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Summary: As is apparent in many
fields of science and medicine, the
new biology, and particularly new
high-throughput genetic sequenc-
ing and transcriptomic and epige-
netic technologies, are radically
altering our understanding and
views of science. In this article, we
make the case that while mostly
ignored thus far in the vaccine field,
these changes will revolutionize
vaccinology from development to
manufacture to administration.
Such advances will address a cur-
rent major barrier in vaccinology—
that of empiric vaccine discovery
and development, and the subse-
quent low yield of viable vaccine
candidates, particularly for hyper-
variable viruses. While our labora-
tory’s data and thinking (and hence
also for this paper) has been
directed toward viruses and viral
vaccines, generalization to other
pathogens and disease entities
(i.e., anti-cancer vaccines) may be
appropriate.

Introduction

The goal in vaccinology is to discover,

develop, and deploy highly immunogenic

and safe vaccines that protect against

infectious and non-infectious (i.e., cancers)

diseases in essentially 100% of the popu-

lation. While admirable, such a goal, to

date, fails because of both pathogen and

host variability. For hyper-variable viral

pathogens like HIV, HCV, rhinovirus,

and others, we have been unable to

discover and develop highly immunogenic

and protective vaccine candidates. This is

true too for other highly complex patho-

gens such as bacteria (i.e., tuberculosis)

and parasites (i.e., malaria). Host variabil-

ity is evident in the multiplicity of immune

response genes that encode .1012 prod-

ucts necessary for generating immune

responses (i.e., antibodies, T cell receptors

[TCRs], etc.), and the estimated diversity

of human leukocyte antigen (HLA) haplo-

types (estimated at .1013), allowing hu-

mans an almost limitless immune response

capability [1].

Thus, both pathogen and host variability

barriers make it difficult to induce protec-

tive immune responses to vaccine antigens

in 100% of the population—at least for

most of the pathogens of interest for

vaccine public health needs such as HIV,

HBV, HCV, measles, influenza, and

others.

Current Vaccine Development

We propose that an additional ap-

proach to this dilemma resides in changing

the paradigm and conceptual framework

through which we develop new vaccines.

For example, from the 1700s through the

late 1990s, vaccine development was

primarily characterized by an empiric

‘‘isolate – inactivate/attenuate – inject’’

approach. While successful in developing

most of the vaccines we use today, it fails

in the face of hyper-variable and highly

complex pathogens and is an approach

now limited by a lack of innovation, a

predominant single mode of administra-

tion (injection), and a lack of directed

adjuvants to overcome poor immunoge-

nicity of the identified antigen. From a

policy viewpoint, today’s vaccines are

administered to everyone at the same dose

(‘‘one dose fits all’’) as a public health

approach that assumes that everybody is at

risk for every pathogen with equally

devastating risks of complications. Too,

our past and current approach to vaccines

is prophylactic only (we have no thera-

peutic vaccines), is overwhelmingly aimed

at childhood diseases (ignoring demo-

graphic trends of aging populations in

every developed economy), and at least in

the US, is exclusively a private sector, big

Pharma manufacturing approach.

Vaccinomics and Directed
Vaccine Development

Our laboratory has advocated for a new

approach to vaccine discovery character-

ized as a ‘‘discover – validate – character-

ize – deploy’’ paradigm based on the

foundations of vaccinomics and personal-

ized vaccinology [2–4]. This approach

moves away from a focus on the smaller

details of immune function and advocates

pursuing an understanding of the immune

system as a whole in order to improve and

expand upon empirical vaccine science.

Furthermore, the approach is personalized

in that it emphasizes a tiered risk and

vaccination approach for new vaccines,

multiple avenues of vaccine administration

that take advantage of new findings (e.g.,

in mucosal immunology allowing for oral,

transcutaneous, depot, and mucosal deliv-

ery), multiple highly specific vaccine adju-

vants, directed vaccine development using

systems biology and computational ap-
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proaches, and private, public, and aca-

demic partnerships in the development of

new vaccine candidates. An initial aspect

of this new approach is the concept of

reverse vaccinology, which uses sophisti-

cated computer analysis of genomic data

to characterize pathogen antigens and

eliminate those with human homology.

This is followed by careful screening of the

remaining antigens for immunogenicity

and eventual use in new vaccine products

[5,6]. For example, reverse immunology

was used to create a recombinant protein

containing nine different Th epitopes that

has been used to enhance the hemophilus

influenza type b oligosaccharide vaccine

[7]. A large number of reverse immunol-

ogy studies have focused on the charac-

terization of T cell responses to vaccinia

virus and have identified hundreds of CD4

and CD8 T cell epitopes. Other studies

have carefully examined the vaccinia

transciptome. [8]. Vaccinomics seeks to

better and more fully integrate these

findings, correlating humoral and cellular

immune measures with transcriptomic,

genomic, and proteomic data to gain a

greater understanding of viral immunity.

One such integrated study has uncovered

complex interactions between CD4, CD8,

and humoral responses to vaccinia virus

[9].

Figure 1 outlines some of the important

features that might be employed by a

vaccinomics approach. It should be noted

that not all of these features may be

needed for a given vaccine, and those

features that are needed may be priori-

tized differently depending on the unique

constraints imposed by the disease, vac-

cine product, and/or population to be

protected. For example, cancer vaccines

have benefited greatly from advanced

bioinformatics, reverse immunology, and

epitope discovery to develop very person-

alized products. On the other hand, new

vaccines against leishmaniasis or Japanese

encephalitis for use in developing coun-

tries where distribution and inoculation

are handled by public/private organiza-

tions with access to at-risk populations and

familiarity with the local culture and

society may require the development of a

stable product not requiring a cold chain

and transdermal application such that

advanced training is not required for

administration.

The need for and importance of new

advances in vaccinology such as those

above may not be apparent to all. Above

and beyond the obvious value in decreas-

ing (or eliminating in the case of smallpox,

and hopefully soon polio and measles)

morbidity and mortality due to infectious

diseases, economic benefits accrue to

healthy populations, national security

may be enhanced, bioweapons develop-

ment countered, and new insights into

vaccine immunology generalized into oth-

er fields. As a result of these compelling

arguments for vaccines, we deliver a series

of vaccines to every human being on

earth, multiple times over a lifetime. The

importance of this is that there is nothing

comparable in medicine that so touches every single

human being. Indeed, this public health

approach toward vaccine use has contrib-

uted to a doubling of the lifespan in the

US over the last century by the control of

infectious diseases, and the supportive role

played by vaccines. But, as mentioned, it

has been a one-size-fits-all approach. In

the 21st century we may now ask, is such

an approach, for our time and age,

informed by science?

A variety of factors impact the heteroge-

neity and inter-individual variations in

vaccine-induced immune responses. These

include factors such as gender [10], age

[11], ethnicity [12], vaccine dose [13],

vaccine storage/cold chain [14], immune

system function/integrity [15], size (body

mass index [BMI]) [16], smoking [17], and

others. Logically, genetics play an impor-

tant—and defining—role in vaccine re-

sponse. We increasingly understand the role

of genetic causes of heterogeneity in treat-

ment effects with drugs, but similar work in

the field of vaccinology has lagged. One

investigator has observed, ‘‘Just as pharma-

cogenetics has suggested ways of designing

drugs to minimize population variability,

understanding mechanisms of immunogenetic

variation may lead to new vaccines designed

to minimize immunogenetically based fail-

ure’’ [18]. This naturally leads to such

questions as, ‘‘why do immune responses to

biologics/vaccines vary among healthy

individuals? ‘‘And what explains this het-

erogeneity?’’ ‘‘Could the answers to these

questions be leveraged in reverse engineer-

ing new vaccine candidates?’’

The Immune Response Network
Theory

While we readily accept that genetic

variation in TCR genes, antibody genes,

Figure 1. New approach to vaccine discovery and development. Figure 1 illustrates the
differences between the one-size-fits-all approach of empiric vaccine development with a more
directed and personal approach that relies upon vaccinomics and high-dimensional ‘‘omics’’
technologies. By analogy, empiric vaccine development represents the undifferentiated light
entering the prism from the left. Individual aspects of directed vaccine development can be seen
when viewed through the prism of vaccinomics. Several examples of these components are
illustrated in the rainbow on the right side of the figure. These aspects may or may not be
appropriate for all vaccines and are used here to illustrate the wide range of possibilities that a
‘‘discover – validate – characterize – deploy’’ approach allows one to independently investigate,
optimize, and fully utilize. Below the vaccinomics prism are listed some examples (by no means
complete or definitive) representing a range of potential components that can be assembled into
a comprehensive, systems-level examination of infection/vaccination of a given pathogen. Please
refer to the text for examples of how different components might be used in the development of
specific vaccines.
doi:10.1371/journal.ppat.1002344.g001
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and HLA loci all contribute to the

differential ability of the host to respond

to pathogens, these are not the only genes

that impact vaccine immunity. Host ge-

netic influences on inter-individual vari-

ability can also occur as a result of

polymorphisms in genes involved in the

generation of the immune response, in-

cluding viral receptors, Toll-like and other

pattern recognition receptors, signaling

molecules, cytokine and cytokine receptor

genes, Gm/Km genes, perforin and gran-

zymes, and death receptors, as well as

many others. In recognizing this, our

laboratory developed the ‘‘Immune Re-

sponse Network Theory,’’ which states

that the response to a vaccine is ‘‘the

cumulative result of interactions driven by

a host of genes and their interactions, and

is theoretically predictable’’ [19,20]. This

theory is different than Jerne’s idiotype

network theory stating that the antigen

recognition site of one antibody can in

turn serve as an antigen stimulating the

production of anti-idiotype antibodies, and

that these networks of antibodies/anti-

idiotypic antibodies serve to positively and

negatively regulate immune function [21].

‘‘The basic genetic elements of the im-

mune response network includes genes

activating/suppressing immune responses,

the dominance profile of a given gene or

polymorphism, epigenetic modifications of

genes, the influence of signaling genes,

innate response genes, gene-gene interac-

tions, and genes for other host response

factors’’ [2]. Understanding the complex

interplay of these networks and pathways

as a coherent system allows one to build

predictive models, anticipate possible side

effects, and observe synergistic outcomes

that cannot be foreseen with narrowly

focused studies concentrating on single

genes or proteins or even single cell types.

Understanding the key initial events in the

immune response to pathogen infection

allows us to identify viral ligands respon-

sible for cell binding and entry, innate

receptors responsible for pathogen detec-

tion, innate pathways mediating protective

responses specific for a given pathogen,

host pathways usurped by viral machinery,

and pathogen epitopes targeted by T and

B cells, and the interplay between T helper

lymphocytes and B cells or cytotoxic T

cells necessary for optimal humoral and

cell-mediated responses. In turn, this

information allows for the identification

of adjuvants stimulating the appropriate

innate receptors and antiviral pathways,

attenuation strategies for the pathogen of

interest, the appropriate selection of viral

epitopes for subunit vaccines, vaccine

products that omit the viral proteins

responsible for pathogen-induced damage

and suppress the host pathways responsi-

ble for immunopathology, the effects that

different routes of administration have on

the immune response, and the appropriate

dose/route/timing of immunizations to

properly elicit strong immune memory.

As we have noted, the mechanisms for

differential gene-based effects can include

‘‘differential binding, processing, and

expression/presentation of antigenic pep-

tides, a differential range of presented

peptides (genetic restriction), altered se-

cretion patterns (cytokines), altered tran-

scription of important genes (signaling

molecules) and gene products, altered

binding of virus/antigens by membrane-

based receptors (TLR, other), differential

receptor function, expression, affinities,

epigenetics, and of course, others’’ [22].

Further, our laboratory developed the

term ‘‘vaccinomics’’ to encompass the

integration of a systems biology approach

with immunogenetics, immunogenomics,

immune profiling, and functional SNP

studies in order to understand and

predict vaccine-induced immune re-

sponses. Using these concepts we have

predicted ‘‘a new golden era of person-

alized Predictive Vaccinology’’ whereby we

abandon a ‘‘one size and dose fits all

vaccine approach,’’ predict whether to

give a vaccine based on likelihood of

response (and perhaps need), predict the

likelihood of a significant adverse event

to a vaccine, predict the number of doses

likely to be needed to induce a response

to a vaccine (HBV, HPV, measles

examples), and design/develop new vac-

cines at the individual, gender-specific,

race-specific, or sub-population levels for

groups with identifiable and specific

genetic restrictions [3,4,23].

Genetic Control of Measle
Vaccine Response

As examples, we have focused our work

in vaccinomics on the study of measles,

rubella, smallpox, and influenza vaccines.

In order to understand the role of genetic

(host) variation in inter-individual vac-

cine-specific immune responses, we began

by performing twin studies (n = 100

twins) to separate environmental and

genetic influences, to determine the influ-

ence of genetic factors relating to vari-

ability in immune response, to determine

the proportion of variation attributable to

specific genes, and to determine herita-

bility (the ratio of genetic variance to total

variance) [24]. In this study we deter-

mined that the heritability of measles

vaccine was 89% (p , 0.0001) [25]. We

next studied a cohort of healthy school-

children, all immunized with one dose of

MMR-II (medical record documentation),

with no circulating measles in the com-

munity since 1980 (the earliest year of

birth) [26,27]. The results are noted in

Figure 2, which demonstrates the diversi-

ty of inter-individual antibody response to

vaccine among otherwise healthy school-

children.

Figure 2. Distribution of measles vaccine–induced antibody levels. This graph represents
the distribution of antibody levels determined by an EIA assay on healthy grade-school children
immunized with a single dose of MMR-II vaccine. The inter-individual variation in antibody levels
among this healthy cohort illustrates the importance of determining the mechanisms for
heterogeneity in vaccine response.
doi:10.1371/journal.ppat.1002344.g002
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Among the above individuals who were

vaccine non-responders, we re-immu-

nized, and repeated antibody testing $ 6

weeks later. One hundred and six children

(81.5%) became seropositive, and 24

(18.5%) remained seronegative [28]. We

then re-examined our candidate gene

associations in individuals who had re-

ceived 2 doses of measles vaccine, and our

previously detectable class I and II HLA

effects were no longer detectable except

for B*4403 [22]—a similar finding in

studies of hepatitis B vaccine non-respond-

ers. Similarly, two doses of measles vaccine

appeared to overcome HLA homozygosity

associations with lower measles-specific

antibody and cytokine levels detected

following one dose of MMR vaccine

[29,30]. These findings illustrate that there

is HLA-restricted recognition of measles

virus epitopes with detectable impacts on

immunity, and that through an as yet

unclear mechanism, additional doses of

vaccine may help to overcome this genetic

restriction, including non-responsiveness

to measles vaccine.

Our population-based MMR vaccine

studies also determined that host gene

polymorphisms are associated with measur-

able inter-individual variations in measles

vaccine–induced immunity. Examples of

such gene SNPs include HLA, measles virus

binding CD46 and SLAM receptors, cyto-

kine and vitamin receptors, as well as innate

antiviral effector genes, including Toll-like

receptors (TLRs) and their signaling genes,

which play a significant role in contributing

to variations in the immunity to measles due

to genetic polymorphisms [31–34]. The

adaptive immune response after measles

vaccination is influenced in part by HLA

gene polymorphisms. In fact, the occur-

rence or lack of specific HLA alleles and

haplotypes (or supertypes) may significantly

influence both humoral and cellular im-

mune responses to a vaccine. Furthermore,

our studies have demonstrated that genetic

polymorphisms in measles virus receptor

genes, pattern recognition receptor genes,

genes controlling innate antiviral responses,

and cytokines and cytokine receptor genes

are associated with variations in measles

vaccine–induced immune outcomes.

Associations with Measles-Specific
Humoral Immunity

We found several HLA alleles (B*3503,

DRB1*0701, and DQA1*0201) and hap-

lotypes (A*29-C*16-B*44 and DRB1*15/

15-DQB1*06-DPB1*03) with associations

with measles-specific neutralizing antibody

levels in two independent population-

based studies. Individual genetic variants

in the CD46 (rs11118580 and rs2724384)

and SLAM (rs164288) genes that appear

to modulate antibody responses to measles

vaccine were also identified [33]. In-

creased carriage of major allele variants

for coding SNPs in the TLR2 (rs3804100)

and TLR4 (rs5030710) genes were associ-

ated with a dose-related increase and a

dose-related decrease in measles antibody

levels, respectively [34]. Recently, we also

replicated a previously discovered associ-

ation of a functional IL12B genetic variant

rs3212227 with inter-individual variations

in measles-specific antibody levels [35].

Genetic variants within the RIG-I gene,

including a coding polymorphism (rs320

5166), were associated as single-SNPs and

in haplotype-level analysis, with measles

antibody variations [36].

Associations with Measles-Specific
Cellular Immunity

In a separate study we successfully

replicated associations with two of the above

mentioned measles virus receptor SNPs

(CD46 rs2724384 and SLAM rs164288)

and variations in measles antibody and

IFN-c Elispot responses, respectively [37].

A replicated CD46 polymorphism (rs272

4384) also demonstrated associations with

measles-specific IL-6 (p = 0.02), IFN-a
(p = 0.007), and TNF-a (p = 0.0007)

responses. Two previously reported pro-

moter IL10 and IL2 SNPs (rs1800890 and

rs2069762) demonstrated associations with

measles-specific cellular response (p , 0.03)

[38]. A different polymorphism (rs112

65452) in the SLAM gene previously

associated with measles antibody levels

(p = 0.04) exhibited a significant association

with measles-specific IL-10 production (p =

0.0008) [37]. Understanding the functional

or mechanistic consequences of genetic

variations such as those above on im-

mune-response variations could assist in

directing new vaccine design, and allows us

to generate and test new hypotheses

applicable to developing new measles

vaccine candidates.

Additional Examples of
Directed Vaccine Development

Taking these concepts further, hepatitis

B vaccine serves as a useful example. Both

HLA polymorphisms and cytokine SNPs

have been found to be associated with

hepatitis B vaccine non-response [39]. This

information could be utilized by developing

a candidate vaccine that included both

cytokine adjuvants to overcome genetic

restriction, and a peptide ‘‘cocktail’’ that

could circumvent known immunogenetic

restrictions, and investigators have begun

such development [40,41]. Similarly, we

have previously reported a SNP in the

SLAM receptor gene associated with a 4-

fold decrease in measles antibody levels

[33]. While mechanistic studies are ongo-

ing, it is logical that this SNP may interfere

with the ability of the measles vaccine virus

to bind to its receptor, and thereby perturb

the development of a protective immune

response. One could imagine a candidate

vaccine virus designed to allow binding

regardless of the presence or absence of

such a receptor polymorphism. Such a

vaccinomics approach could result in a

candidate vaccine that leads to protective

immune responses regardless of the pres-

ence of such a polymorphism. As a further

example, such an approach led to the

identification of the CCR5 deletion muta-

tion in the coding region of the CCR5 HIV

receptor. This information can be utilized

in the development of novel therapeutic

drugs and vaccines [42]. For example, a

subunit vaccine containing the CCR5

binding determinants of gp120 could be

created to facilitate the formation of viral

neutralizing antibody responses. In addi-

tion, adjuvants such as CpG or MPL-A

could differentially activate TLRs to cir-

cumvent restrictions in other receptors

[43].

Other limitations in the development of

new vaccines for measles and other infec-

tious pathogens include a lack of under-

standing of molecular mechanisms of

vaccine-induced adaptive immunity. While

we understand that viral peptides are

processed and presented in the context of

class I and II HLA molecules, this has

generally not informed the specific design

of new vaccine candidates. Our laboratory

has used this information to successfully

identify 13 novel naturally processed class

II HLA-DRB1*0301 measles virus peptides

[44,45]. The development of a high

performance mass spectrometry analytic

approach also allowed us to identify 116

naturally processed and presented class I

(A*0201, B*1501 and C*03) peptides

derived from vaccinia virus [46,47]. Re-

cently, we also isolated 17 naturally pro-

cessed avian influenza H5N1 peptides from

the class I A*0201 peptide binding grove (P.

Tosh, I. Ovsyannikova, G. Poland, unpub-

lished data). Data on specific immunogenic

peptides (and adjuvants) such as these

become important in the design of future

vaccines to combat infectious diseases,

including measles, influenza, smallpox,

and other pathogens [48].

Conclusion

Our laboratory has used the live,

attenuated measles, mumps, rubella, and
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vaccinia vaccine viruses as models for our

work and development of the vaccinomics

approach. After two decades of work with

measles vaccine virus we have determined

that:

N Almost 90% of measles vaccine re-

sponse heterogeneity is explainable

genetically

N Polymorphisms of specific immune

response genes significantly influence

measles vaccine–induced immunity

N Vaccine-induced immune responses

can be profiled (and in the near future

predicted)

N Naturally processed and presented

immunogenic peptides can be identi-

fied and sequenced, and represent a

novel method of vaccine candidate

discovery

The next step in the development of

vaccinomics is to understand immune

‘‘signature profiles’’ from a systems biology

perspective in order to develop vaccine

response ‘‘markers’’ in support of person-

alized vaccinology, and to inform new

vaccine development. An excellent exam-

ple of this concept is the identification of a

gene signature including C1QB and EI-

F2AK4, which correlated with and pre-

dicted CD8+ T cell responses to the yellow

fever vaccine with a high degree of

accuracy [49]. The authors also identified

a separate predictive signature of neutral-

izing antibody response that included the B

cell growth factor TNFRS17. Yet another

example of predictive immune profiling

has been demonstrated for influenza vac-

cination. The expression levels of CAM-

KIV (a calmodulin-dependent protein

kinase involved in neural functions as well

as stem cell maintenance and T cell

development) at day 3 following vaccina-

tion with TIV is inversely correlated with

antibody titers at the peak of the immune

response [50]. The development of these

predictive signatures provides significant

insights into the generation of vaccine-

induced immune responses, and may serve

as useful biomarkers for the testing of novel

vaccine candidates. The knowledge gained

from these immune-profiling studies may

indicate appropriate adjuvants or routes of

administration that can be coupled with

mass-spectrometry approaches to isolating

and identifying highly immunogenic viral

peptides, allow for peptide-based vaccine

development (an area of vaccine research

that currently suffers from poor immuno-

genicity), and allow us to anticipate novel,

directed development (rather than an

empiric approach) of a plethora of new

candidate vaccines informed by genotype:-

phenotype associations, the role of epige-

netics and complementarity, and other

future advances.

We believe that the future of vaccine

development, utilizing the tools of vacci-

nomics and predictive vaccinology, is such

that the science will move us to abandon a

‘‘one size and dose fits all empiric vaccine

approach,’’ predict vaccine response and

the possibility of a significant adverse

response to a vaccine, predict the number

of doses likely to be needed to induce a

response to a vaccine, and direct us toward

a science-based directed design/develop

paradigm for novel vaccine candidates. In

turn, abandoning the empiric approach of

vaccine development, and moving toward

a new paradigm of ‘‘discover – validate –

characterize – deploy’’ is likely to hold

promise in the development of vaccine

candidates for hyper-variable pathogens,

and overcome the current one-size-fits-all

approach that leads to substantial inter-

individual vaccine responses, vaccine non-

response, increased costs, and substantial

barriers to the development of novel

vaccine candidates.
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