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Strasbourg, France, 3 MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom

Abstract

Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known
about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we
analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the
temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ
hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation
gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with
transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more
peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF) signalling is
repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here
that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear
positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such
changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition,
FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR)
signalling in Raldh22/2 embryos does not rescue differentiation gene transcription, but does elicit both chromatin
decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin
organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and,
for the first time, identify FGF as an extrinsic signal that can direct chromatin compaction and nuclear organisation of gene
loci.
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Introduction

Differentiation is directed by extrinsic signals that regulate

expression of transcription factors, which determine cell fates. A

further critical level of regulation is provided by so-called higher

order chromatin organisation, which includes changes in local

chromatin compaction and nuclear position of gene loci. Such

changes have been documented in in vitro differentiation assays,

but this level of organisation has not been analysed as extensively

during embryonic development and the role of signalling pathways

in modulating chromatin and nuclear organisation in the

developing embryo remains unexplored.

During vertebrate embryonic development, induction of the

future brain is followed by the progressive generation of neural

tissue as the body axis elongates and this provides a unique

opportunity to investigate steps leading to the onset of neural

differentiation. New neural tissue arises from the stem zone/

caudal lateral epiblast (adjacent to the primitive streak), which

includes resident axial stem cells [1,2] (Figure 1A). As cells leave

this regressing region they either ingress to form paraxial

mesoderm or remain in the epiblast and commence neural

differentiation. Stem zone cells are highly proliferative and are

maintained by FGF and Wnt signalling [3,4]. This is attenuated by

retinoid signals synthesised in the forming somites [3,5,6]

(Figure 1A). Retinoic acid (RA) promotes neural differentiation

in at least two steps; first repressing FGF/Wnt signalling and then

promoting expression, in the forming neural tube, of key genes

characteristic of neural progenitors, such as Sox1, Sox3 and Pax6

[3,7–9]. Importantly, FGF signalling also counteracts retinoid

signalling, repressing expression of Raldh2 which encodes retinal-
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dehyde dehydrogenase 2 - an RA synthesising enzyme - in the

presomitic mesoderm and RA receptor beta (RARb) in the forming

neuroepithelium as well as promoting expression of Cyp26a1,

encoding a RA catabolising enzyme reviewed in [1] (summarised

in Figure 1A).

The underlying molecular mechanisms through which this

opposing signalling switch controls differentiation onset in the

embryonic body axis are not well understood, but might involve

changes in gene expression determined by altered chromatin

structure around target gene loci. One way in which chromatin

compaction is locally regulated is by the action of polycomb

repression complexes (PRC); and there is some evidence impli-

cating FGF signalling in the regulation of polycomb complex

component genes. Polycomb group (PcG) proteins are key

regulators of cell growth and differentiation genes [10–12] and

are found in two broad classes of complex; PRC2, which mediates

the histone modification H3K27me3 associated with transcrip-

tional repression through the activity of the Ezh1/2 histone

methyltransferase and PRC1, which mediates local chromatin

compaction [13]. In the zebrafish, the epiboly/tailbud phenotype

of Ph2a morphants (homologue of the PRC1 component

polyhomeotic) is similar to that of Fgf8 morphants, and Ph2a acts

downstream of FGF signalling, which is necessary, although not

sufficient for Ph2a expression [14]. Mice mutant for Fgf8 or for

PcG genes (Eed, Ezh2 or Ring1b) also share a common gastrulation

failure phenotype, with some reported proliferation defects [15–

19], suggesting conservation of a relationship between FGF

signalling and polycomb function in the early embryo.

Retinoic acid can signal directly to chromatin via liganded

retinoic acid receptor – retinoid X receptor (RAR-RXRs)

heterodimers and their sequence specific binding to retinoic acid

response elements (RAREs) and this is known to attenuate binding

of PRC2 components and to decrease H3K27me3 enrichment at

these sites [20–22]. These observations suggest that in some

contexts FGF may promote, while retinoid signalling represses, the

action of polycomb complexes. Furthermore, as activation of

polycomb target loci, such as the Hox gene clusters, is

accompanied by visible unfolding of the compact state [23,24],

such signals might alter chromatin compaction at differentiation

gene loci. Importantly, changes in chromatin compaction and

local organisation are not simply a consequence of transcription;

experimental translocation of a 39 Hoxb1 transgene to the 59 end of

the Hoxd cluster elicited such chromatin changes in a cellular

context in which Hoxb1 is not transcribed [25]. This phenomenon

shows that alteration of chromatin organisation can prefigure gene

transcription.

A further important manifestation of higher order chromatin

organisation that frequently correlates with transcription is the

position of a locus with respect to the nuclear periphery, which can

be a repressive environment. Although recent studies have shown

that artificial tethering to the nuclear periphery need not

necessarily lead to gene silencing [26–28], many loci do exhibit

a change in distance to the nuclear edge, and association with the

nuclear lamina [29] which correlates with their potential for

transcription. As extrinsic signals orchestrate development by

directing gene transcription, it is likely that this involves regulation

of such higher order organisation, however, it is not known

whether particular signalling pathways direct such mechanisms

nor whether they can elicit changes in chromatin organisation

independently of transcriptional regulation.

To assess changes in higher-order chromatin organisation

during the progressive generation of neural tissue in the elongating

body axis of the mouse embryo, we used fluorescence in situ

hybridisation (FISH) combined with super-resolution structured

illumination microscopy (SIM). We analysed changes in higher-

order chromatin organisation at the loci of exemplar neural

progenitor genes Pax6 and Irx3 as differentiation takes place and

compared this with the Fgf8 locus, which is transcriptionally

downregulated as cells leave the stem zone (Figures 1B–B- 1C–C-

). As retinoid signalling is required for transcription of differen-

tiation genes (including that of Pax6) we analysed chromatin

organisation around loci in the Raldh22/2 mutant embryo, which

is unable to synthesize RA in the elongating embryonic body axis

[30]. In retinoid deficient embryos caudal FGF signalling expands

rostrally from the stem zone [3,6] and by blocking FGFR

signalling in Raldh2 mutants we dissected the consequences of

FGF loss in a context in which many differentiation genes fail to be

transcribed. Our data demonstrate, for the first time, that FGF

signalling acts upstream of mechanisms that direct higher-order

chromatin organisation around differentiation gene loci and

further reveal that such mechanisms can be uncoupled from the

machinery that mediates transcription of such genes.

Results

Chromatin decompacts around the Pax6 locus coincident
with its transcription

To determine if the onset of Pax6 transcription in the E8.5

mouse embryo involves a change in chromatin compaction,

fosmid probes separated by 65 kb and specific for sequences

flanking Pax6 (Table S1) were used for 3D FISH on wildtype CD1

mouse embryos (Figure 2A). Images were captured using SIM and

inter-probe distances, (d) in mm, were measured in transverse

sections of the stem zone and preneural tube (which lack Pax6

transcription) and in the neural tube, where Pax6 is now

transcribed (excluding Pax6 negative cells in dorsal and ventral

most positions) (Figures 1B–B9, 2A, B). Fosmids were also used to

measure changes around a control locus, alpha-globin (Hba-a1),

which is not transcribed in the embryo at this stage [31]

(Figures 2C,D). Chromatin compaction was assessed by a

comparison of d2 values for each data set, as this is the value

that scales linearly with genomic separation [32] and that has been

Author Summary

Changes in the position of genes within the nucleus and in
their local organisation frequently correlate with whether
or not genes are turned on. However, little is known about
how such nuclear organisation is controlled and whether
this can be separated from the mechanisms that promote
transcription. We show here that central nuclear position
and chromatin de-compaction correlate with onset of
expression at key neural differentiation gene loci in the
mouse embryo. Conversely, the locus of a gene that is
down-regulated as neural differentiation commences
exhibits a shift towards the nuclear periphery as this takes
place. Importantly, we show that signalling through the
fibroblast growth factor (FGF) pathway regulates changes
at this level of nuclear organisation. FGF represses
differentiation gene transcription and keeps differentiation
gene loci compact and at the nuclear periphery. By
blocking FGF signalling in a retinoid deficient embryo in
which differentiation genes are not expressed, we further
show that control of nuclear organisation by FGF is not
just a consequence of gene transcription. These findings
are the first to demonstrate that such higher order nuclear
organisation is regulated in the developing embryo, that
this takes place downstream of FGF signaling, and can be
uncoupled from the machinery of gene transcription.

FGF Signalling Regulates Chromatin Organisation
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used previously to identify differences in chromatin compaction

between cells at different stages of differentiation [24] and between

wildtype and mutant cells [13] (Figure 2E) (see Methods for data

set collection). There was no statistical difference between d2 values

for stem zone and preneural tube (p.0.05), but a clear increase in

inter-probe distances across Pax6 in neural tube in comparison

with measurements in either stem zone or preneural tube nuclei

(p,0.05, Figures 2B,E, Tables S2, S3). Additionally, in recently

formed somites, which lie adjacent to the neural tube and which

do not and will not express Pax6, chromatin across the Pax6 locus

is as compact as it is in the stem zone and preneural tube, and

significantly more compact than in neural tube (Figures 2B, E). In

contrast, inter-probe distances around a control gene locus (alpha-

globin, Hba-a1) were not significantly different between stem zone,

neural tube and somite data sets (p.0.05, Figures 2D, F). This

controls for any overall change in chromatin condensation at the

Figure 1. Signals regulating differentiation and expression patterns of Pax6 and Fgf8 along the elongating neural axis. (A) Summary
of cell populations, signal localisation and interactions at the caudal end of the E8-8.5 mouse embryo, RA retinoic acid, RAR, retinoic acid receptor,
FGF, fibroblast growth factor, PS, primitive streak, S, somite, Raldh2, Retinaldehyde dehydrogenase 2; (B) Pax6 is expressed in the neural tube (B9) in
transverse section (TS), but not in (B0) preneural tube or (B-) stem zone; (C) Fgf8 is expressed in the stem zone, but not in the neural tube (C9) in TS or
in (C0) preneural tube, stem zone expression in TS (C-). Grey dashed lines in B9, B0, B-, C9,C0, C- outline cell populations in which nuclei were assessed
in FISH experiments. Scale bar = 50 microns, asterisk indicates position of the node in all embryo images.
doi:10.1371/journal.pgen.1003614.g001
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Figure 2. Pax6 locus decompaction coincides with Pax6 transcription. (A) Fosmids (green and red bars) used to analyse chromatin around the
Pax6 locus mapped to the mm9 assembly of the mouse genome; (B) Examples of FISH images in DAPI-stained nuclei for the Pax6-flanking probe pairs
in stem zone, preneural tube, neural tube, and somite. Insets are enlargements of white boxed areas in each image; (C) Fosmids used to analyse

FGF Signalling Regulates Chromatin Organisation
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onset of differentiation. These data therefore indicate that

chromatin is compact around the Pax6 locus in cells that do not

and will not express this gene (somites) and those that will later

come to express it (stem zone and preneural tube), and that it

specifically decompacts coincident with onset of Pax6 transcription

in the neural tube. Analysis of genome-wide histone modification

data sets in mouse ES cells and derived neural progenitors [11]

further reveals that the Pax6 locus is subject to H3K27me3

enrichment in ES cells and is relieved of this mark upon neural

differentiation, suggesting that this locus is a target of polycomb

mediated repression (Figure S1).

We further assessed chromatin organisation across the locus

of the gene Fgf8, which is expressed in the stem zone and

downregulated as neural differentiation commences. Fgf8 is

marked by H3K27me3 and H3K4me3 in mES cells and upon

neural differentiation H3K4me3 is lost and H3K27me3

retained [11] (Figure S1). Fgf8 is a smaller gene than Pax6

and FISH signals from fosmids flanking this locus (100 kb

separation) were barely resolved in any tissue assessed (Figure

S2). These findings suggest that polycomb group proteins

regulate Fgf8 expression, but in a manner that does not involve

visibly detectable chromatin compaction. Neighbouring genes

Npm3 and Mgea5 show similar patterns of gene expression as

Fgf8 (Figure S3), but not of histone modifications (Figure S1).

This suggests that PRC-mediated chromatin compaction

around the Fgf8 locus may be too subtle, or masked by the

chromatin environments of neighbouring genes, to be detected

by FISH.

Nuclear position correlates with transcription of Pax6 and
Fgf8

To investigate the potential relationship between the position

of a gene within the nucleus and its transcriptional activity along

the embryonic body axis, we analysed the proximity of FISH

signals for Pax6 and or Fgf8 (Figure 3A) to the nuclear periphery

as defined by DAPI staining. The Pax6 locus is closer to the

nuclear periphery in the stem zone than in the neural tube

(p,0.05; Figures 3B,B9), whereas the converse is the case for

Fgf8 (Figures 3C,C9). The relative nuclear position of the control

Hba-a1 locus was the same in the stem zone and neural tube

(Figures 3D, D9). These data show that nuclear position

correlates well with transcription of Pax6 and Fgf8 in the

normal embryo.

Retinoid signalling controls Pax6 chromatin compaction
and nuclear localisation

Pax6 is not expressed in the neural tube of mouse embryos

lacking the RA synthesising enzyme retinaldehyde dehydroge-

nase 2 (Raldh22/2) [9,30] (Figures 4A, B). To determine

whether this is also accompanied by failure to undergo changes

in higher order chromatin organisation, FISH with probe pairs

across the Pax6 locus was carried out on E8.5 Raldh22/2

embryos. There was no difference in chromatin compaction

(d2) between stem zone and neural tube (p.0.05; Figure 5C)

indicating that chromatin decompaction, normally observed

across the Pax6 locus in the wildtype neural tube (Figures 2A,

B), does not take place in this retinoid deficient condition.

Indeed, the distribution of inter-probe distances in Raldh22/2

neural tube nuclei was similar to that found in stem zone of

wildtype mice (p.0.05; Figure 4C). The Pax6 locus also

remained compact in somites of wildtype and mutant animals

(Figures 4 C, D, E).

The absence of retinoid signalling also resulted in a failure of

Pax6 to reposition away from the nuclear periphery in the

neural tube compared to stem zone (Figure 4F). Moreover,

Pax6 is more peripherally located in the Raldh22/2 neural

tube than in the wildtype neural tube (p,0.05; Figures 4D, E

and F). These data show that, for the Pax6 locus, neither

chromatin decompaction nor a shift away from the nuclear

periphery take place in the retinoid deficient neural tube in

which Pax6 is not transcribed.

To determine whether exposure to retinoic acid leads to

decompaction and a more central nuclear position of the Pax6

locus we treated explanted caudal regions with retinoic acid or

vehicle DMSO control for 10 h (Figure 5A). Explants were

then processed either for in situ hybridisation to monitor Pax6

transcription or for FISH to assess local chromatin organisa-

tion (Figure 5B). This confirmed that retinoic acid induces

Pax6 expression (Figures 5B, B9) and demonstrated that this

correlates with the decompaction and more central nuclear

location of this locus (Figures 5C, D; p,0.05 and p,0.05,

respectively).

FGF signalling regulates chromatin compaction and
nuclear position of the Pax6 locus

FGF signalling ectopically persists in the preneural tube of

retinoid deficient quail embryos [3] and in the neural tube of

Raldh22/2 mouse embryos [5,6]. As FGF signalling represses

onset of expression of neural differentiation genes, including Pax6,

in the elongating body axis [3,33], it is possible that failure to

express Pax6 in the Raldh2 mutant is due to an excess of FGF

signalling.

To determine whether FGF signalling represses differentiation

onset via a mechanism that involves regulation of higher order

chromatin organisation, FGF signalling was blocked with the

FGFR inhibitor PD173074 [34]. Explanted whole E8 wildtype

embryos were cultured in vitro exposed to either DMSO vehicle

control or PD173074 for 7 h and then processed for FISH, or

analysed for expression of the FGFR pathway target Sprouty2

(Spry2) [35] and for Pax6. The repression of Spry2 (DMSO n = 0/5;

PD173074 n = 5/5, Figure S4A) confirmed the effective blocking

of FGFR signalling (and see [36]). Inhibition of FGFR signalling in

the elongating neural axis also leads to precocious onset of Pax6

expression, which is then detected more caudally in the preneural

tube in the chick embryo [33]. Consistent with this, Pax6

transcripts were detected in the preneural tube of PD173074

treated mouse embryos (DMSO n = 0/4; PD173074 n = 3/4,

Figures 6A, B).

Analysis of chromatin compaction across the Pax6 locus by

FISH (Figure 6C) revealed that, unlike the situation in

untreated (Figure 2) and control (DMSO treated) embryos

where Pax6 chromatin was more compact (smaller inter-probe

distances) in stem zone and somites than in neural tube, this

difference was abolished in PD173074-treated embryos. In

these conditions the chromatin across Pax6 appears to

decompact in stem zone and the somites to the level normally

seen in the neural tube (p,0.05; Figures 6C, D, E). This

chromatin around the control Hba-a1 locus mapped to mm9; (D) Examples of FISH images in DAPI-stained nuclei for the Hba-a1-flanking probe pairs
in stem zone, neural tube, and somite; (E and F) Box-plots of inter-probe distances (mm2) for Pax6 (E) and control Hba-a1 (F) flanking probes in each
tissue assessed. Scale bar = 2 microns in examples of FISH images and 1 micron in insets, here and in all subsequent figures.
doi:10.1371/journal.pgen.1003614.g002
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Figure 3. Pax6 and Fgf8 loci exhibit altered nuclear radial position coincident with transcriptional status. (A) Fosmids flanking the Fgf8
locus mapped to the mm9 assembly of the mouse genome; (B) Distribution of fractional radius measurements of the Pax6 locus (Elp4 fosmid probe)
with respect to the nuclear edge in stem zone (SZ) (black solid line) and neural tube (NT) (red solid line) nuclei. Data are from .50 nuclei per region in
each of 3 different embryos; (B9) examples of hybridised nuclei in stem zone and neural tube; (C) Distribution of fractional radius measurements from
the Fgf8 locus (Kcnip2 fosmid probe) with respect to the nuclear edge in stem zone and neural tube, showing shift towards nuclear periphery in NT;
(C9) examples of hybridised nuclei in stem zone and neural tube; (D) Distribution for fractional radius measurements of control locus Hba-a1 with
respect to the nuclear edge in stem zone and neural tube, showing no significant change; (D9) examples of hybridised nuclei in stem zone and neural
tube.
doi:10.1371/journal.pgen.1003614.g003

FGF Signalling Regulates Chromatin Organisation
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indicates that FGFR signalling normally promotes chromatin

compaction around Pax6 in caudal regions and somites (see

Discussion). Blocking FGFR signalling also promoted a shift in

Pax6 localisation towards the nuclear centre in stem zone and

somitic nuclei in comparison with DMSO control (p,0.05

and p,0.05 respectively; Figures 5D, E, and F and S7A). No

significant change in compaction or nuclear position in

control and PD173074 treated embryos was seen at the

control Hba-a1 locus, indicating that changes in chromatin

organisation around the Pax6 locus do not reflect a general

consequence of FGFR inhibition (Figures S4B, C). Together

these data indicate that FGF signalling acts upstream of

mechanisms that regulate chromatin compaction and nuclear

position at Pax6.

FGF signalling regulates chromatin compaction and
nuclear position at the locus of a further neural
progenitor gene, Irx3

To extend this analysis we assessed chromatin organisation

around the locus of an additional neural progenitor marker gene,

Irx3. Like Pax6, onset of Irx3 transcription takes place in the neural

Figure 4. Retinoid signalling is required for decompaction around Pax6. (A) Pax6 is transcribed in wildtype (WT) (B), but not in Raldh2
mutant neural tube (arrows indicate the last formed somite); (C) Box-plots of inter-probe FISH probe distances, in WT and Raldh22/2 embryos
showing that in contrast to WT, the Pax6 locus does not decompact in Raldh2 mutant neural tube (NT) and distances remain similar to WT stem zone
(SZ) and to somites (S); examples of hybridised nuclei in WT (D) stem zone, neural tube and somites, and in Raldh2 mutant tissues (E) stem zone,
neural tube and somites. (F) Graph of data distribution for fractional radius measurements in WT and Raldh2 mutant tissues, showing that the Pax6
locus fails to shift towards the nuclear centre in the neural tube in retinoid deficient conditions.
doi:10.1371/journal.pgen.1003614.g004

FGF Signalling Regulates Chromatin Organisation
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Figure 5. Exogenous retinoic acid induces Pax6 expression, decompaction and centralised location of Pax6 locus in stem zone
explants. (A) Experimental design, E8.5 embryo bisected along the caudal midline to give an explant pair (white dashed outline), one explant
exposed to retinoic acid (RA), the other only to vehicle control (DMSO), followed by analysis for mRNA or chromatin organisation; scale
bar = 100 microns (B) Explant pair treated with DMSO or RA analysed for Pax6 expression (caudal limit of expression indicated by black arrows),
dotted lines indicate regions examined by FISH for Pax6 inter-probe distance; (C) Inter-probe distances across the Pax6 locus in nuclei taken from
sections in the middle third of explants (see Materials and Methods), increased significantly on RA treatment; (D) DAPI stained nuclei and fosmids
across the Pax6 locus from explants following exposure to DMSO or RA; (E) Fractional radius measurements (see Materials and Methods) show shift

FGF Signalling Regulates Chromatin Organisation
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tube of the elongating body and is initially broadly expressed

across the dorso-ventral axis [37]. Blocking FGFR signalling led to

a caudal expansion of the Irx3 expression domain (n = 0/5 DMSO

treated and n = 4/6 PD173074 treated embryos) (Figures 7A, B).

Also like Pax6, the Irx3 locus is a PRC target in ES cells [11]

(Figure S1). Using fosmids flanking Irx3 (Figure 7C) FISH analysis

confirmed that this region of chromatin decompacts and relocates

towards the nuclear centre in the neural tube coincident with its

transcription (Figures 7D, E). Furthermore, blocking FGFR

signalling led to decompaction and a more central nuclear

position of the Irx3 locus in stem zone nuclei and also somites

(Figures 7D, E, S7B). These data demonstrate that FGF signalling

consistently acts upstream of chromatin re-organisation at

differentiation gene loci.

towards nuclear centre following exposure to RA; (F) DAPI stained nuclei and fosmids across the Pax6 locus from explants following exposure to
DMSO or RA, showing distance from nuclear edge.
doi:10.1371/journal.pgen.1003614.g005

Figure 6. FGF signalling regulates chromatin compaction around Pax6. (A) Wildtype (WT) embryos exposed to DMSO or (B) FGFR inhibitor
(FGFRI) PD173074, showing that blocking FGF elicits Pax6 expression in the preneural tube (arrow = last formed somite); (C) Box-plot of inter-probe
distances (mm2) for Pax6 flanking probes in each tissue assessed in DMSO and PD173074 treated embryos, showing that FGFR signalling is required to
maintain chromatin compaction around the Pax6 locus in the SZ; examples of hybridised nuclei in DMSO (D) stem zone, neural tube and somites, and
PD173074 treated tissues (E) stem zone, neural tube and somites; (F) Graph of data distribution for fractional radius measurements in DMSO and
PD173074 treated tissues, showing that the Pax6 locus now shifts towards the nuclear centre in stem zone as well as in the nucleus of neural tube
cells after FGFRI treatment.
doi:10.1371/journal.pgen.1003614.g006
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Figure 7. FGF signalling regulates chromatin compaction and nuclear position at the locus of a further neural progenitor gene, Irx3.
(A) Irx3 is transcribed in the neural tube of wildtype DMSO treated embryos and (B) its expression extends caudally following exposure to PD173074
for 7 h; (C) Fosmids flanking the Irx3 locus mapped to mm9; Examples of FISH images in DAPI-stained nuclei for the Irx3 -flanking probe pairs in stem
zone, neural tube, and somite following exposure to (D) DMSO or (E) FGFR inhibitor PD173074; (F) Box-plot of inter-probe distances (mm2) for Irx3
flanking probes in each tissue assessed in DMSO and PD173074 treated embryos, showing that FGFR signalling is required to maintain chromatin
compaction around the Irx3 locus in the stem zone; (G) Graph of data distribution for fractional radius measurements in DMSO and PD173074 treated
tissues, showing that the Irx3 locus now shifts towards the nuclear centre in stem zone as well as in the nucleus of neural tube cells after FGFRI
treatment.
doi:10.1371/journal.pgen.1003614.g007
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Inhibition of FGF signalling in Raldh2 mutants rescues
higher order chromatin organisation, but not
transcription, at the Pax6 locus

To determine whether excess of FGF signalling is responsible

for the lack of Pax6 expression in the absence of retinoid signalling,

Raldh2 mutant embryos, and their wild type littermates produced

from heterozygous Raldh2+/2 crosses, were cultured with

PD173074 or DMSO. Strikingly, blocking FGFR signalling did

not rescue Pax6 expression in the neural tube of Raldh22/2

embryos (Pax6 mRNA was detected in neural tube of 0/4 mutant

embryos and 0/4 PD173074 treated mutant embryos; Figures 8A,

B). Attenuation of FGFR signalling in this condition is therefore

not sufficient for onset of Pax6 expression and is consistent with a

further requirement for retinoid signalling to promote neural

differentiation [3].

This finding does, however, raise the possibility, that blocking

FGFR signalling in retinoid deficient conditions still promotes

initial steps in the differentiation process upstream of Pax6

transcription and this perhaps includes chromatin re-organisation.

Indeed, FISH revealed that the Pax6 region decompacts in the

stem zone and in the neural tube of PD173074 treated Raldh22/

2 embryos compared to the control DMSO-treated mutant

embryos (p,0.05 for both comparisons; Figures 8C,D, E).

Blocking FGFR signalling in wildtype or in Raldh2 mutant

embryos also decompacts chromatin in somites, despite the

absence of Pax6 expression in this tissue (p,0.05 for both

comparisons; Figures 8C,D, E) (see below). Similarly, blocking

FGFR signalling in this context also induced a shift towards the

nuclear centre of the Pax6 locus in both stem zone and neural

tube; and this relative position is similar to that seen in the neural

tube of wildtype or DMSO-treated embryos (p.0.05, Figure 8F).

In this context, FGFR signalling therefore acts upstream of

mechanisms that direct both local chromatin compaction and

nuclear position and that can be uncoupled from the activity of

retinoid mediated transcription factor complexes that are required

to promote expression of neural differentiation genes such as Pax6.

Loss of Fgf8 peripheral nuclear localisation in retinoid
deficient neural tube and its rescue by inhibition of FGFR
signalling

Although we could not use FISH to measure chromatin

compaction at the Fgf8 locus, this approach can be used to assess

nuclear position. Consistent with rostral expansion of Fgf8

transcription in such mutants [6] (Figures 9A, A0), the Fgf8 locus

fails to locate towards the nuclear periphery in the Raldh2 2/2

neural tube, (p,0.05 in comparison with wildtype, Figures 9B,

S5). Here, nuclear position therefore correlates with changing Fgf8

expression and these findings indicate that retinoid signalling is

upstream of mechanism(s) that directs nuclear position of the Fgf8

locus.

It is further possible that the location of the Fgf8 locus is

influenced by FGF signalling itself, as transcription of Fgf genes

can be maintained by positive auto-regulatory feedback loops e.g.

[38,39]. To address this possibility we blocked FGFR signalling in

wildtype and Raldh22/2 mutants (Figures 9A0, A-, B9, B0). In

both conditions this led to a more peripheral localisation of the

Fgf8 locus in the stem zone (where this gene is expressed) in

comparison with wildtype and Raldh22/2 DMSO controls.

Strikingly, in the Raldh2 2/2 mutant neural tube blocking FGFR

signalling also rescued the failure to shift to the nuclear periphery

observed in untreated mutants (Figures 9B–B0, S5). Fgf8 transcripts

are still detected in PD173074 exposed embryos (Figures 9A0, A-9)

and this may reflect the known stability of Fgf8 mRNA [40],

(although some intronic Fgf8 transcripts were detected in the stem

zone of PD173074 treated embryos by whole mount in situ

hybridisation (Figure S6), indicating that not all active Fgf8

transcription is lost). Overall, these findings demonstrate that

FGFR signalling regulates nuclear position of the Fgf8 locus and

that it is responsible for the persistent central location of this gene

in the retinoid deficient neural tube.

Discussion

This study reveals changes in higher-order chromatin

organisation during neural differentiation in the mouse

embryo and demonstrates, for the first time, that this level of

organisation is regulated by key signalling pathways that direct

differentiation (summarised in Figures 10A, B). We identify

FGF signalling in the caudal region of the embryo as a factor

acting upstream of mechanisms promoting chromatin com-

paction and peripheral nuclear position at neural differentia-

tion gene loci, and further demonstrate that these large-scale

changes can be uncoupled from transcription. We additionally

show that FGF signalling promotes a central nuclear position

for the Fgf8 locus. These data demonstrate that FGF can

constrain differentiation via multiple mechanisms that control

higher-order chromatin organisation.

Chromatin compaction changes during neural
differentiation

We found that chromatin decompaction around Pax6 and Irx3

correlate with their transcriptional activation in the newly

generated neural axis. The decompaction observed at these loci

is reminiscent of that seen upon activation of Hox loci during

embryonic development [23,24], where chromatin compaction of

the silent loci has been shown to be mediated by the PRC1

polycomb complex [13]. Decompaction around Pax6 and Irx3 in

the neural tube nuclei corresponds to the first transcription of these

genes during development and is consistent with polycomb

regulation as indicated by the presence of H3K27me3 [11] and

also the PRC1 protein Ring1b at the Pax6 locus in ES cells [41].

H3K27me3 is also associated with the Fgf8 locus in ES cells [11].

As we detect no increase in chromatin compaction when Fgf8 is

transcriptionally downregulated, it is possible that in the embryo

this does not involve polycomb mediated repression. However,

Fgf8, but not neighbouring genes (NPM3 and Mgea5), has

associated H3K27me3 in ES cells (Figure S2) and we cannot

exclude that compaction local only to Fgf8 is not detected by our

FISH assay.

Figure 8. Inhibition of FGFR signalling in Raldh2 mutants rescues higher order chromatin organisation around the Pax6 locus, but
not Pax6 transcription. (A) Pax6 transcripts are lacking in the neural tube of Raldh2 mutants treated with DMSO or (B) with FGFR inhibitor
PD173074; (C) Box-plot of inter-probe distances (mm2) for Pax6 flanking probes in each tissue assessed in Raldh2 mutant embryos or Raldh2 mutants
treated with PD173074, showing blocking FGFR signalling decompacts the Pax6 locus in both stem zone, neural tube and somites; and examples of
hybridised nuclei in Raldh2 mutant embryos, D) stem zone, neural tube and somites, or treated with PD173074, (E) stem zone, neural tube and
somites. (F) Graph of data distribution for fractional radius measurements in Raldh2 2/2 and Raldh22/2 + PD173074 tissues, showing that the Pax6
locus now shifts towards the nuclear centre in stem zone as well as in the neural tube when FGFR signalling is blocked.
doi:10.1371/journal.pgen.1003614.g008
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Figure 9. Ectopic Fgf8 expression in Raldh2 mutants correlates with a more central nuclear position, which is dependent on FGF
signalling. Fgf8 expression patterns in (A) wildtype, (A9) Raldh2 2/2, (A0) wildtype treated with FGFR inhibitor, PD173074, (A-) Raldh22/2 treated
with PD173074, asterisk indicates node, note Fgf8 transcripts extend further rostral in Raldh2 2/2 embryos; Graphs of data distribution for fractional
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We found that retinoid signalling is sufficient and necessary for

chromatin decompaction around the Pax6 locus. Pax6 is not a

direct target of the RAR/RXR transcriptional complex, but has

an important cross-regulatory relationship with the proneural gene

Ngn2 which is a direct target [8,42–44]. However, RA signalling

has been linked directly to the loss of PRC2 binding and

H3K27me3 due to its promotion of MSK1/2 mediated phos-

phorylation of H3S28 in an embryonic carcinoma cell assay [45].

This modification is adjacent to H3K27 and correlates with the

loss of PcG binding and loss of repression at a subset of PRC target

genes. Nevertheless, RA is just one of several extrinsic signals that

can promote MSK1/2 activity in vitro and mice null for both

MSK1 and 2 are viable and fertile [46], suggesting that regulation

of MSK1/2 is not a key endogenous mechanism for removal of

polycomb-mediated repression in development. Instead, our data

indicate that the requirement for retinoid signalling in the embryo

is for removal of FGF signalling, which is in turn responsible for

compaction around Pax6 and Irx3.

Altered nuclear positioning during neural differentiation
As well as undergoing chromatin decompaction, Pax6 and Irx3

also relocates to a more central position in the nucleus in the

neural tube. For Pax6, this does not occur in the absence of

retinoid signalling. Fgf8 shows the converse pattern of nuclear

movements, but in the apparent absence of chromatin compaction

changes, suggesting that nuclear position and local chromatin

organisation are regulated by distinct molecular mechanisms. The

relocation of Fgf8 toward the edge of the nucleus in the neural tube

is blocked in Raldh2 mutants which correlates with its ectopic

transcription [6]. Fgf8 has upstream RAREs indicating that it may

be directly repressed by RA signalling [47,48] and our finding here

suggests that this may be linked to nuclear positioning mecha-

nisms.

Importantly, although nuclear position of the Fgf8 locus

correlated well with transcription of this gene, we found no

cellular context (including wildtype, FGFR or retinoid signalling

deficient conditions) in which chromatin decompaction (observed

radius measurements from the Fgf8 locus in (B) WT vs Raldh2 2/2 ; (B9) WT DMSO vs FGFRI/PD173074 treated; and (B0) Raldh2 2/2 vs Raldh2 2/2 +
FGFRI/PD173074 treated embryos (for images for Fgf8 fosmids in each condition and tissue, see Figure S5).
doi:10.1371/journal.pgen.1003614.g009

Figure 10. Changes in chromatin compaction and nuclear position of Pax6 and Fgf8 loci during neural differentiation and following
manipulation of retinoid and/or FGF signalling. (A) Schematic summarising changes in local chromatin organisation of Pax6, Irx3 and Fgf8 loci
as neural differentiation commences in the elongating body axis of wildtype and FGFR signalling deficient (+PD173074) and for Pax6 and Fgf8 in
retinoid deficient (Raldh22/2) mouse embryos and when both these signalling pathways are attenuated. These data indicate that FGF signalling
promotes chromatin compaction around Pax6 and Irx3 loci and regulates nuclear position of Pax6, Irx3 and Fgf8 gene loci during neural
differentiation. Green and red dots represent flanking fosmid pairs and blue circle the nuclear edge, grey cross indicates likely loss of active Fgf8. (B)
Summary of chronological steps towards neural differentiation deduced in this study, from the high FGF signalling context in the stem zone to the
onset of neural gene expression in the high retinoid signalling environment of the neural tube.
doi:10.1371/journal.pgen.1003614.g010
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around Pax6 and Irx3) took place without a concomitant shift

towards the nuclear centre. This suggests that de-compaction may

be contingent upon a more central nuclear position.

Association with nuclear lamins correlates well with location of

genomic regions to the nuclear periphery and so-called Lamin

associated domains (LADs) generally have low levels of transcrip-

tion. Genome-wide maps of Lamin B1 association in mouse ES

cells show that many neural differentiation genes are located in

LADs [29]. However, neither the Pax6 nor Irx3 loci, nor the whole

Fgf8 region is a LAD in either ES cells or ES-derived neural

progenitors (Figure S8) suggesting that at least in this in vitro

context nuclear re-positioning of these loci is unlikely to be

mediated by altered Lamin B1 association. However, while Lamin

B genes appear not to be required for differentiation in ES cells,

Lamin B null mice do exhibit profound neural defects [49,50].

These include both neural progenitor proliferation and nuclear

lamina integrity, and so a role for LAD mediated regulation of

nuclear positioning of neural differentiation genes in the embryo

cannot be ruled out [49,50].

FGF signalling is upstream of higher-order chromatin
organisation

Our discovery that blocking FGFR signalling in the Raldh2

mutant, where many differentiation genes fail to be transcribed,

restores chromatin decompaction and a more central nuclear

position of the Pax6 locus suggests that RA acts first to inhibit

FGFR signalling and that FGF is upstream of molecular

mechanism(s) that direct higher order chromatin organisation at

differentiation gene loci. This result is further supported in

wildtype embryos in which FGFR signalling is blocked, as here

Pax6 transcription extends caudally, being precociously expressed

in the preneural tube, but we detect Pax6 decompaction and its

more central nuclear position in stem zone cells, which have yet to

express Pax6. Importantly, these experiments uncouple regulation

of higher order chromatin organisation from gene expression itself

and indicate that these large-scale chromatin changes take place as

an initial step in the differentiation process. Although we assess

these changes by detailed investigation around two exemplar

neural differentiation genes, FGF signalling in this context

represses expression of many such genes, including Sox1 and

Sox3 (further regulators of the neural progenitor cell state) and

prevents the onset of ventral patterning and neuron production in

the newly generated spinal cord [3,7]. It is therefore likely that

FGF signalling (directly or indirectly) regulates a general

mechanism(s) that determines chromatin organisation at such

differentiation genes, many of which are known PRC2 targets in

ES cells.

Intriguingly, blocking FGFR signalling also led to decompaction

and a more central nuclear position of Pax6 and Irx3 loci in

somites, where this gene is never expressed. These somites will

have formed (1 somite every 2 hours) during the 7 h period of

exposure to FGFR inhibitor, at the start of which these cells would

have been experiencing FGF signalling in the presomitic

mesoderm. The reorganisation of Pax6 and Irx3 loci in this

context may thus reflect the finding that high level FGF signalling

is required for mesoderm induction, while reduction elicits neural

differentiation, as observed in Fgfr1 mutant mice, reviewed in [1].

Sudden loss of FGFR signalling in the early presomitic mesoderm

might therefore elicit initial steps in neural differentiation.

Importantly, we show that blocking FGFR signalling does not

lead to global chromatin reorganisation, as inter-probe distances

and the fractional radius for control Hba-a1 locus and inter-probe

distance for the region of the Fgf8 locus remain unchanged in all

tissues examined. The Fgf8 locus does, however, alter its nuclear

position in response to changes in FGFR signalling. When FGFR

signalling is blocked in either wildtype or Raldh2 mutant embryos

the Fgf8 locus remains close to the nuclear periphery in all tissues

examined, including the stem zone where this gene is normally

expressed and in the Raldh2 2/2 mutant, where this inhibition of

FGF signalling rescues the ectopic centralised location of Fgf8

locus. Although location at the nuclear periphery generally

correlates with gene repression, we do detect some intronic Fgf8

transcripts in PD173074 treated embryos, indicating that in the

timeframe of this experiment the peripheralisation of the Fgf8

locus does not simply correlate with loss of transcription. This may

reflect an initial heterogeneous response to the loss of FGF

signalling across the stem zone cell population, however, active

transcription and peripheral locus position it is not incompatible

with transcription [27,28]. Overall then, FGF is upstream of

mechanisms in the stem zone that lead to Pax6 and Irx3

compaction and peripheral location, and that promote a central

position of Fgf8 within the nucleus. This shows that in this context

FGF signalling influences multiple distinct molecular mechanisms,

which regulate chromatin compaction and promote movement

towards or away from the nuclear centre in a locus specific

manner.

Attenuation of FGF signalling in human embryonic stem (hES)

cells and mouse epiblast stem cells leads to loss of self-renewal [51–

53]. Furthermore, as observed in the elongating embryonic neural

axis [33] and in mouse ES cells that have experienced a period of

endogenous FGF/Erk [7], inhibition of FGF/Erk signalling in

hES cells induces rapid expression of Pax6 [53]. The attenuation of

FGF signalling in stem cells of epiblast origin and in multipotent

epiblast cells located in the stem zone/caudal lateral epiblast

therefore serves as a common trigger for onset of differentiation

and it is likely that conserved molecular mechanisms that include

relief from polycomb mediated repression at differentiation genes

underlie this initial step. Key future tasks are to determine how

FGF signalling regulates local chromatin compaction and orches-

trates nuclear positioning to constrain cell differentiation.

Materials and Methods

Mouse embryo collection, culture and exposure to small
molecules

Wildtype CD1 embryos were collected at E8.5, dissected, fixed

and processed for in situ hybridization (ISH) or for FISH as

described below. Heterozygous Raldh2 mutant CD1 mice [30]

were crossed to generate litters at E8-8.5 containing Raldh22/2,

Raldh2+/2 and wildtype embryos. These were either dissected,

genotyped as described previously [30], fixed and processed for

ISH or FISH (see below), or E8 embryos within yolk sacs were

collected in warmed (37uC) culture medium (rat serum, tyrode

solution; 1:1) containing control DMSO (0.5 ml/1 ml culture

medium) or FGFR inhibitor PD173074 (Calbiochem) at 50 mM.

Embryos were then cultured for 7 hours in a water-saturated

roller-tube incubator at 37uC in 5% CO2, 20% O2. These were

then dissected, genotyped, fixed and processed for FISH. For

treatment with retinoic acid wild type CD1 E8-8.5 embryos were

dissected to give explants pairs of the caudal embryo (Figure 5A)

with one explant treated with 250 nM RA and the other DMSO

vehicle control cultured in collagen as previously described [3] for

10 h. Explants were then fixed in 4% PFA and processed for ISH

or FISH. For FISH analysis nuclei in sections taken from the

central third of each explant were measured (5 explant pairs, .30

nuclei per explant measured) for inter-probe distance and

fractional radius. Initial analyses compared differences between

treated and untreated explants taken from the same embryo and
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these were all significantly different (Table S4). We therefore

pooled all treated and all untreated explant data (Figures 5C, E).

Ethics statement
All procedures using animals were performed in accordance

with UK and French legislation and guidance on animal use in

bioscience research.

In situ hybridisation for mRNA
Standard procedures were used to carry out in situ hybridisation

in whole embryos to detect mRNAs for Pax6, Irx3, Fgf8, Spry2,

Npm3 and Mgea5/OGA (primers used to clone Irx3, Npm3 and

Mgea5/OGA can be found in Figure S3). A subset of these were

embedded and cryo-sectioned to visualise mRNA localisation at a

cellular level. Intronic Fgf8 was detected using a probe for the

region between exons 5 and 6 of the mouse Fgf8 gene (a kind gift

from Olivier Pourquie, [40]).

Fluorescence DNA in situ hybridisation
Mouse embryos stored in 100% MeOH were cleared in xylene,

embedded in wax, sectioned at 7 microns and dried down on thin

TESPA-coated 50622 #1.5 coverslips (Scientific Laboratory

Supplies Ltd) suitable for OMX microscopy. The protocol for

FISH on mouse tissue sections was then adapted from [54].

Coverslips with sections were heated to 65uC (20 min), washed64

in xylene (10 min) and re-hydrated through an ethanol series to

dH20. Coverslips were then microwaved for 20 min in 0.1 M

citrate buffer, pH6.0, cooled in buffer (20 min) washed and stored

in dH20 prior to pre-hybridisation steps and denaturation as

previously described [54]. Fosmids pairs separated by inter-

genomic distance of 60–120 kb were selected from the WIBR-1

Mouse Fosmid Library (Whitehead Institute/MIT Center for

Genomic Research) and sequences confirmed by targeted PCR

(Table S1, Figure S9). These were then labelled with either

digoxigenin-11-dUTP or biotin-16-dUTP by nick transcription.

Approximately 150 ng probe along with 15 mg mouse Cot1 DNA

(Invitrogen) and 5 mg sonicated salmon sperm DNA (sssDNA)

were used per coverslip, denatured and hybridised to coverslips

[54]. After overnight incubation and washing, digoxigenin labelled

probes were detected with anti-dig FITC (1:20, Roche) and

amplified with anti-sheep Alexa Fluor 488 (1:100, Molecular

Probes); biotin labelled probes with biotinylated anti-avidin (1:100)

and Alexa streptavidin 594 (1:500, Molecular Probes). Nuclei were

counterstained with DAPI and coverslips mounted onto slides with

25 ml of Slowfade Gold (Molecular Probes).

Structured illumination image acquisition and processing
Samples were imaged on a Deltavision 3D OMX Structured

Illumination Microscope (Applied Precision) using a protocol

adapted after [55]. Regions of interest (ROIs) were identified using

a Deltavision microscope, mapped using Softworx (Applied

Precision) and acquired with a UPlanSApochromat 1006 1.4

NA oil-immersion objective lens (Olympus) and back-illuminated

Cascade II 5126512 EMCCD camera (Photometrics) on the

OMX version 2 system (Applied Precision) equipped with 405,

488, and 593 solid-state lasers. Samples were illuminated by a

coherent scrambled laser light source that had passed through a

diffraction grating to generate the structured illumination.

Potential photo-bleaching was minimised by using lowest possible

laser power and exposure times (50 and 250 ms). Raw images

were processed and reconstructed using the Softworx structured

illumination reconstruction tool (Applied Precision) [56]. The 405,

488 and 593 channels were then aligned in x and y, using

predetermined shifts which were measured using a target lens and

100-nm Tetraspeck fluorescent beads (Invitrogen) in the Softworx

alignment tool (Applied Precision).

Image analysis for chromatin compaction and nuclear
position

For analysis of chromatin compaction and nuclear position,

measurements were made in images of .50 nuclei per region in

each of 3 different embryos per condition.

Stem zone was defined as epiblast cells adjacent and just caudal

to the node (,5 sections per embryo), preneural tube as

neuroepithelium rostral to the node underlain by notochord and

presomitic mesoderm, neural tube as neuroepithelium flanked by 2

or 3 most recently formed somites, and these adjacent somites

were also used to represent somitic tissue. As nuclei in tissues are

not as spherical as in cultured cells it was not possible to apply

standard nuclear segmentation tools to define nuclear position.

Instead sections in which a fosmid signal and nuclear edge were in

sharp focus were used to measure the shortest distance from the

probe centre to the periphery. The broadest distance across the

nucleus was also measured as an indication of nuclear diameter

and this was halved and data presented as a proportion the nuclear

radius (fractional radius). Super resolution images were uploaded

into an OMERO server (Open Microscopy Environment) and

ROIs containing hybridisation signals for both dig and biotin-

labelled probes were identified by manual inspection in OMERO-

insight. ROIs typically extended over several z-sections to

accommodate the whole volume of the signals. These ROIs were

analysed by a custom script developed in MATLAB (Michael

Porter, University of Dundee). This script first segments the objects

defined by each probe from the background using Otsu thresh-

olding and then calculates the xyz coordinates the centroid in each

object. The centroids of these two objects and the distance

between them, d (mm), were then output to a spread-sheet. The

inter-probe distance was then squared because in interphase nuclei

the mean physical distance squared between two points is linearly

related to the known genomic distance [32]. Within each nucleus,

the line measurement tool was used to determine the distance of

the edge of the nucleus from the hybridisation signal of the biotin-

labelled probe in sections in which it was in sharp focus and this

was then averaged. The radius of the nucleus, also measured with

the line measurement tool, was then divided by this distance. This

gave the distance of the gene locus from the nuclear periphery as a

proportion of nuclear size.

Statistical analysis
Box plots in figures show distribution of data. Top and bottom

whiskers show highest and lowest data points respectively. Top

and bottom lines of box represent 3rd and 1st inter-quartiles and

the middle line represents the median. Non-parametric Mann-

Whitney U test was used for analyses as data were not normally

distributed. For comparison between explant pairs, a paired-

sample Wilcoxon signed-rank test was used (Table S4).

Supporting Information

Figure S1 Histone modifications around key loci in ES cells and

derived neural progenitors. Genomic co-ordinates are from the

mm8 assembly of the mouse genome and histone modifications

indicative of active H3K4me3 and silenced H3K27me3 regions

around Pax6 (A), Irx3 (B), Fgf8 (C) and Hba-a1 (D) in mouse

embryonic stem (ES) cells and ES cell derived neural progenitors

(NP) (from dataset of [11]).

(TIF)
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Figure S2 Assessment of chromatin compaction at the Fgf8 locus.

(A) Fosmids flanking the Fgf8 locus mapped to the mm9 assembly of

the mouse genome; (B) Examples of FISH images in DAPI-stained

nuclei for the Fgf8 -flanking probe pairs in stem zone, neural tube,

and somite; (C) Box-plot of inter-probe distances (mm2) for Fgf8

flanking probes in each tissue, indicating no difference in distances

despite transcriptional down regulation of Fgf8 in the neural tube and

somites; (D) Boxplot showing that blocking FGFR signalling also did

not alter inter-probe distances between fosmids flanking the Fgf8 locus

(images in Figure S5, and see text for discussion).

(TIF)

Figure S3 Expression patterns of Fgf8 and its neighbouring

genes NPM3 and Mgea5/OGA. Localisation of mRNAs for Fgf8,

NPM3 and Mgea5/OGA in the caudal regions of the mouse

embryos at (A, B, C) E8-8.25 and at E8.5 (A9, B9 C9). Asterisk

indicates position of the node. All three genes are expressed in the

stem zone at E8-8.25, at E8.5 NPM3 and Mgea5/OGA transcripts

are also detected more rostrally, but are still downregulated in the

neural tube. (D) Table of primers used for NPM3, Mgea5 and Irx3

(Figure 7) in situ hybridisation.

(TIF)

Figure S4 Exposure to FGFR inhibitor PD173074 represses

FGFR target Spry2, and does not alter chromatin compaction or

nuclear position across the control Hba-a1 locus. (A) Expression of

Spry2 in embryos following exposure to vehicle control DMSO or

the FGFR antagonist PD173074. (B) Box-plot of inter-probe

distances (mm2) for Hba-a1 flanking probes in each tissue assessed

in DMSO and PD173074 treated embryos, showing that FGFR

signalling has no effect on chromatin compaction around the Hba-

a1 locus in the stem zone (p = 0.55) or neural tube (p = 0.08). (C)

Graph of data distribution for fractional radius measurements in

DMSO and PD173074 treated tissues, showing that the Hba-a1

locus does not change nuclear position in the stem zone (p = 0.23)

or neural tube (p = 0.83) after treatment with DMSO or FGFRI.

(TIF)

Figure S5 Comparison of Fgf8 locus compaction and nuclear

position in wildtype and in conditions lacking retinoid, FGFR, and

both RA and FGFR signalling. Exemplar images of fosmid pairs

across the Fgf8 locus in nuclei from each tissue and condition

assessed. Compaction of the genomic region around the Fgf8 locus

does not alter with Fgf8 transcriptional activity, including in

conditions in which retinoid or FGFR signalling or both are

attenuated. However, nuclear position of the Fgf8 locus is

regulated by retinoid and FGF signalling (see text for details and

data analysis in Figure 8). Scale bars = 2 microns in exemplar

images and 1 micron in inset.

(TIF)

Figure S6 Detection of intronic Fgf8 mRNA following inhibition

of FGFR signalling. Intronic Fgf8 mRNA was detected in the stem

zone of (A) wildtype (n = 4/4) and (B) PD173074 treated embryos

(n = 3/4). Scale bar = 100 microns.

(TIF)

Figure S7 Pax6 and Irx3 loci relocate to the centre of the nucleus

in somite tissue treated with FGFR inhibitor. (A) Graph of data

distribution for Pax6 fractional radius measurements for somites in

wild-type, Raldh22/2, DMSO and PD173074 treated wild-type

and PD173074 treated mutant tissues. These data show that FGF

signalling is required for the proper localisation of the Pax6 locus

close to the nuclear periphery in somites. (B) Graph of data

distribution for fractional radius measurements in DMSO and

PD173074 treated tissues, showing that the Irx3 locus displays a

more central localisation within the nucleus when FGF signalling

is blocked (p,0.05).

(TIF)

Figure S8 LaminB1 binding sites in the vicinity of Pax6, Irx3,

Fgf8 and control Hba-a1 loci. Genomic regions around (A) Pax6,

(B) Irx3 (C) Fgf8 and (D) Hba-a1 are not associated with Lamin B1

binding in ES cells or neural progenitors (analysis of data set from

[29]).

(TIF)

Figure S9 PCR verification of fosmid sequences. Verification of

Fgf8, Irx3 and Pax6 flanking fosmids was carried out using a

standard PCR protocol (B) to amplify regions at the 59 and 39ends

of fosmids obtained from the WIBR-1 Mouse Fosmid Library

(Whitehead Institute/MIT Center for Genomic Research) (Fgf8 C,

Irx3 D and Pax6 E); Primer sequences and PCR product sizes are

shown in A.

(TIF)

Table S1 Names and co-ordinates and sizes of fosmids used. All

fosmid names are from Ensembl (r 45) http://jun2007.archive.

ensembl.org/Mus_musculus/index.html). Fosmids highlighted

with an asterisk were previously used in [13].

(DOC)

Table S2 Squared inter-probe distances of fosmids surrounding

the Pax6, Irx3, Hba-a1 and Fgf8 loci in the stem zone, pre-neural

tube (except Hba-a1), neural tube and somites. P-values are from

Mann-Whitney analysis.

(DOC)

Table S3 Statistical significance between stem zone and neural

tube in three embryos analysed for Pax6, Irx3, Fgf8 and Hba-a1

chromatin compaction.

(DOC)

Table S4 P-values from the paired-sample Wilcoxon signed-rank

test showing statistical differences between individual embryo explant

pairs analysed for Pax6 chromatin compaction and nuclear localisation.

(DOC)
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