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Abstract

Background: The gonad is the major factor affecting animal reproduction. The regulatory mechanism of the expression of
protein-coding genes involved in reproduction still remains to be elucidated. Increasing evidence has shown that ncRNAs
play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding
RNAs (IncRNAs) in reproduction have been investigated in some species. However, the regulatory patterns of miRNA and
INcRNA in the sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an
integrated analysis of mIRNA, messenger RNA (mRNA), and IncRNA expression profiles to explore their regulatory patterns in
the female ovary and male testis of Pelodiscus sinensis.

Results: We identified 10,446 mature miRNAs, 20,414 mRNAs and 28,500 IncRNAs in the ovaries and testes, and 633 miRNAs,
11,319 mRNAs, and 10495 IncRNAs showed differential expression. A total of 2814 target genes were identified for miRNAs.
The predicted target genes of these differentially expressed (DE) miRNAs and IncRNAs included abundant genes related to
reproductive regulation. Furthermore, we found that 189 DEmiRNAs and 5408 DEINCRNAs showed sex-specific expression. Of
these, 3 DEmiRNAs and 917 DEINCRNAs were testis-specific, and 186 DEmMIRNAs and 4491 DEINCRNAs were ovary-specific. We
further constructed complete endogenous INcCRNA-mMIRNA-MRNA networks using bioinformatics, including 103 DEmiRNAs,
636 DEmMRNAs, and 1622 DEINcRNAs. The target genes for the differentially expressed miRNAs and IncRNAs included
abundant genes involved in gonadal development, including Wt1, Creb312, Gata4, Wnt2, Nr5al, Hsd17, Igf2r, H2afz, Lin52,
Trim71, Zarl, and Jazfl.
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Conclusions: In animals, miRNA and IncRNA as master regulators regulate reproductive processes by controlling the
expression of mRNAs. Considering their importance, the identified miRNAs, INcRNAs, and their targets in P. sinensis
might be useful for studying the molecular processes involved in sexual reproduction and genome editing to produce
higher quality agquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in
the improvement of P. sinensis reproductive traits for aquaculture.

Background

Sexual reproduction is a critical process for most verte-
brates. Hormones and genes involve in shaping the re-
productive abilities of both sexes throughout their lives
[1]. Sex-dependent differences are often exhibited in the
growth and size of aquaculture animals displaying sexual
dimorphism [2]. Reproduction is an important yet com-
plex biological process in animals, and a comprehensive
understanding of the genetic mechanisms underlying re-
productive traits, particularly from the genomics per-
spective. The Chinese soft-shelled turtle (Pelodiscus
sinensis) is an important freshwater aquaculture species
in China. The turtle has a sex-dependent growth pattern,
with males showing a significantly larger weight and size,
thicker and wider calipash, and lower levels of fat than
females [3]. Similar to other reptiles and mammals, the
soft-shelled turtle has the ability to store sperm in the
ovary [4]. Spermatogenesis, copulation, and ovulation
are seasonal and segregational in turtles [4, 5]. Many
previous studies have focused on sex determination and
differentiation in the turtle. However, to the best of our
knowledge, no study has explored the genetic mecha-
nisms underlying the reproductive development of the
soft-shelled turtle.

The genomes of different species, from worm to hu-
man, show similar numbers of protein-coding genes [6],
prompting the notion that many aspects of complex or-
ganisms arise from non-protein-coding regions. The
transcriptome profiling of non-protein-coding RNAs by
next-generation sequencing has been successfully used
to investigate transcripts and their expression levels.
Non-coding RNAs (ncRNAs) regulate gene expression at
transcriptional and post-transcriptional levels. Increasing
evidence has highlighted that ncRNAs are involved in
reproduction process [7, 8].

Regulatory ncRNAs can be divided in three categories
based on transcript size: small (sncRNAs), medium, and
long (IncRNAs) [9]. MicroRNAs (miRNAs) are an abun-
dant class of sncRNAs (~ 22 nt long) that negatively regu-
late gene expression at the messenger RNA (mRNA) level
[10]. MiIRNAs regulate gene expression at the post-
transcriptional level by binding to either perfect or imper-
fect complementary sequences in the 3" untranslated re-
gions (UTRs) of targets and triggering either degradation

of the targets or inhibit their translation [11]. LncRNAs
constitute large and diverse class of transcribed non-
protein-coding RNA molecules that are more than 200
nucleotides in length [10]. It is known that IncRNAs influ-
ence the up-regulation and down-regulation of expression
at the transcriptional and post-transcriptional levels.
LncRNAs regulate gene expression by epigenetic modifi-
cation, transcription, and post-transcription modification
via DNA methylation, histone modification, and chroma-
tin remodelling [12]. LncRNAs can also bind the typical
classes of transcription factor binding sites enriched in
promoters, which regulate gene expression [13].

In non-mammal vertebrate animals, large-scale identifi-
cation of miRNAs and IncRNAs has been implemented in
many species. MiRNAs have been shown to engage in
regulating the expression of genes that play key roles in
follicular development, granulose cell function, oocyte
maturation, and ovary pathophysiology [14, 15]. In non-
mammalian animals, miRNAs also play important roles in
ovary development [16]. A previous study showed that
miR-30 was responsible for maternal mRNA clearance
during the embryonic development of zebrafish [17]. MiR-
9 could bind to the foxI3 3" UTR in Monopterus albus,
which may be involved in the process of oocyte degener-
ation [18]. In mature Paralichthys olivaceus gonads, miR-
143 and miR-26a showed sex-biased expression [19].
MiRNA is also critically involved in spermatogenesis in
mammials [20, 21].

Studies have provided evidence that IncRNAs regulate the
processes of mammalian reproduction, including germ cell
specification, sex determination, gonadogenesis, gametogen-
esis, placentation, and pathologies affecting reproductive tis-
sues [22-24]. Knockout of IncRNAs can cause a partial or
complete loss of male fertility in Drosophila [25]. In mice,
mrhl RNA can negatively regulate Wnt signalling and be-
comes down-regulated upon the meiotic progression of
spermatogonial cells [26, 27]. In Daphnia magna, IncRNA
Dapalr can transactivate and maintain dsx! expression,
which produces males in response to environmental stimuli
[23]. In female mammals, IncRNA also plays an important
role in fertility. H9 knockout female mice showed altered fol-
liculogenesis and increased follicular atresia, which might be
due to the lack of H9 decreasing the expression of Amh by
binding the 3" UTR of Amh mRNA [28].
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A large number of ncRNAs have been discovered due to
advances in genomics and molecular biology. However,
regulation of the reproductive system is complicated. Re-
cently, the mechanism of competing endogenous RNAs
(ceRNA) was reported as a specific regulatory pathway of
IncRNA, miRNA, and mRNA to explain how they exert
their influence on protein levels [29-31]. LncRNAs, as
competing endogenous ceRNAs, can indirectly regulate
mRNAs by acting as miRNA sponges. Investigations re-
garding IncRNA-miRNA-mRNA networks provide a
better understanding of the role of IncRNA-miRNA inter-
actions in mRNA regulation. This might provide new in-
sights for understanding the endogenous differential
expression of mRNA in both sexes.

Although miRNAs and IncRNAs have been shown to
regulate mammalian tissue development and reproduction,
little is known about their sexual dimorphism in gonads and
reproduction in turtle families and other reptiles. In the
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present study, miRNAs and IncRNAs of the ovary and testis
were investigated in P. sinensis to explore novel ncRNAs in
sexual dimorphism and reproduction. Results of the present
study may provide the basis for a better understanding of the
roles of miRNAs and IncRNAs in the turtle ovary and testis,
leading to exploitation of the mechanisms of reproduction in
Chinese soft-shelled turtle.

Results

Overview of the sequencing data

We constructed cDNA libraries of miRNAs, mRNAs,
and IncRNAs using the RNA from the ovaries and testes.
After filtering out low-quality transcripts, 5° and 3’
adapters, and reads <18nt, a total of 113.5M of clean
reads was produced by Illumina technology for miRNAs.
The 21 and 22 nt length transcripts were the most abun-
dant (Fig. la), and 60.4% of high-quality reads were
mapped to the turtle genome (Pelsin-1.0, NCBI). We
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obtained 153.25 Gb of clean reads for mRNA and
IncRNA  sequencing. The length distributions of
IncRNAs and mRNAs are shown in Fig. 1b and c. After
mapping the genome, approximately 84.41% ~ 87.72% of
the reads were mapped to intergenic regions in the P.
sinensis reference genome (Fig. 1d, Additional file 1).

Identification of the differential expression of mRNAs,
miRNAs, and IncRNAs

According to the miRNA expression profiles, we de-
tected 10,446 novel miRNAs. A total of 633 miRNAs
were significantly differentially expressed between the
ovaries and testes (P < 0.05), including 138 up-regulated
miRNAs and 495 down-regulated miRNAs (Fig. 2a, d,
Additional file 2). These DEmiRNAs belonged to 438
families (Additional file 3). Among these DEmiRNAs, we
identified a set of miRNAs that were reported to regulate
animal reproduction, including miR-133, miR-138, miR-
145, miR-143, and miR-378.
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We detected 20,414 mRNAs, and 11,319 mRNAs were
differentially expressed based on sex, including 5206 up-
regulated mRNAs and 6113 down-regulated mRNAs
(Fig. 2b, e, Additional file 4). A total of 28,500 IncRNAs
with 10,495 DEIncRNAs were detected, including 1716
up-regulated IncRNAs and 8779 down-regulated
IncRNAs between ovaries and testes (Fig. 2c, f, Add-
itional file 5). Among the differentially expressed
IncRNAs and miRNAs, 3 miRNAs and 917 IncRNAs ex-
hibited testis-specific expression, and 186 miRNAs and
4491 IncRNAs showed ovary-specific expression. Predic-
tion of the potential targets of IncRNAs in cis and trans
was performed to investigate the function of IncRNAs
(Additional file 5). After searching for protein-coding
genes 100 kb upstream and downstream, 3904 DEIncR-
NAs were found to correspond to the regulation of
protein-coding genes in cis. The target genes included
Foxl2, Cyp19al, Gper, Esr, Dazl, and Sox30, which sug-
gests that the reproductive process might be regulated
by the action of these IncRNAs on protein-coding genes.
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Conversely, we identified 2160 IncRNAs showing trans
action by LncTar, including a set of genes that might
regulate reproduction.

Functional analysis of DEmiRNAs and DEIncRNAs
To annotate the molecular functions of the differen-
tially expressed miRNAs, both RNA hybrid and Mi-
Randa software were used to improve the prediction
of miRNA targets, resulting in 8088 target genes in-
cluding 2814 differentially expressed genes that were
potentially regulated by 633 DEmiRNAs. GO categor-
ies of miRNAs and IncRNAs were assigned to all tar-
get genes based on the following three ontologies:
cellular component, molecular function, and biological
process (Additional files 6, 7, 8). Functions of target
genes in the cellular component category mainly fo-
cused on cell part, cell, and membrane. Based on mo-
lecular function, the most abundant target genes were
focused on binding, followed by catalytic activity. Re-
garding biological process, the most abundant target
genes were focused on single organism process,
followed by cellular process, and biological regulation.
KEGG pathway enrichment analysis revealed that the
DEmiRNAs were involved in 186 signalling pathways
(Additional file 9). The identified metabolic networks
were related to neuroactive ligand-receptor interaction
and regulation of the actin cytoskeleton. The most abun-
dant target genes of DEmiRNAs focused on glyoxylate
and dicarboxylate metabolism. We detected at least 13
pathways involved in reproductive biology, including oo-
cyte meiosis, TGF-B signalling, ovarian steroidogenesis,
GnRH signalling, Wnt signalling, cAMP signalling,
steroid biosynthesis, steroid hormone biosynthesis,
MAPK signalling, p53 signalling, RNA polymerase,
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metabolism of xenobiotics by cytochrome P450, and
mTOR signalling.

KEGG pathway enrichment analysis showed that the
DEIncRNAs were involved in 225 signalling pathways in
a trans-regulatory manner and 221 signalling pathways
in a cis-regulatory manner (Additional file 10, 11). The
KEGG pathway enrichment analysis revealed that the
DEIncRNAs were involved in oocyte meiosis, steroid
hormone biosynthesis, Wnt signalling pathway, GnRH
signalling pathway, p53 signalling pathway, apoptosis,
MAPK signalling pathway, AMPK signalling pathway,
TGEP signalling pathway, cAMP signalling pathway,
RIG-I-like receptor signalling pathway, mTOR signalling
pathway, and insulin signalling pathway.

Validation of differentially expressed miRNAs and
IncRNAs

To validate the sequencing data of miRNAs and IncRNAs,
ten DEmiRNAs and ten DEIncRNAs were randomly selected
to test their relative expression in ovaries and testes. The
expression of eight miRNAs and seven IncRNAs in ovaries
and testes was consistent with the results of RNA sequen-
cing. Among the miRNAs, novel-miR-1361, novel-miR-2322,
novel-miR-6721,  novel-miR-10,042,  novel-miR-10,231,
novel-miR-10,322, and novel-miR-10,468 were downregu-
lated in testis, while novel-miR-1236 was upregulated in
testes (Fig. 3a). Among the IncRNAs, MSTRG.435295.1,
MSTRG.88998.1, MSTRG.127189.1, and MSTRG.100955.1
were upregulated in testes, while MSTRG.129036.2,
MSTRG.281180.2, and MSTRG.561412.1 were downregu-
lated in testis (Fig. 3b). The expression patterns of these miR-
NAs and IncRNAs among different groups were well-
matched with the RNA-Seq data, which could guarantee the
accuracy of subsequent functional analysis.
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Construction of compete endogenous (ceRNA) networks
To construct the ceRNA networks, we screened miRNAs
that included miRNA response elements, which could
bind with both IncRNAs and mRNAs. We constructed a
series of ceRNA networks of mRNAs, miRNAs, and
IncRNAs related to the DE genes by integrating the
expression profiles and regulatory relationships among
the mRNAs, IncRNAs, and miRNAs from the high-
throughput sequencing data (Additional file 12). These
networks included 102 DEmiRNAs, 635 DEmRNAs, and
1621 DEIncRNAs. The DEmiRNAs included novel-miR-
227, novel-miR-9914, novel-miR-6375, novel-miR-1222,
novel-miR-6721,  novel-miR-2026, novel-miR-6671,
novel-miR-642, novel-miR-6319, and novel-miR-42, etc.
These ceRNA networks included a set of mRNAs regu-
lating reproduction (Fig. 4a, b, Additional file 12). For
instance, Dazl mRNA and MSTRG.71049.8 shared a
common binding site of the miRNA novel-miR-1222.
We also identified Wti1, CREB3I2, Gata4, Wnt2, Nr5al,
Hsdl17, Igf2r, H2afz, Lin52, Trim71, Zarl, and Jazfl in
the ceRNA network. These miRNAs and mRNAs par-
ticipate in regulating the reproductive process, including
meiosis and spermatogenesis.

Discussion
The turtle genome showed a large proportion of non-
coding regions, indicating that this part of the genome
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carried an abundance of untapped information, which
needs to be explored. Increasing evidence has shown
that miRNA and IncRNA have emerged as regulators in
animal reproduction via the control of gene expression
[28]. However, their exact functions in the soft-shelled
turtle remain poorly understood. Despite limited studies
that have identified IncRNAs in the turtle [3], the miR-
NAs and IncRNAs in the database are still insufficient.
In the present study, to understand the molecular mech-
anism involved in the reproduction of P. sinensis, we
analysed the genome-wide expression of miRNAs,
IncRNAs, and mRNAs in the mature ovaries and testes
during the reproductive season. After filtering, we ob-
tained 10,796 miRNAs and 58,923 IncRNAs that were
not reported previously in the miRbase and IncRNA da-
tabases. The lengths of the miRNAs ranged from 18 to
25nt. In a previous study, Huang et al. [32] identified
only 10 miRNAs in P. sinensis based on EST and GSS
information using a bioinformatics approach. Zhang
et al. [3] identified 5994 IncRNAs by high-throughput
sequencing in juvenile turtle gonads. MiRNAs and
IncRNAs have been shown to have stage-specific expres-
sion in animals [16, 33]. The different developmental
stages and the methods utilised in different studies
might be responsible for the discrepancies found.

We obtained 633 DEmiRNAs, 11,319 DEmRNAs and
10,495 DEIncRNAs. The database included many target
genes for miRNAs and IncRNAs that might regulate
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turtle reproduction, such as Cypl9al, Gper, Esrl/2,
Sox30, Dazl, and Foxl2. A total of 8 miRNAs and 7
IncRNAs were verified using qRT-PCR. Among these
miRNAs, 7 miRNAs were upregulated in testis, while 1
miRNA was downregulated. For the IncRNAs, 4
IncRNAs were upregulated, while 3 IncRNAs were
downregulated. The qRT-PCR results were well matched
to the high-throughput sequencing data.

Mature miRNAs and IncRNAs are crucial for the regu-
lation of gene expression in different ways [34, 35]. GO
annotations for the targets were obtained using topGO
software. The most abundant differentially expressed
genes were involved in single organism process, followed
by cellular process and biological regulation, indicating
that abundant DEmiRNAs might be involved in the repro-
ductive process and reproduction. The GO analysis of
DEmiRNAs and DEIncRNAs showed that some terms
under the biological process and molecular function cat-
egories were related to sex-specific reproduction. In the
single organism process, the targets of DEmiRNAs and
DEIncRNAs included CypI9al, Ar, Esrrb, Catsper2, and
Pgr, etc., which were proven to be important for gonadal
development, and the results indicated that DEmiRNAs
and DEIncRNAs might be involved in reproductive
regulation.

The DEmiRNAs identified in the soft-shelled turtle be-
long to 439 families after mapping on the genome, in-
cluding let-7, miR-10, miR-130, miR-133, miR-138, miR-
145, miR-143, miR-202, miR-224, and miR-378. In the
majority of cases, the miRNAs and their targets were
correlated with animal reproduction [36—39]. MiR-202-
3p could regulate human Sertoli cell proliferation, apop-
tosis, and synthesis functions by targeting LRP6 and cyc-
lin D1, which belong to the Wnt/B-catenin signalling
pathway [40]. Sun et al. [41] reported that miR-378
could indirectly regulate oocyte maturation, possibly via
inhibiting oocyte-cumulus apoptosis in mice, and a simi-
lar function of miR-378 in porcine was observed [42].
SMADS and MSKI were miR-130b targets. In bovine cu-
mulus cells, miR-130b could alter lactate production and
cholesterol biosynthesis, and it could inhibit oocyte mat-
uration in vitro by reducing the first polar body extru-
sion, the proportion of oocytes reaching the metaphase
II stage, and mitochondrial activity [43]. MiRNAs are
not only involved in ovary development but also in-
volved in testis development and male reproduction.
MiRNA-20 and miRNA-106a promote the renewal of
spermatogonial stem cells via targeting Stat3 and Ccndl
[39]. In mice, miR-224 promotes spermatogonial stem
cell differentiation and self-renewal via targeting Dmrtl
[44]. Overexpression of miR-224 increased the expres-
sion of GFRal and PLZF through the downregulation of
Dmrtl. In the present study, miR-10 and miR-202 ex-
pression was significantly higher in the ovaries than the
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testes; however, miR-133, miR-143, and miR-145 were
significantly higher in testes than ovaries. Furthermore,
we identified abundant DEmiRNAs whose targets were
involved in reproductive regulation, and further func-
tional analysis could be carried out based on the
database.

LncRNAs are recognised as important functional regu-
latory factors in the regulation of eukaryotic gene ex-
pression in a variety of biological processes. The
function of IncRNAs occurs across a range of animal re-
productive processes, including sex determination, mei-
osis, spermatogenesis, and imprinting, via epigenetic
processes including DNA and histone methylation, chro-
matin looping, and nucleosome positioning [35, 45]. In
Drosophila, knocking out testis-specific IncRNAs re-
sulted in a partial or complete loss of male fertility [25].
LncRNA HI9 could regulate the IGF-1 signalling path-
way, which resulted in regulation of the proliferation
and apoptosis of male germline stem cells in bovines
[46]. Furthermore, the HI9 imprinting control region
could acquire parent-of-origin-dependent methylation
after fertilisation independent of the chromosomal inte-
gration site or the prerequisite methylation acquisition
in male germ cells [47]. LncRNA THOR contributed to
the mRNA stabilisation activities of /GF2BPI1 and was
isolated to spermatocytes during meiosis II, and knock-
out of THOR resulted in fertilisation defects in zebrafish
[48]. However, most IncRNAs evolved rapidly and are
less conserved, with more than 80% of IncRNA families
being of primate origin [49]. In the present study, we
identified 28,500 IncRNAs including 10,495 DEIncRNAs.
Prediction of targets showed that a large number of
DEIncRNAs might regulate gonadal development, and
further investigation should be undertaken to reveal
their functions in the turtle.

MicroRNAs are negative regulators of gene expression
via decreasing the stability of target RNAs or limiting
their translation. Recently, evidence has shown that
IncRNAs and mRNAs can bind a miRNA binding site
and that miRNA acts as a sponge [29, 50]. In the present
study, we constructed IncRNA-miRNA-mRNA net-
works for sex-specific expression based on high-
throughput sequencing data in the turtle. We charac-
terised DEmiRNAs and DEIncRNAs by the target
mRNA, including W1, CREB, Gata4, Wnt2, Nr5al,
Hsdl17, Igf2r, H2afz, Lin52, Trim71, Zarl, and Jazfl. The
target genes of miRNAs and IncRNAs play important
roles in the reproductive processes. WtI regulates Sertoli
and granulosa differentiation during gonad development
by binding the Sf-1 promoter [51]. The inhibition of
CREB could reduce oocyte meiotic resumption and cu-
mulus cell expansion [52]. Deshpande et al. [53] re-
ported that Wnt2 might stimulate germ cells in male
embryos to re-enter the cell cycle. Nr5a1/Sf-1 could bind
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the Cyp19al promoter, which is crucial for functional
maintenance of the ovary [54]. Zarl is the first identified
oocyte-specific maternal-effect gene that functions at the
oocyte-to-embryo transition [55]. Further research on
ceRNAs involved in reproductive regulation will be car-
ried out in the turtle. Considering knowledge of the
regulatory mechanism of gonadal development is scarce
in non-mammal animals, our results help to enrich the
understanding of the reproductive regulatory network in
non-mammalian vertebrates.

Conclusions

In the present study, we identified mRNAs, miRNAs, and
IncRNAs using high-throughout sequencing data from the
ovaries and testes of Chinese soft-shelled turtles and con-
structed the associated ceRNA networks. We identified
11,319 DEmRNAs, 633 DEmiRNAs, and 10,495 DEIncR-
NAs in the ovary and testis. Furthermore, we constructed
ceRNA networks, which included DEmRNAs, DEmiR-
NAs, and DEIncRNAs that regulated the reproduction of
the turtle. The present study provides an invaluable re-
source for further studies on the molecular regulation of
reproduction in turtles.

Methods

Sample collection and RNA isolation

All investigations in the present study were performed ac-
cording to the Animal Experimental Guidelines of the Ethical
Committee of the University of China. Nine adult female tur-
tles (body weight 600 + 45 g, mean + SD) and nine male tur-
tles (body weight 750 + 50 g) were obtained from Chenyuan
Aquaculture Co., Ltd. of Xinyang, China, which were aged
24 months and cultured in the same pond. Samples were col-
lected according to Experimental Animal Management Or-
dinance (Ministry of Science and Technology, 2004). To
minimize suffering of the turtle, each turtle was euthanized
with an overdose of 2ml anaesthetic (2-phenoxyethanol;
Sigma-Aldrich) by intraperitoneal administration and sacri-
ficed by cervical dislocation before their reproductive season.
The testes and ovaries were obtained after slaughtering and
immediately stored at — 80 °C. Total RNA was isolated from
each gonadal sample using TRIzol reagent (Invitrogen, USA).
RNA concentration and quality were determined using
Nanodrop, Qubit 2.0 and an Agilent 2100 bioanalyzer. The
higher-quality RNA (the value of RIN ranged from 7.3 to
7.7) was stored at — 80 °C for library construction. The male
and female turtles were divided into three groups, and the
RNA from the three turtles was pooled. Six miRNA and
IncRNA libraries from testes (# = 3) and ovaries (1 = 3) were
constructed.

Library preparation and sequencing
MiRNA sequencing libraries were constructed using 2.5
ng of RNA per gonadal sample of turtles. The library
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was constructed following the manufacturer’s instruc-
tions for the NEB Next Ultra Small RNA Sample Library
Prep Kit for Illumina (NEB, USA). Briefly, a 3" SR
adaptor was ligated by 3’ ligation enzyme mix, and the
SR RT primer was used to prevent adaptor dimer forma-
tion. After that, the 5° SR adaptor was ligated, and re-
verse transcription was performed to synthesise the first
strand. Then, target fragments were amplified by RT-
PCR using synthesised first-strand ¢cDNA as the tem-
plate, and the library was isolated and constructed by
polyacrylamide gel electrophoresis. The library was
assessed with an Agilent 2100 Bioanalyzer. Clustering of
the index-coded samples was performed on a cBot Clus-
ter Generation System using TruSeq PE Cluster Kit v4-
cBot-HS (Illumina, USA) according to the manufac-
turer’s instructions. After that, the prepared libraries
were sequenced on an Illumina HiSeq X Ten platform.

Sequencing libraries of mRNA and IncRNA were con-
structed using 1.5 pg of RNA per gonadal sample from
which rRNA was removed by the Ribo-Zero rRNA Re-
moval Kit (Epicentre, Madison, WI, USA). The libraries
for sequencing were constructed using the NEBNext"
Ultra™ Directional RNA Library Prep Kit (NEB, Ipswich,
MA, USA) for IlluminaR (NEB, USA) following the man-
ufacturer’s recommendations. Briefly, first-strand cDNA
and second-strand cDNA synthesis and the library frag-
ments was purified by AMPure XP Beads (Beckman
Coulter, Beverly, MA, USA). After that, the fragments
that were 150-200 base pairs (bp) in length were se-
lected. The strands containing U bases were removed by
USER Enzyme (NEB, USA). PCR was then performed,
and the library quality was evaluated on an Agilent
Bioanalyser 2100. TruSeq PE Cluster Kitv3-cBot-HS
(lumina) was used for clustering on the acBot Cluster
Generation System according to the manufacturer’s in-
structions. The library preparations were then sequenced
on an Illumina HiSeq X Ten platform, and paired-end
reads were generated.

Quality control

Quality control of the reads was performed using
FastQC (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/). The raw data were first processed by in-
house Perl scripts. Clean reads were obtained by discard-
ing reads containing adapter and poly-N and low-quality
reads. The Q20, Q30 and GC contents of the filtered
reads were calculated and used for further analysis.

Transcriptome assembly

The clean reads were mapped to the turtle genome v1.0
(PRJNA221645, NCBI) using HISAT2 [56] and Bowtie
software [57]. The mapped reads of each sample were
assembled using String Tie [58] according to the
reference-based approach [59]. For the identified
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miRNAs, the assembled transcripts were compared with
ncRNAs (rRNA, tRAN, snRNA, snoRNA, and other
ncRNAs) and repeats using Bowtie software [57].

Prediction of miRNA and IncRNA targets

The mapped reads were aligned to miRbase (http://
www.mirbase.org/) [60] using miRDeep2 [61]. The char-
acteristic hairpin structure of the miRNA precursors was
used to predict novel miRNA. miRDeep2 [61] and Mfold
software were used for predicting the structure of the
unannotated miRNAs and their precursors.

After mapping the genome, the transcripts were
screened for mRNA and IncRNAs. The transcripts with
more than 200 nucleotides or those that had more than
one exon were selected as IncRNA candidates. The can-
didate IncRNAs were further screened by CPC/CNCI/
Pfam/CPAT, which could distinguish the protein-coding
genes from the non-coding genes.

To annotate the functions of the IncRNAs, we pre-
dicted the target protein-coding genes of IncRNAs in cis
and trans. The protein-coding genes ranging from 100
kb upstream to 100 kb downstream of a IncRNA were
identified as cis-acting target genes. The genes that over-
lapped with the IncRNAs predicted by LncTar [62] were
annotated as trans-acting target genes.

Expression analysis

The expression levels of miRNAs in each sample were
calculated and normalised using transcripts per million.
The expression levels of protein-coding genes and
IncRNAs were calculated as fragments per kilo base of
exon per million fragments mapped and assessed using
Cuffdiff (v2.1.1) [63]. Differentially expressed genes
(DEGs) analysis of the miRNAs, IncRNAs, and mRNAs
was performed using the DEGseq package (1.10.1) [64].
A false discovery rate (FDR) <0.01 and an absolute value
of log2 (fold change, FC)>1 were determined for
DEmiRNAs, DEmRNAs and DEIncRNAs.

Target gene prediction between miRNA and IncRNA

The prediction of interactions between miRNA and
IncRNA was performed using MiRanda. Target genes of
DEmiRNAs were predicted using MiRanda [65] and
RNAhybrid [66].

Bioinformatics analysis

To predict the functions of the miRNAs and IncRNAs,
the target genes and differentially expressed genes were
annotated against the NCBI non-redundant protein
database (Nr), the Gene Ontology (GO) database, Kyoto
Encyclopedia of Genes and Genomes (KEGG), and clus-
ters of orthologous groups of proteins. GO terms with
KS <0.05 and pathways with corrected P < 0.05 were de-
fined as significantly enriched.
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Quantitative real-time PCR analysis of miRNA and IncRNA
In the present study, 8 miRNAs and 7 IncRNAs were
verified by using quantitative real-time PCR (qRT-PCR).
The primers for miRNA and IncRNA are shown in Add-
itional file 13. Total RNA of ovaries and testis was ex-
tracted by TRIzol reagent (Invitrogen, USA) strictly
followed the manufacturer’s instructions. Using total
RNA from the ovaries and testes of turtles as a template,
first-strand ¢cDNAs of miRNAs were obtained with a
Mir-X miRNA first strand synthesis kit (Clontech, USA).
Expression profiles of miRNAs were examined by SYBR
qRT-PCR (Clontech). All reactions were performed in a
CFX96 Touch™ instrument (Bio-Rad, USA).

All experiments were repeated at least three times.
The results of the qRT-PCR data are presented as the
mean * standard error of the mean value. Statistical ana-
lyses were performed using the SPSS 16.0 software pro-
gram (SPSS Inc., Chicago, IL, USA). Differences were
considered statistically significant at P < 0.05.

CeRNA network construction

To construct the IncRNA-miRNA-mRNA network, we
predicted IncRNAs that might act as endogenous
sponges based on IncRNAs that were up- or down-
regulated by FC>2.0 and P<0.05, which significantly
correlated with the miRNA predicted target genes.
LncRNAs possessed miRNA response elements as pre-
dicted by RNA22 (http://cm.jefferson.edu/rna22/Pre-
computed) and PITA (http://genie.weizmann.ac.il/pubs/
mir07/mir07_data.html). Furthermore, we calculated the
Pearson correlation coefficient between two genes, and
correlations (> 0.8) were selected to construct the net-
works. The networks were constructed by Cytoscape
software [67].
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