beneficial
in hostile environments. It is likely that communications between cells did not arise after their
emergence, but were part of the very nature of the first cells. Synchronization of populations of
non-living protocells through chemical communications may have been a mandatory step towards
their emergence as populations of living cells and explain the large commonality of cell communication
mechanisms among microorganisms, plants, and animals.

Keywords: hormone; quorum sensing; receptor; bacteria; fungi; metazoa; plants; microbiota;
evolution; origin of life

1. Introduction

The cell is the structural and functional unit of all living organisms. Unicellular organisms such
as bacteria, archeas, yeasts, or protists consist of a single cell. In contrast, multicellular organisms
such as sponges, nematodes, trees, or vertebrates can comprise from a few hundred to several billion
or even trillion of cells. In such complex multicellular species, the cells exhibit many differentiated
phenotypes playing highly-specialized functions and are often associated within individualized organs.
The cellular activities are coordinated at the level of each organ as well as between organs, in order
to allow adaptation of the living organism as a whole to its environment. This coordination rests on
the traffic of information between all cell types and constitutes in animals the endocrine, nervous,
and immune systems.

Most intercellular mediators are either small, simple molecules, such as nitrogen oxide (NO),
ethylene, nucleotides (ATP, AMP), and amino acid derivatives (serotonin, melatonin, auxin, thyroxine,
homoserine-lactones, etc.), or amino acid polymers (peptide, protein and glycoprotein hormones,
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cytokines, growth factors, etc.), lipid derivatives (steroid hormones, prostaglandins, jasmonate, etc.),
and various other molecules.

In unicellular species, all cells seem identical and independent, suggesting that it is the survival
and reproduction of each of them that ensures the sustainability of these species. Nevertheless,
communications do indeed exist between these cells, hence allowing some coordinated common
responses as well as specialized roles for sub-populations. These coordinations optimize the
development and survival of unicellular species populations.

Moreover, information exchanges are not limited to cells inside an organism, not even to cells
belonging to one given species. They also exist between cells from different species, whether unicellular
or multicellular.

Unicellular species have been prosperous for approximately 3.5 billion years and still represent
the vast majority of living species. They can communicate indirectly through soluble mediators to
regulate their growth and/or phenotype according to the available food resources. In spite of this
success, multicellular species relying on direct cellular adhesiveness and specialization also emerged
several hundred million years ago. The main innovation in plants and metazoan is the formation of
highly specialized cell populations, requiring proper communications inside these organisms to ensure
their development, survival, and reproduction.

All intercellular communications rely on intercellular messengers (mediators) and their cognate
receptors in their target cells. The receptors play pivotal roles as they connect intercellular
communications to downstream intracellular signaling. Despite the considerable diversity of
communications among living species, the number of receptor types and transduction mechanisms is
somewhat limited, suggesting their conservation during the Evolution.

Cell communications occur not only inside multicellular species, but also in unicellular species,
as well as between different species, whether unicellular and/or multicellular.

2. Cell Communications and Communitarianism in Unicellular Species

By definition, unicellular species do not possess specialized differentiated cells and organs.
Nevertheless, communications exist between cells of unicellulars, inside or between different species.

2.1. Bacteria

The membrane receptors in bacteria often directly respond to nutrients [1], or to quorum sensing
(QS) signaling molecules [2], or to various other molecules in the environment. Bacteria also directly
interact with each other, in particular in the soils [3] or in animal guts or at the level of plant roots.

Many bacteria communities develop in synchronized fashion to face changing environments [4]
and form biofilms in which they share nutrients and protection [5].

The establishment of a biofilm requires a sufficient number of bacteria, and many
QS signaling molecules (autoinducers) and cognate receptors exist in various bacteria [6,7].
Four main general types of autoinducers (AI) have been described: (1) AI-1, mainly present in
Gram-negative bacteria, are N-acylated homoserine-lactones (AHLs) with a core homoserine-lactone
ring and a 4- to 18-carbon acyl chain with eventual modifications [8]. The AHLs bind to
specific LuxR-type cytoplasmic receptors [9], which control transcription of numerous virulence
genes, and to LuxN-type membrane receptors. (2) AI-2, present in both Gram-positive and
Gram-negative bacteria, are furanosyl borate diesters, considered as universal signal involved
in unicellular interspecies communications [10,11]. (3) AI-3, mainly in Gram-positive systems,
typically use secreted oligopeptides [12,13] and two-component systems (TCSs), consisting of
membrane-bound sensor kinase receptors (QseC) and cytoplasmic transcription factors (QseB)
that direct alterations in gene expression [2,14–16]. (4) PQS (pseudomonas quinolone signal) makes use
of 2-heptyl-3-hydroxy-4(1H)-quinolone [17], which binds to its specific LysR-type transcriptional
regulator receptor (PqsR) to control the synthesis of a rhamnolipid, which is a critical surfactant for
biofilm formation [18].
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Bacteria pump ions across their membranes, and several recent papers have reported spikes of
electrical activity in bacteria, which suggest that, like neurons, bacteria use potassium ions to propagate
electrical signals [19]. This electrical communication is considerably quicker and more extensive
than QS.

Viruses and other capsidless replicons such as plasmids, transposons, and viroids promote an
enormous amount of exchanges among bacteria. Bacteriophages are present everywhere bacteria are
located and kill many of them, but never all of them, without the risk of disappearing themselves. In a
way, bacteriophages are kind of QS mediators, allowing bacteria to sense how many of them have
already succumbed. For example, the coordination of the lysis-lysogeny decision of phages in Bacillus
is based on the release of phage-specific communication hexapeptides. These peptides are imported
in bacteria by the oligopeptide permease transporter (OPP) and bind to their intracellular receptors,
which then no longer activate the expression of an inhibitor of lysogeny [20–22].

2.2. Yeasts and Fungi

Direct communications between yeasts occur through membrane proteins such as flocculins,
which are lectins recognizing their partners’ polysaccharide chains to form a solid mass
(veil, biofilm) [23,24]. Yeasts also communicate via soluble molecules that can diffuse and affect
the community’s organization in the long term by quorum sensing. QS molecules identified in
fungi include peptide pheromones, oxylipins, aromatic alcohols (such as tyrosol and farnesol [25]),
α1–3 glucans [26], and pantothenic acid [23,27,28]. A number of fungi among Arthoniomycetes also
participate in the formation of lichens, and thus do communicate with algaes (see 1.4).

2.3. Large Unicellular Eukaryotic Microorganisms (Formerly Called “Protists”)

Amoebas, paramecia, or trypanosomes present, in the case of limited resources, phases with
several different phenotypes. In the amoeba, D. discoideum cyclic AMP acts as an intercellular mediator.
Its export co-occurs with its intracellular synthesis by adenylate cyclase, which contains a general
structure similar to ATP binding cassette (ABC) transporters [29], known to export anionic cargoes
like cAMP. ABC transporter inhibitors disrupt amoeba development in a manner consistent with a
lack of cAMP export, indicating that cAMP plays an intercellular messenger role during D. discoideum
development [30]. When the density of bacterial prey becomes low compared with the amoeba
population, the concentration of the pre-starvation factor (PSF) sensor protein decreases, leading to
activation of protein kinase YakA, which relieves the inhibition of expression of a cAMP-dependent
protein kinase. The latter stimulates the expression of several genes, including a cAMP membrane
receptor responsible for the aggregation in spores through a positive cAMP-dependent activation
loop [30,31]. Amoebas also use quorum sensing-like communication systems based on the complex
dipeptide glorin [32] to coordinate the periodic transition from uni- to multi-cellularity.

Among trypanosomes, the cross-species interactions between QS systems have important
implications for their virulence, transmission, competition, and evolution [33]. The parasites exploit
oligopeptide signals generated by released peptidases to monitor cell density. Then, a transporter
protein takes up combinations of small oligopeptides to control trypanosome differentiation either
towards the actively dividing slender form or towards the stumpy non-dividing form [34].

2.4. Lichens

Lichens are long-term intimate symbiotic partnerships between mushrooms (Arthoniomycetes)
and photosynthetic algaes occupying nutrient-poor niches [35]. Inter-species communications are thus
crucial for the initial steps of symbiosis in lichen formation and development [36]. Recognition of
compatible algal cells is performed by specific lectins produced and secreted by the potential mycobiont.
For example, the lectin of Peltigera canina recruits both algal cells (chlorobionts) and cyanobacteria
(cyanobionts), forming high-affinity bonds with different galactose units in the poly-α-1,4-galactoside
side chain of their wall. Free non-motile cells of the cyanobacterium that bind the lectin are recruited
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and move toward the lectin source [37,38]. Upon reaching the maximal concentration of the gradient,
the cells become desensitized, and lectin binding promotes stable cell aggregation between the two
partners [39]. Bacterial communities (particularly cyanobacteria) also participate in the constitution of
these inter-species associations [40]. Some of these bacteria possess genes allowing the synthesis of
auxins, and can thus attract their eukaryote partners (mushrooms and/or algaes).

A number of bacteria and archaea live in even harsher environments and, in a similar way,
associate with other species to withstand extreme temperature, pressure, dryness, salinity, pH, or other
chemical conditions. These associations require intra- and inter-species cellular communications,
not simply mutual metabolic complementation [41–43].

3. Cell Communications in Multicellular Species

Multicellularity has only emerged and succeeded in fungi, algae, plants, and animals [44].
All multicellular organisms are eukaryotes, and the nuclear chromatin structure in each cell controls
its specific fate through the expression of homeotic genes. This development in animals is controlled
and coordinated only by a few extracellular ligands (such as Hh, Wnt, FGF, BMP, and some
others) providing complex structuring information via their identities, concentrations, combinations,
and dynamics [45], as well as via the constitution of niches, particularly for stem cells [46,47].
Intercellular communications through soluble mediators already existed in unicellular organisms,
probably for 3.5 billion years. The specialization of various cell populations in multicellular species
emerged much more recently, approximately 600 million years ago [48]. In these species, both direct
and indirect cellular communication mechanisms co-exist.

Intercellular communications in multicellular organisms arise via four different molecular
mechanisms: (1) cytoplasmic bridges, (2) exosomes and ectosomes, (3) direct interactions between
membrane proteins of adjacent cells, and (4) soluble messenger molecules (mediators) controlling more
or less distant target cells.

3.1. Communications through Direct Cytoplasmic or Membrane Contacts

There are several types of cytoplasmic bridges, including gap junctions [49,50],
plasmodesmata [51,52], tunneling nanotubes [53,54], and others formed by incomplete
cytokinesis [55–60]. Exosomes and ectosomes are two distinct kinds of extracellular vesicles (EVs)
generated by all types of cells [61], particularly at the tip of primary cilia [62]. Their cargoes
include proteins, lipids, and nucleic acids, which are imported into the target cells’ cytoplasm to
affect the activity of transcription factors; signaling proteins; and many enzymes in animals, plants,
and microorganisms [61,63–65].

Many membrane multidomain proteins [66] allow cell–cell adhesiveness and communications.
Most of these proteins exhibit repeated stable conformations [67–73]. In animals, cells are also in
contact through the extracellular matrix (ECM), kind of an extracellular “glue”, which includes proteins
such as collagens, fibronectins, or laminins [74–76], as well as oligosaccharides [77] interacting with cell
membrane cadherins, integrins, CAM (cell adhesion molecules), selectins, and so on [78–80]. In plants,
there is a thick polysaccharide wall around most cells, which prevents the plasma membranes of
neighboring cells from coming into contact, so that germ cells require a particular structure, the pollen
tube, to come in contact [81].

3.2. Communications through Soluble Mediators

Almost all cells, in uni- and multicellular organisms, produce soluble messenger molecules
(mediators), capable of influencing distant cells. In animals, these mediators include hormones,
neuromediators, cytokines, growth factors, morphogens, and so on. Their target cells can contact the
mediator-emitting cell (post-synaptic cells, immune cells) or be at a considerable distance in another
individual (target cells for pheromones). In plants, many different hormones also exist and act at a
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very short distance, such as ethylene, or at distance such as auxin, gibberellins, florigen, and various
phyto-œstrogens.

The mediators’ receptors are located at the functional interface between intercellular
communications and intracellular signaling. They belong to two prominent families: (1) membrane
receptors with their binding site at the external surface of cells, and (2) intracellular receptors acting at
the level of DNA (nuclear receptors in eukaryotes). The receptors of the first group bind to mediators
that do not penetrate the cell, whereas those of the second group perceive only ligands capable of
penetrating the cells.

The mediators’ receptors in plants and animals are either soluble intracellular transcription factors
or proteins inserted in the plasma membrane (Table 1). The nuclear receptors exist in both animals and
plants, but, whereas they form a large family of related transcription factors in animals [82], in plants,
diverse proteins serve as intermediaries in the genomic actions of the hormones [83]. These binding
proteins in plants are structurally very diverse, in contrast to the kinship of animals’ nuclear receptors.
Nevertheless, the general mechanisms in animals and plants appear to share many similarities [84].

In brief, as shown in Figure 1, the plasma membrane receptors of animals and plants are either

1. channel-receptors letting in specific ions [85,86];
2. receptors acting by direct catalysis (receptors with intrinsic enzymatic activity, i.e., protein kinase

activity [87,88], or phosphatase activity [89], or guanylate cyclase activity [90,91]);
3. receptors acting through recruitment of various downstream intracellular effectors

(G proteins [92–99], adenylate cyclases [100–102], phospholipases C [103–105], soluble protein
kinases [106–111], methyltransferases [112], proteases [113–116], and so on).

Figure 1. General view of intercellular messengers’ receptors and their downstream signaling
pathways. (1) Intracellular ligand-regulated transcription factor. (2)–(5) Plasma membrane
receptors: (2) protease-cleavable receptor with intracellular domain exhibiting transcriptional activity;
(3) enzyme receptors (Tyr, Ser/Thr, His kinases, GMPcyclase, phosphatase); (4) non-enzymatic receptors
recruiting cytoplasmic partners (kinases, G proteins, scaffolding proteins); and (5) channel receptors
(ionotropic). For details, see also Table 1.
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Table 1. Intracellular and membrane receptor families in microorganisms, plants, and animals. GPCR, G protein-coupled receptor; AHL, N-Acyl homoserine lactone;
NO, nitrogen oxide; TLR, toll-like receptor; QS, quorum sensing; PQS, pseudomonas quinolone signal; LPS, lipopolysaccharide.

Receptors Mechanisms Ligands

Intracellular, Ligand-Regulated,
Transcription Factors

LuxR (LasR, TraR) Transcription QS autoinducers (various AHL) Bacteria

LysR (PqsR) Transcription PQS (various Quinolones) Bacteria

Nuclear Receptors

Transcription oleate ergosterol Fungi

Transcription Florigen (PEBP) Plants

Transcription brassinosteroids, gibberellins,
jasmonates, salicylates Plants

Transcription Steroid and thyroid hormones,
VitD, RA, prostaglandins Animals

Other, Intracellular,
Ligand-Regulated Targets

Ubiquitin-ligase Protein degradation auxin Plants

Monomeric G protein (Ste2–3p) ? farnesol tyrosol tryptophol Fungi

NO sensing protein Two-step His/Asp transfer Nitric Oxide Bacteria

soluble guanylate cyclase cGMP increase Nitric Oxide Animals

His kinases Two-step His/Asp transfer Ethylene, brassinosteroids Plants

His kinases Two-step His/Asp transfer arabinose, Mg++ Fungi

Di-guanylate cyclase di-cGMP increase environment signals Bacteria

Tyr kinases (RTK) IRS, Shc Tyr phosphorylation IGF, insulin, EGF Animals

Ser/Thr kinases SMAD S/T phosphorylation TGFβ, BMP, Activin, Inhibin Animals

guanylate-cyclase cGMP increase ANF Animals

Tyr-phosphatase Tyr dephosphorylation Proteoglycans or unknowns Animals

Plasma Membrane,
Non-Enzyme, Receptors

ionotropic R Ion entry glutamate acetylcholine, amino acids?,
mechano-stress, sterols Animals, Plants, Bacteria

Notch Transcription domain liberation by proteolysis Cell membranes proteins (Delta Jagged Serrate) Animals

Cytokine R Kinase recruitment (JAK) GH, Prl, interleukins, Animals

BcR, TcR, FcR Kinase recruitment (lck, lyn) MHC, antigens, immunoglobulins Animals

TNFR TRADD TRAF RIP caspases recruitment TNF Animals

Integrins SFK Talin Kindin Vinculin recruitment
(cytoskeleton organization) Extracellular matrix components Animals

Toll, TLR Myd88 recruitment LPS, bact DNA, flagelin Animals

7TMR (GPCR) Trimeric G-protein recruitment alpha mating factor Yeast

7TMR (GPCR) Trimeric G-protein recruitment hormones neuromediators, pheromones Animals

7TMR (mGluR), 7TMR (Frizzled) Homer recruitment, Dishevelled recruitment Glutamate, Wnt Animals
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These receptors possess (a) either a very short or huge extracellular domain (ECD), (b) one or several
membrane-spanning sequences (seven in G protein-coupled receptor (GPCR)), and (c) an intracellular
domain (ICD) comprising one or several peptide sequences. The ECD permits ligand binding,
whereas the ICD either possesses enzymatic activity like the insulin receptor (tyr-kinase) or TGFβ
receptor (ser/thr kinase) (Figure 1); or recruits cytoplasmic soluble enzyme(s), like the growth hormone
and cytokine receptors (Jak and Tyk kinases); or recruits G-proteins, like the numerous GPCRs (Figure 1);
or is clipped off as a transcription factor to perform intracellular signaling, like the Notch receptor
(Figure 1). Membrane receptors and downstream partners are generally concentrated at the level of
lipid rafts [117] or primary cilium in metazoan [62,118]. The downstream signaling pathways and their
evolution have been thoroughly described in a recent comprehensive review [119].

4. Cell Communications between Uni- and Multi-Cellular Organisms (Microbiotas)

Microbiotas are sets of commensal microorganisms of animals or plants occupying a favorable
environment and exchanging numerous advantages to their shared host. It is most likely that these
associations existed right from the origin of plant and metazoan lineages.

4.1. In Animals

Animals host microbiotas at different locations in their body. In vertebrates, microbes mainly
settle in their intestine as a complex community (10–100 times the number of the host’s own cells),
comprising aerobic and anaerobic bacteria, archeas, viruses, fungi, and other microbial eukaryotes,
playing critical roles in the host physiology. Most insect guts contain relatively few microbial species
compared with mammals, but some harbor large communities of specialized bacteria. The microbiota
in animals have significant influences on endocrine, nervous, and immune systems.

The communications of microbiota bacteria with animal host cells affect not only local intestinal
functions [120,121], but also general integrated functions. The best-known bacterial recognition
patterns are lipopolysaccharide (LPS) and peptidoglycan (PG), which act through binding with the
host’s pattern recognition receptors (PRRs), including Toll (Drosophila), Toll-like receptors (TLRs)
(vertebrates), and C-type lectin receptors (CLRs) (vertebrates). In vertebrates, membrane TLRs of the
epithelial and lymphoid cells of the small intestine, which are responsible for innate intestinal immunity,
differentiate microbiota microorganisms and promote immunological tolerance towards them [122].
Moreover, chemical mimicry of animals’ signaling molecules such as neuromediators or hormones
can be present in commensal bacteria. For example, N-acyl amide synthase in commensal bacteria
produce lipids, such as endocannabinoids, which interact with GPCRs involved in gastrointestinal tract
physiology [123]. The mammalian gut microbiota affects not only the host’s immune system, but also
its autonomous [124,125] and central [126,127] nervous systems, in particular, via the vagus nerve
from the intestine towards the hypothalamus, where it controls the host’s appetite [128] and other
behaviors [129].

Fungal microbiota secretes substances such as pyrazines, which play very important roles in
animals’ physiology and behavior. Some fungal pyrazines are used as a guide for individuals to
find their way back to the anthill. In the model species Drosophila, behavioral responses to 25 fungal
pyrazines vary widely despite their chemical similarity, ranging from strong, attractive responses to no
response at all. Two olfactory receptors in Drosophila, Or33b and Or59a, yield remarkably long-lasting
responses to certain pyrazines [130].

4.2. In Plants

The conquest of land by terrestrial plants occurred thanks to their interactions with fungi, and the
survival of animals and plants is dependent on their respective microbiota. It is thus interesting to
consider which molecular communication tools are present in unicellular and/or multicellular species,
and how these mechanisms ensure optimal cell interactions favoring their respective survival and
joint expansion.



Int. J. Mol. Sci. 2020, 21, 8052 8 of 22

The rhizobiota (root microbiota) is the set of the soil organisms (bacteria, mushrooms, virus,
and so on) interacting with plant roots and thus supplying them with many compounds that they do
not synthesize. Plants contain a significant number of pattern recognition receptors (PRRs) that share
remarkable structural and functional similarity with the Drosophila Toll receptor and mammalian
Toll-like receptors (TLRs) recognizing various pathogens or mediators. The plant PPRs are either
membrane receptors with intrinsic intracytoplasmic kinase activity (RLKs) or non-kinase membrane
receptors (RLPs) able to recruit RLKs and cytoplasmic kinases [131,132]. Plants are also able to cope
with their microbiota through the emission of extracellular vesicles [64] and complex cross-talks
through their respective secretomes to constitute functional holobionts [43,133].

Mycorrhiza (symbiosis of fungi with plant roots) is considered to be at the origin of the colonization
of dry land by water plants, approximately 450 million years ago. More than 90% of the living land plants
can form a mycorrhizal symbiosis, and non-mycorrhizal status is an exception. Besides, the mycorrhizal
network allows communications between plants of the same species or different species. There are two
types of mycorrhization: arbuscular mycorrhizae (AM) and ectomycorrhizae (EM).

The arbuscular mycorrhizal (AM) fungi have developed a symbiotic relationship with most land
plants, facilitating the uptake of minerals and water from the soil by plants [134,135] and providing
carbon sources to fungi. Hormones from the plants play a prominent role in AM establishment [136].
In AM, fungal hyphae penetrate the cortical tissues of roots, between the cell wall and plasma
membrane, thus coming into close contact with plant cells. Although AM interactions are physically
restricted to the roots, they influence the whole-plant performance [137].

The ectomycorrhizae (EM) develops a fungal system close to the roots with a mantle surrounding
short roots and a network (called Hartig net) that penetrates between the roots’ cortical cells.

The establishment of AM or EM requires complex dialogue between the two partners, including the
perception by roots’ His-kinase receptors of specific lipo-chitooligosaccharides (LCOs), called Myc-LCO,
secreted by fungi. These receptors share a high degree of similarity with receptors for plant hormones
(ethylene and cytokinin) and must have played an essential role in their interaction with plants,
leading to their joint conquest of land.

Endophytic bacteria represent a major part of the plant microbiota, which exert growth-promoting
activities by increasing the availability of limiting plant nutrients, such as nitrogen, iron,
and phosphorus [138,139], and providing photosynthetic carbon to bacteria through the formation of
nodules [140]. The first signal comes from the roots and is a cocktail of flavonoids, which stimulates
the synthesis of nodulation (Nod) factors by the bacteria, which cause the formation of nodules around
them by roots. Nod factors are lipo-chitooligosaccharides (LCOs) that act via the hetero-dimerization of
root membrane receptor-kinases and a calcium- and calmodulin-dependent kinase (CCaMK) [141,142].
Ethylene signaling is not required for Nod factor signaling, infection development, or nodule
organogenesis, but it is for initiation of nitrogen fixation and negative regulation of nodulation [143–145].
In return, ethylene production by the plant is modulated by Nod factors [146]. Gibberellins exert both
positive and negative effects on nodulation because they act as suppressors of infection, but also as
promoters of nodule organogenesis. Gibberellins and ethylene act through independent pathways in
nodule development [147]. Cytokinins also interact with the previous phytohormones in different
ways to impact nodulation [148].

5. Cell Communications between Different Multi-Cellular Organisms

5.1. Cell Communications between Animals

In the present paper, we consider cell communications as integrated networks leading to a mutually
beneficial equilibrium for two communicating species. Therefore, the detection of their hosts by
parasites cannot be considered as communication. Pheromones are very important volatile mediators
inside each animal species, and have been introduced before. Although involved in inter-species
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detection, kairomones cannot be considered as communication molecules as they benefit only parasites
for detecting potential hosts, and not for establishing a mutual favorable interaction.

5.2. Cell Communications between Plants

Plant volatile organic compounds (VOCs) such as sesquiterpenes, emitted particularly under
salicylic and jasmonic acid control [149,150], are major vehicles of alarm information between plants
in response to herbivore damage. VOCs may either directly affect cell membranes’ potentials and
induce endogenous signal transduction cascades, or enter the cell and directly bind to co-repressors of
stress-responsive genes.

Plants can integrate multiple volatile cues into specific adaptive defense responses [151]. It is
interesting to point out that these communication channels can be private for one plant species or even
one genotype inside a species. By contrast, others are open channels, allowing information sharing
with different species [152]. This sharing may be favorable despite the cost of alarm signaling toward
potential competitor species [153]. Indeed, it allows cooperation in herbivore insect exclusion from
their common neighborhood through herbivore-induced plant volatile molecules acting via epigenetic
mechanisms that sustain the memorization of the defense response [154].

5.3. Cell Communications between Animals and Plants

Plants broadcast signals either to attract or to repel animals (pollinating and herbivore animals,
respectively). For pollination, most of the visitor species interact with only one or very few plant
species. Mutualistic interactions imply sophisticated interplay of floral stimuli (scent, color) and the
sensory systems of pollinators (bees, hawkmoths, geckos, and so on), among which vision and
temperature play significant roles. Information transfer between plant species reduces the attraction
of bee pollinators to herbivore-attacked plants or warned plants relative to undamaged/unwarned
plants [155]. When wounded by herbivore insects, some plants, like tomatoes, produce the 18aa
peptide systemin, which binds to its receptor and stimulates the jasmonic acid cascade to produce
bad-tasting chemicals and escape further consumption [156].

Cell communications from animals to plants are not a very usual research field. Nevertheless,
it has been recently reported that bees bite plants’ leaves to induce their flowering to get access to
pollen and chemicals in the insects’ saliva may be involved [157]. For the time being, the precise
molecular and cellular mechanisms are not known.

6. Origin and Evolution of Cell Communications

The origin and evolution of cell communications obviously cannot be directly studied
experimentally. Only a global view of current cell communications can guide us to speculate
about their origin and evolution.

6.1. Origin

The origin of inter-cellular communications must be intricated with that of the cells themselves.
Life did not emerge directly as cellular organisms, but initially as simple genetic or chemical
replicators [158–161]. The dynamic kinetic stability hypothesis that bridges abiogenesis to life [162]
would require sustained communications to maintain the required far-from-equilibrium state during
this process, whatever it was precisely. Even if life could have begun as a system of such RNA and
polypeptide replicators, chemically occurring membranes must have played a primary role in the very
first steps of life on Earth. Indeed, compartmentalization by membranes has led to cellularity [163]
that is today the hallmark of all living beings.

Primordial ancestral membranes likely were single-chain amphiphiles that formed vesicles
and protocells, and gradually evolved into phospholipids during the emergence of cells [164].
Membranes not only enclose a limited volume where genetic and metabolic reactions can occur
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much more efficiently, but also provide the site for chemical potential energy in the form of the
proton-driven ATP synthase motor [165,166].

It is highly challenging to trace back the unique history of life, approximately 3.8 billion years
ago [167]. A wide range of theoretical and experimental methods have been developed for constructing
and testing possible evolutionary scenarios of prebiotic evolution, towards the emergence of the first
living cell(s) [168,169]. It is generally accepted that multicellular organisms emerged from unicellular
organisms [170] and that communications became mandatory only a long time after cell emergence.
However, cyanobacteria, one of the earliest types of bacteria, dating back to between 3.4 and 2.8 billion
years ago, formed huge colonies (stromatolites) [171]. It is thus likely that life actually began much
earlier, perhaps as early as 3.8 billion years ago, and most likely under the form of synchronized
communicating cell populations.

Taking this into consideration, the protocells and first living cells must have never existed in
a truly isolated state. Chemical communications might have already existed among protocells and
were probably essential for the emergence of living cells, as suggested by the dynamic kinetic stability
hypothesis [162]. If true, this hypothesis implies that the first living cells were not isolated and emerged
from inanimate protocell communities without rupture of communications between them.

Compartmentalization of the initial chemical “primordial soup” by membranes might have
favored the interactions between polynucleotides and polypeptides to initiate the very first steps
leading to metabolism and heredity. Cross-communications between the proto-cells must have played
a favorable role in the emergence of genuine cells (prokaryotes and eukaryotes).

The hypothesis of synchronized protocell populations is difficult to prove (or disprove), but would
make sense. For example, to avoid extinction by dilution, the protocells must out-compete other
vesicles either by having a more rapid cycle, thereby generating more progeny during division, or by
surviving destructive processes more efficiently [172]. Synchronization of populations of protocells,
requiring chemical communications, should have given them an advantage in terms of number and then
facilitated their emergence into living cell populations. These first cell populations, retaining chemical
communications, would have offered a more protective and stable milieu for the emergence of
life. The emergence of prokaryote as well as eukaryote cells from a common (proto-karyotic)
syncytial ancestral root [173] is a stimulating view in this respect (Figure 2). Nevertheless, it is much more
generally accepted that eukaryogenesis occurred only around 1.7 Gy ago by endosymbiosis involving
archaea and bacteria [174,175], most likely with no arrest in their previous communication networks
and, therefore, is the very beginning of communications between prokaryote and eukaryote cells.

Figure 2. Possible early origin of communications between proto-prokaryotes, prokaryotes, eukaryotes,
and hypothetical proto-eukaryotes.

The fact that living cells are non-equilibrium systems suggests that life can emerge only from
non-equilibrium chemical systems, thus needing energy input. The energy from the sun is the ultimate
source of energy for sustaining life on Earth. From an astrobiological standpoint, non-equilibrium
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chemical systems can arise naturally when solar irradiation strikes rotating surfaces of planets [176].
It is tempting to imagine that solar photoperiodism might have synchronized protocells’ chemical
functioning, and then kept synchronizing biological metabolism and divisions in the newly-formed
cell populations. Their synchronization should have favored the functional cohesion between cells
through circadian light exposure. Interestingly, cell communications are still synchronized by light,
circadian rhythms in a vast number of prokaryote, plant, and animal species.

6.2. Evolution

Intercellular mediators emerged during Evolution in conjunction with the appearance of their
cognate receptors. In some cases, one of them (ligand or receptor) appeared first and “found”
its counterpart later, but, more often, they appeared “simultaneously” at the phylogenetic time
scale [177]. It is likely that molecules with no partner (i.e., with no role) are not conserved for long in
the following generations. When a ligand or receptor appeared a long time before its current partner,
it likely had another interacting partner (i.e., another role) in the meantime.

The most ancient intercellular messengers were probably either intracellular metabolites like ATP
and other nucleotides, released by damaged cells, or naturally excreted metabolites. In the receiving
cells, their initial targets were probably the same proteins as those recognizing their proper internal
molecule. To discriminate the incoming messenger molecules from their own intracellular ligands,
part of these intracellular proteins must have evolved to become located at the surface of the cells.
The plasma membrane is the most favorable place for such receptors to discriminate outside messengers
from their own metabolites. De novo protein domains emerging from non-coding thymine-rich DNA
sequences must have played advantageous roles in this evolutive process. Indeed, such DNA sequences
exhibit a high potential to be translated into transmembrane domains [178]. These domains next to
the coding sequences of copies of the intracellular protein have led to this new location at the plasma
membrane. Because these cells belong to the same species, this initial phenomenon corresponded to an
autocrine mechanism.

From this simple autocrine communication, diversification of cell phenotypes has led to more and
more complex and specific communication networks in microorganisms, plants, and animals.

In prokaryote and eukaryote microorganisms, quorum sensing represents the most general
example of distant intercellular communications. In plants, specialized molecules play specific roles
in communications between their various parts for coordinating their development and functions.
In animals, an even higher integration occurs through their endocrine, neuronal, and immune systems.
The neuronal system is unique to animals, but the ion channels and proteins involved in synapses
originated long before their emergence. Moreover, the animals with a nervous system do not form a
monophyletic group. Therefore, the extension and disappearance of membrane ion-channel genes
during Evolution can explain the differences in the functioning of the nervous systems in these various
species [179].

Cell communications generally require highly specific ligand–receptor high-affinity binding.
High specificity necessitates that the receptors are strictly specific, and do not bind molecules with
structures close to that of their ligands. For example, steroid hormone receptors discriminate each
hormone, and so do the glycoprotein hormone receptors, despite that these hormones share a common
alpha-subunit, which plays an essential role in receptor binding [180]. The “negative specificity”
hypothesis that we have previously introduced [181] postulates that high affinity and high specificity
can be brought by different parts in the ligand–receptor interfaces. During Evolution, more and
more numerous and specific ligand–receptor pairs have appeared, requiring that each receptor of
course recognizes its own ligand, but also cannot be activated by a molecule akin to it. Therefore,
each receptor during Evolution was shaped to bind its own ligand and to reject structurally-related
molecules, particularly ligands for other receptors. It is interesting to point out that the estrogenic
receptor that does not bind other steroid hormones (cortisol, corticosterone, progesterone, testosterone)
is activated, although weakly, by a myriad of organic molecules from industrial origin that do not



Int. J. Mol. Sci. 2020, 21, 8052 12 of 22

resemble estradiol (bisphenols, phtalates, and so on) and are known as endocrine disrupter compounds.
No specific receptor-binding inhibition against these molecules could be selected during evolution as
they did not exist [182].

Cell communications are based on molecules and mechanisms that appeared at the very early
steps of life emergence, thus probably at the same time as cells themselves. During Evolution, a huge
diversification of ligand–receptor pairs occurs with high conservation to retain high affinity and
modifications of details to gain specificity through inhibition of binding of the wrong ligands.

6.3. Interplays

Cell communications show considerable diversification, allowing outstanding cell interactions
inside multicellular species, but also between different species, either uni- and/or multi-cellular.
In animals, various physiological systems have emerged (endocrine, neural, immune), which share
common molecular mechanisms that ensure their close functional integration in terms of biological
and behavioral responses [183–186]. In the most “primitive” metazoa, the distinction between
neuronal, endocrine, and immune systems is not clear-cut. For example, in cnidarians (medusa,
corals), there is no endocrine gland, but the diffuse neurons secrete neuromediators and molecules
that are chemically related to vertebrate hormones such as steroids, melatonin, or GnRH [187].
During Evolution, the endocrine system has gained in complexity in all invertebrates, but even
more in vertebrates because of the dual duplication of the entire genome at the root of vertebrates’
radiation [188]. This has permitted the emergence of the pituitary as a major integrator of endocrine
and neuro-endocrine functions [189–191]. In individual plants, the physiological integration relies on
less complex morphological and functional integration than in animals. However, because of their
immobility, plants establish numerous stable interactions with soil fungi and bacteria. During Evolution,
the root–nodule symbiosis concerned more numerous species than today [192], indicating its loss
in multiple clades. Conserved co-regulated genes found within legumes paved the way for nodule
formation and nitrogen fixation [193]. The ability of bacteria to decrease plant ethylene levels by the
expression of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase or via the production
of rhizobitoxine was found to be essential for leguminous plants to nodulate [194]. Mycorrhization
preceded bacterial symbioses during the conquest of land by terrestrial plants [195], thus showing
tripartite interactions in this process during Evolution. Through their microbiota, individual plants
can communicate with others, of the same or other species, leading to even higher integration [196]
thanks to the shared molecular language of plants, fungi, and bacteria..

7. Conclusions

Cellular communications play pivotal roles in all uni- and multi-cellular species, leading to an
outstanding variety of essential biological processes not only inside each species, but also for numerous
favorable interactions between uni- and multi-cellular species. Inter-species communications were
selected during Evolution when mutually beneficial. They have been made possible by the high degree
of conservation of the basic mechanisms of ligand–receptor pairs in evolutionary remote species.
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Abbreviations

ABC ATP binding cassette
AHL N-Acyl homoserine lactones
AI-2 autoinducer-2
AI-3 autoinducer-3
AM arbuscular mycorrhizae
AMP(1) antimicrobial peptide
AMP(2) 5’-adenosine mono-phosphate
ATP 5’-adenosine tri-phosphate
BMP bone morphogenic protein
CAM cell adhesion molecule
cAMP 3’5’cyclic-AMP
CBP CREB binding protein
CLR C-type lectin receptor
CREB cAMP-responsive element binding protein
CRP cyclic-AMP receptor protein
DAMP damage-associated molecular pattern
ECD extracellular domain
eDNA extracellular DNA
EM ectomycorrhizae
EV extracellular vesicle
FGF fibroblast growth factor
FSH follicle-stimulating hormone
GnRH gonadotropin-releasing hormone
GPCR G protein-coupled receptor
Hh hedgehog
HSL homoserine lactone
ICD intracellular domain
IMD immune deficiency pathway
JAK janus kinase
LCO lipochitooligosaccharide
LH luteinizing hormone
LRR leucine-rich repeat
LysM-LK lysin-motif receptor-like kinase
MAPK Mitogen-activated protein kinases
MAPKK Mitogen-activated protein kinases
MAPKKK Mitogen-activated protein kinases
NO nitrogen oxide
Nod nodulation factor
PGN peptidoglycan
PGRP peptidoglycan-binding receptor protein
PRR pattern recognition receptor
PTS phosphotransferase system
QS quorum sensing
RLK receptor-like kinase
RLP receptor-like protein
TCS receptor-histidine-kinase two-component system
TNT tunneling nanotubes
TLR toll-like receptor
TNF tumor-necrosis factor
VOC volatile organic compound
Wnt vertebrate homolog of drosophila Wingless
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