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Gastric cancer (GC) is a heterogeneous disease and a leading
cause of cancer-related deaths. Discovering robust, clinically
relevant molecular classifications is critical for guiding person-
alized therapies for GC. Here, we propose a refined molecular
classification scheme for GC using integrated optimal algo-
rithms and multi-omics data. Based on the important features
of mRNA, microRNA, and DNA methylation data selected by
the multivariate Cox regression model, three subtypes linked
to distinct clinical outcomes were identified by combining sim-
ilarity network fusion and consensus clusteringmethods. Three
subtypes were validated by an extreme gradient boosting
machine learning prediction model with 125 differentially ex-
pressed genes in multiple independent cohorts. The molecular
characteristics of mutation signatures, characteristic gene sets,
driver genes, and chemotherapy sensitivity for each subtype
were also identified: subtype 1 was associated with favorable
prognosis and characterized by high ARID1A and PIK3CA
mutations, subtype 2 was associated with a poor prognosis
and harbored high recurrent TP53 mutations, and subtype 3
was associated with high CHD1, APOA1 mutations, and a
poor prognosis. The proposed three-subtype scheme achieved
a better clinical prediction performance (area under the curve
value = 0.71) than The Cancer Genome Atlas classification,
whichmay provide a practical subtyping framework to improve
the treatment of GC.
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INTRODUCTION
Gastric cancer (GC) is the third leading cause of global cancer-related
mortality and is responsible for 768,000 deaths in 2020.1 Surgical
resection with subsequent adjuvant chemotherapy or chemoradio-
therapy has been established as an effective treatment for patients
with early stage GC, but it has been hampered by the low early meta-
phase diagnosis rate and high recurrence rate.2–7 The fact that one-
size-fits-all therapeutic schemes result in different treatment
outcomes suggests the inherent biological and clinical heterogeneity
of GC.8 Clinical heterogeneity is associated with multiple factors
from genomic to environmental levels, but it is most likely based
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on differences in the molecular characteristics of cancer cells, which
manifests as subtypes.9 Therefore, discovering robust molecular clas-
sifications is critical for improving GC therapy by identifying specific
therapeutic targets and biomarkers and developing more personal-
ized clinical treatment strategies.

Before the genomics era, GC was histologically classified into
different subtypes, such as the intestinal and diffuse types accord-
ing to the Lauren classification, and papillary, tubular, mucinous,
and poorly cohesive carcinoma types based on the World Health
Organization (WHO) classification system.10,11 The limited clinical
usefulness of histological classification makes the development of
classifiers based on multiple molecular levels that can guide precise
treatment an urgent priority. Based on sequencing data from six
molecular platforms, The Cancer Genome Atlas (TCGA) research
network team classified GC into four molecular subtypes: Epstein-
Barr virus (EBV), microsatellite instability (MSI), genomically
stable (GS), and chromosomal instability (CIN).12 Similarly, the
Asian Cancer Research Group (ACRG) Network team established
another four molecular subtypes using a transcriptomic classifier:
MSI, MSS/EMT, MSS/TP53+, and MSS/TP53–.8 Several studies
have also proposed molecular subtyping schemes for GC based
on high-throughput profiling and multi-omics platforms, including
genomic, proteomic, and epigenetic features.9,13–17 In addition,
spatial metabolome- and immunome-driven classification methods
have also been applied to identify GC.18,19 Such studies may pave
the way for the development of improved treatment strategies
and personalized drugs for GC.
Authors.
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Although distinct GC subtypes with different molecular features have
been delineated by various platforms, the clinically relevant consensus
is inadequate.2,20 To date, many computational methods that inte-
grate multi-omics data for cancer subtyping have been proposed21:
commonly used network-based methods, such as similarity network
fusion (SNF),22 neighborhood-based multi-omics clustering,23 and
cancer integration via multikernel learning24; statistics-based
methods, such as moCluster25 and iClusterBayes26; and deep
learning-based methods, such as Subtype-GAN.27 However, there is
a lack of consistent results owing to variations in omics data types,
clustering methods, and the number of subtypes in a specific cancer.
Highly complex multi-omics technologies and lack of clinical associ-
ation molecular signatures may negatively impact the translation of
subtyping results into clinical practice. Recent advances in genomics
and bioinformatics have facilitated the optimization of algorithms,
focusing on more clinical relevance and consensus cancer subtyping
based on multi-omics data.28–32 A clinically oriented strategy that
combines the use of multiple types of optimal methods and effective
omics data integrated with machine learning validation should be
developed.

In this study, we propose a refined molecular classification of GC
based on combinatorial algorithms and multi-omics data. The three
proposed subtypes are associated with distinct clinical outcomes
and were validated in multiple independent cohorts using the optimal
extreme gradient boosting (XGBoost) machine learning prediction
model. The mutation signatures, characteristic gene sets, driver genes,
and chemotherapy sensitivity of each subtype were also revealed,
thereby providing a practical subtyping framework for improving
tailored treatments for GC.

RESULTS
Multi-omics-based molecular classification of GC

Based on a TCGA cohort, a total of 323 GC samples with mRNA, mi-
croRNA (miRNA), and DNA methylation expression profiles and
follow-up data (Table S1) were selected to identify the molecular sub-
types. Based on survival data, 3,496 mRNAs, 58 miRNAs, and 43,137
DNA methylation sites were selected as important classification fea-
tures by using the Cox regression model (Table S1). For consensus
clustering, the NbClust R package, which integrates 26 criteria, was
used to determine the optimal clustering number, of which nine
criteria support the optimal number of clusters (k) as 2 or 3 (Fig-
ure 1A), and we selected k = 3 for better clustering quality (Figure 1B).
By integrating the SNF and consensus clustering (CC) methods in the
CancerSubtypes package, we identified threeGC subtypes (Figure 1C).
The clustering results had an average silhouette width value of 0.9,
which suggests excellent power of discrimination between each
subtype (Figure 1D). GC patients with subtype 1 (ARID1A+ type,
Figure 1. Identification of clinically relevant molecular clusters of GC

(A) Prediction of the optimal number of clusters (k) by 26 criteria in the NbClust package. (

heatmap of the 3 clusters identified by integrative algorithms of SNF and CC based on

silhouette width score. (E) Kaplan-Meier curves for overall survival of 323 patients in the

subtype 3 were n = 151, n = 94, and n = 78, respectively.
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n = 151) displayed good overall survival, whereas subtypes 2
(TP53+ type; n = 94) and 3 (CDH1+ type; n = 78) had a poor prog-
nosis (log rank test; p = 5e-4) (Figure 1E).

Independent validation of the three molecular subtypes

To validate the proposed molecular subtypes, we developed a predic-
tion model for the three subtypes in the Samsung Medical Center
(SMC), ACRG, Korea University Guro Hospital (KUGH), Yonsei
University Severance Hospital (YUSH), and Kosin University College
of Medicine (KUCM) cohorts obtained from the Gene Expression
Omnibus (GEO) database. To construct the prediction model for
the three subtypes, a total of 125 union differentially expressed genes
(DEGs) (p% 0.05; |logFC|R 1) for the three subtypes were selected
as gene features for classification, including 120 genes for subtype 1
(ARID1A+ type), 84 genes for subtype 2 (TP53+ type), and 21 genes
for subtype 3 (CDH1+ type) (Table S1). We adopted an XGBoost al-
gorithm to group the test samples into three subtypes according to the
expression levels of the characteristic gene sets (Figure 2A). For the
SMC (n = 432) and ACRG (n = 300) cohorts, the patients were suc-
cessfully divided into three subtypes, and the survival curve was
consistent with the TCGA cohort; that is, subtype 1 (ARID1A+

type) had better overall survival in both the SMC (log rank test; p =
3e-4) (Figure 2B) and ACRG (log rank test; p < 1e-4) (Figure 2C) co-
horts. When the prediction model was applied to the KUGH, YUSH,
and KUCM cohorts, it could also be classified into three subtypes, but
no significant survival difference was observed because of the limited
sample size and survival data. We pooled the Illumina platform
KUGH, YUSH, and KUCM cohorts (KYK cohort) as one dataset
and observed survival differences (log rank test; p = 0.03) (Figure 2D).
In all cohorts, subtype 3 (CDH1+ type) was associated with the worst
prognosis (Figures 2B–2D). These results suggest that these three mo-
lecular subtypes are robust and discrete.

Comparison with other reported molecular subtypes

We compared the similarities and differences of our classification
scheme with TCGA genomic subtypes12 and epithelial-to-mesen-
chymal transition (EMT)-based subtypes15 (Table S1). The TCGA
network proposed four genomic subtypes for GC (TCGA subtype):
EBV positivity, MSI, GC, and CIN. The EMT-based classification in-
cludes mesenchymal phenotype (MP) and epithelial phenotype (EP)
subtypes (ARCG subtypes). The proposed subtype 1 (ARID1A+ type)
was present across all four TCGA genomic subtypes, and patients
with subtype 1 (ARID1A+ type) were divided into EBV (25% [n =
10/81]), MSI (36% [n = 29/81]), GC (10% [n = 8/81]), and CIN
(30% [n = 24/81]) subtypes (Figures 2E and S1). Notably, the vast ma-
jority of EBV (95% [n = 20/21]) andMSI (94% [n = 30/32]) cases were
subtype 1 (ARID1A+ type). The proposed subtypes 2 (TP53+ type)
and 3 (CDH1+ type) were enriched in TCGA genomic CIN and GS
B) Visualization of the clustering results using the factoextra package. (C) Consensus

323 GC samples. (D) Quantification of sample similarity within each cluster using

3 subtypes (log rank test; p = 5e-4). The sample sizes of subtype 1, subtype 2, and
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Figure 2. Subtype validation in test cohorts and comparison with other classifications

(A) Schematic overview of the strategy used to construct prediction models and evaluate the classification results in the validation cohorts. Extreme gradient boosting

(XGBoost) decision tree models was used for classifying patients in test cohorts into the three subtypes on the basis of gene expression signatures. (B–D) Kaplan-Meier

curves of overall survival for patients predicted with different subtypes in SMC, ACRG, and KYK cohorts. The p values were obtained using the log rank test. (E) Distribu-

tion of the proposed three subtypes and compared to The Cancer Genome Atlas (TCGA) subtypes12 and ARCG subtypes (Ref.15). (F) ROC curves indicate the prediction

performance of our three subtypes compared with TCGA subtypes12 based on the clinical features of patients with GC. KYK, the pooled KUGH, YUSH, and KUCM cohorts.

ROC, receiver operating characteristics.
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Figure 3. Mutational landscape and signatures of the three subtypes for GC

(A-C) Waterfall plots showing the genemutation map of the three subtypes, with the different mutation types annotated with specific colors. The bar plot on the top shows the

tumormutational burden. Each column represents a patient and the bar plot in the right indicates the genemutation frequency of the top 20 genes. The SNVs for each patient

(legend continued on next page)
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subtypes, respectively (Figures 2E and S1). The vast majority (92%
[n = 44/48]) of subtype2 (TP53+ type) cases were present in the
CIN group, whereas cases in subtype 3 (CDH1+ type) were mainly
present in the GS (61% [n = 33/54]) and CIN (35% [n = 19/54])
groups (Figures 2E and S1). Associations between the three proposed
subtypes and the EMT-based subtypes were further explored. We
found that 95% of the samples (n = 77/81) in subtype 1 (ARID1A+

type) and 83% of the samples (n = 40/48) in subtype 2 (TP53+

type) were classified into the EP subtype, whereas 72% of the samples
(n = 39/54) in subtype 3 (CDH1+ type) were classified into the MP
subtype (Figures 2E and S1). Furthermore, the survival patterns of
our three subtypes were similar to those of the other two classification
schemes. Based on clinical features, the three proposed subtypes
showed better prediction performance than TCGA subtypes, with
an area under the curve (AUC) value of 0.71 (Figure 2F). Overall,
the comparison suggests that the three proposed subtypes are rational
and have less heterogeneity.

Molecular subtypes are associated with clinical phenotypes

We further correlated the molecular subtypes with clinical covariates
in TCGA cohort (Table S2). As reported above, GC patients with sub-
type 1 (ARID1A+ type) tended to have better prognosis and lower
recurrence rates than patients with subtypes 2 (TP53+ type) and 3
(CDH1+ type) (Figure 1E and Table S2; p = 2e-4). Other trends in
clinical characteristics were also observed. Although each subtype
was found throughout the stomach, tumors in subtypes 1 (37%)
and 3 (44%) showed elevated frequencies in the gastric antrum,
whereas most subtype 2 tumors (31%) were present in the cardia
(p = 0.003). Subtype 3 tended to be diagnosed at a significantly
younger age than other subtypes (p = 1e-4), and the majority (78%)
of patients in this subtype were diagnosed with histologic grade G3
(p < 1e-4). Evaluation of the tumor stage of the three molecular sub-
types revealed that patients with subtypes 1 and 2 tended to be diag-
nosed at an early stage (p < 1e-4), which is consistent with the survival
tendency results.

Mutation characteristics of the three subtypes

We next investigated the overall mutation characteristics of the 323
GC samples (Figure S2) and identified somatic alterations associated
with each subtype (Figures 3 and S3A–S3C). Overall, the predomi-
nant variant type was missense mutation, single nucleotide variants
(SNVs) were C>T transitions, the median of variants per sample
was 102, and the top mutated genes were TTN (52%), TP53 (47%),
MUC6 (29%), LRP1B (28%), and SYNE1 (25%), which are well-
known tumor suppressor genes33 (Figure S2). For the three subtypes,
we observed high prevalence of TTN (63%), ARID1A (39%), and
TP53 (39%) mutations in subtype 1, TP53 (73%), TTN (48%), and
LRP1B (27%) mutations in subtype 2, and TTN (34%), TP53
(29%), and CDH1 (21%) mutations in subtype 3 (Figures 3A–3C).
are shown below. (D and E) Forest plot showing the significantly different mutated gene

different groups and the horizontal line represents the 95% confident interval of the OR.

are listed. (F) Heatmap showing the cosine similarities of the top 2 matched COSMIC m

corresponding etiology term of the ARID1A+, TP53+, and CDH1+ types. COSMIC, Cat
Cross-comparisons showed that subtype 1 had a significantly higher
mutation rate of ARID1A (odds ratio [OR], 11.4; p = 6e-10) and
PIK3CA (OR, 18.9; p = 8e-9) than subtype 2, whereas subtype 2
had a significantly higher mutation rate of TP53 than subtypes 1
(OR, 0.2; p = 1e-7) and 3 (OR, 6.7; p = 7e-9), and subtype 3 had a
significantly higher mutation rate of CDH1 than subtypes 1 (OR,
0.4; p = 0.02) and 2 (OR, 0.08; p = 7e-5) (Figures 3D and 3E). Based
on the significantly mutated driver genes, we named these three sub-
types ARID1A+, TP53+, and CDH1+.

We further explored the co-occurring or mutually exclusive interac-
tions between the top 25 mutated genes in each subtype. We found
that subtype 1 (ARID1A+ type) had closer linked co-mutation inter-
actions than subtypes 2 (TP53+ type) and 3 (CDH1+ type) (Figure S3).
As shown in Figures S3D and S3E, the subtype 1 hallmark gene of
ARID1A is mutually exclusive with the subtype 2 hallmark gene of
TP53 (p = 1e-2), and TP53 has no co-occurring interactions, except
for LRP1B (p = 0.03). The hallmark genes of TP53 and CDH1 had
no co-occurring interactions in subtypes 2 and 3, and CDH1 was
mutually exclusive with LRP1B (p = 0.01) (Figures S3E and S3F).
These findings suggest that the hallmark genes ARID1A, TP53, and
CDH1 can distinguish the three subtypes fairly well.

To further investigate the mutation features, we identified the Catalog
of Somatic Mutations in Cancer (COSMIC) mutational signatures of
the three subtypes. Overall, the top three signatures have distinct
SNVs mutation characteristics and a proportional contribution of
each signature per sample (Figure S4). The cosine similarities of the
detected mutations of each subtype against the 30 validated
COSMIC signatures are shown in Figure 3F. The best match signa-
tures of the ARID1A+, TP53+, and CDH1+ types were SBS6 (associ-
ated with defective DNA mismatch repair; cosine similarity, 0.915),
SBS17 (cosine similarity, 0.92), and SBS1 (associated with sponta-
neous or enzymatic deamination of 5-methylcytosine; cosine similar-
ity, 0.891), respectively (Figure 3G). In addition, SBS10 was specific to
the ARID1A+ type.

Gene set variation characters of the three subtypes

To comprehensively reveal the variation in the activity of cancer-
related gene sets for each subtype, we downloaded 6,019 related
gene sets from the Molecular Signatures Database (MSigDB) data-
base, including hallmark gene sets (Hs) (n = 38), regulatory target
gene sets (C3) (n = 867), cancer modules (C4) (n = 168), oncogenic
signature gene sets (C6) (n = 167), and immunologic signature
gene sets (C7) (n = 4,779). Based on the expression data for each sub-
type, the enrichment score (ES) for different collections of gene sets
was calculated using the gene set variation analysis (GSVA) method.
A heatmap of the ESs for different subtypes and their clinical charac-
teristics is shown in Figure 4.
s between the three subtypes. The horizontal coordinates represent the OR of the

The mutation frequency, OR and its significance p value for the representative genes

utation signatures for each subtype. (G) Best matched COSMIC signature and its

alog of Somatic Mutations in Cancer.
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Figure 4. Heatmaps showing the ES of each subtype on five different gene sets

The clinical characteristics of 323 patients are depicted.
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Compared with the normal samples, a total of 2,107, 1,451, and 127 dif-
ferential gene sets (|logFC|R 0.2; adjusted p% 1e-5) for the ARID1A+,
TP53+, and CDH1+ type, respectively, were identified (Table S1,
Figures 5A–5E). For a specific functional collection, the common and
representative differential gene sets for each subtype were compared
(Figures 5A–5E), and the top five characteristic gene sets for Hs, C3,
C4, C6, and C7 are shown in Figures 5F–5J. The most significantly en-
riched characteristic Hs were KRAS_SIGNALING_DN, ANDROGEN
_RESPONSE, andTGF_BETA_SIGNALINGfor theARID1A+, TP53+,
and CDH1+ types, respectively. For other collections, the characteristic
regulatory target gene sets were CDC73_TARGET_GENES, MYC-
MAX_03, and AHRARNT_01; the characteristic oncogenic signature
gene sets were STK33_SKM_DN, STK33_SKM_UP, and CAHOY
_ASTROGLIAL; the characteristic cancer modules were MOD-
ULE_331, MODULE_209, and MODULE_114; and the characteristic
immunologic signature gene sets were GSE2706_R848_VS_
LPS_2H_STIM_DC_UP, GSE3982_DC_VS_TH2_UP, and GS
UNTREATED_VS_24H_NOD2_LIGAND_TREATED_MONOCYT
E_DN. Notably, both ARID1A+ and TP53+ types were enriched in
STK33- and E2F1-related oncogenic signature, but the two subtypes
showed opposite responses (Figure 5H).

Next, we sought to identify the prognostic gene sets for the three
subtypes using the least absolute shrinkage and selection operator
(LASSO) method, and five gene sets were ultimately identified
(Figures 5K–5L), that is, GSE27786_LSK_VS_NKTCELL_UP,
GSE5589_UNSTIM_VS_45MIN_LPS_AND_IL10_STIM_MACRO
PHAGE_UP, ZIC1_01, GSE22589_SIV_VS_HIV_AND_SIV_INF
ECTED_DC_UP, and GSE42021_TREG_PLN_VS_CD24LO_TREG_
THYMUS_DN (Figures 5M and 5N). High ESs of GSE27786_
LSK_VS_NKTCELL_UP (log rank test; p = 9-e4) and GSE5589_
UNSTIM_VS_45MIN_LPS_AND_IL10_STIM_MACROPHAGE_UP
(log rank test; p = 0.02) were associated with better overall survival
(Figures 5O and 5P). In addition, the upregulation or downregulation
of E2F1-related oncogenic signature had opposite survival curves
(p < 0.05) (Figures 5O and 5P).

Characteristic module and driver genes of the three subtypes

Next, we performed a gene network analysis to uncover the sub-
type-specific module and driver genes, which may contribute to
their clinical and biological characteristics. A protein-protein
interaction (PPI) network of 125 DEGs (p % 0.05; |logFC| R 1)
for the three subtypes was constructed using the STRING database
(Figure 6A). In the network, there were 51, 16, and 4 genes specific
Figure 5. Enriched gene set comparison and prognostic gene sets identified fo

(A–E) Venn diagram showing the overlapped and specific differential gene sets for

cancer modules (C4), oncogenic signature gene sets (C6), and immunologic signature

C4, C6, and C7. (K–L) Least absolute shrinkage and selection operator (LASSO)-base

and the optimal penalization coefficient (l) via 3-fold cross-validation based on partial like

the top x axis shows the numbers of gene sets. (M and N) Kaplan-Meier

GSE5589_UNSTIM_VS_45MIN_LPS_AND_IL10_STIM_MACROPHAGE_UP gene sets

rank test. (O and P) Kaplan-Meier curves showing up or downregulated E2F1-related on

characteristics of the ARID1A+ and TP53+ types. The p values were obtained using the

232 Molecular Therapy: Nucleic Acids Vol. 31 March 2023
to the ARID1A+, TP53+, and CDH1+ types, respectively. Based on
the subtype-specific DEGs, nine modules (five for ARID1A+ type,
three for TP53+ type, and one for CDH1+ type) were observed us-
ing the walktrap algorithm, and its driver genes in each module
were obtained by values of five node importance indicators,
including degree centrality, eigenvector, betweenness, pagerank,
and closeness (Figure 6A, Table S1). For the ARID1A+ type, the
diver genes were ORC1, EZH2, CDC7, ASF1B, CENPU, and
CDCA7 in module 1; MAPK4 and SLC22A17 in module 2; and
DUSP26 in module 3. For the TP53+ type, the driver genes were
IGFBP1 and MATN3 in module 6, DKK1 in module 7, and
ADAMTSL3 in module 8. For the CDH1+ type, the driver gene
was APOA1 in module 9. Except for CENPU, all driver gene
expression levels were associated with overall survival (log rank
test; p < 0.05) (Figures 6B–6I and S5).

Predicted sensitive drugs for each subtype

To determine whether specific subtypes were associated with an
increased clinical benefit from adjuvant chemotherapy, we compared
the recurrence-free survival (RSF) rates of patients with or without
received adjuvant chemotherapy in the KYK cohort (n = 180). In
agreement with the overall survival, the ARID1A+ type patients (70
received adjuvant chemotherapy and 20 did not) were shown to
benefit from adjuvant chemotherapy (log rank test; p < 0.05) (Fig-
ure 7A), but no significant improvement in RSF from adjuvant
chemotherapy was observed among the TP53+ type and CDH1+

type patients (62 received adjuvant chemotherapy and 28 did not)
(Figure 7B).

Based on the DEGs and GC cell lines from the Genomics of Drug
Sensitivity in Cancer (GDSC) database, sensitive drugs associated
with certain subtypes were predicted using the oncoPredict R package
(v3.46.0). According to the half maximal inhibitory concentration
values, the predicted top 20 sensitive drugs for the 3 subtypes were ob-
tained (Figure 7C). To further identify the subtype-specific drugs,
correlations between the gene expression of subtype-specific DEGs
and drug sensitivity were calculated, and drugs and genes with corre-
lation coefficient of less than 0.6 and a p value of less than 0.05 were
selected (Figure 7D). We observed that afatinib, AZD8055, osimerti-
nib, and PD0325901 had strong correlations with the DEGs of the
ARID1A+ type, and the sabutoclax, telomerase inhibitor IX, and
Wee1 inhibitor were strongly correlated with the DEGs of the
TP53+ type, whereas docetaxel, MG-132, pictilisib, and sepantronium
bromide may be effective against the CDH1+ type.
r the three subtypes

each subtype on the hallmark genes sets (Hs), regulatory target gene sets (C3),

gene sets (C7). (F–J) Top five characteristic gene sets for each subtype on Hs, C3,

d prognostic gene set identification. (K) Coefficient profiles (y axis) of the gene sets

lihood deviance. The dotted vertical lines in (L) represent the optimal values of l, and

curves showing that high ESs of GSE27786_LSK_VS_NKTCELL_UP and

were associated with better overall survival. The p values were obtained using the log

cogenic signature associated with reversed survival, which represent the discrepant

log rank test.



Figure 6. Network modules and driver genes of the three subtypes

(A) Left, PPI network of 125 DEGs of the three subtypes. Red, blue, and green represent DEGs of the ARID1A+, TP53+, and CDH1+ types, respectively. Nodes with mixed

colors are the common DEGs of the corresponding subtypes. Right, subtype-specific modules and driver genes. Different colors represent the corresponding communities

(modules), the node size represents the network degree, and the edge width represents the strength of connections. (B–I) Kaplan-Meier curves showing that high or low

expression of the driver genes are associated with survival status. The p values were obtained using the log rank test.
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DISCUSSION
Classification based on molecular subtypes provides an opportunity
for personalized therapy of GC.2 Several classification schemes have
been proposed using various molecular platforms, but their clinical
translation has been hindered by a lack of consensus on the subtypes
and precise molecular signatures.20,34 Here, we report a refined, well
tested GC classification scheme with three subtypes associated with
distinct clinical outcomes and molecular characteristics (Figure 8).
Subtype 1 (ARID1A+ type) is characterized by high ARID1A and
PIK3CA mutations and is associated with favorable prognosis, and
predominantly corresponds to the previously reported MSI, EBV,
and EP subtypes. Subtype 2 (TP53+ type) harbors a highly recurrent
TP53 mutation, is associated with poor prognosis, and mainly corre-
sponds with the previously reported CIN and EP subtypes. Subtype 3
(CDH1+ type) is accompanied by a high CHD1 mutation and is asso-
ciated with a poor prognosis; it mainly corresponds with the previ-
ously reported GS and MP subtypes. Our analysis demonstrated the
consensus clinical significance of the three subtypes and validated
them in multiple independent cohorts, which may lead to improve-
ments in the precise treatment of GC.

Specific molecular biomarkers that can clearly distinguish each sub-
type are required for the clinical applicability of the classification
scheme. The three proposed subtypes were found to be associated
with distinct genomic characteristics in mutational signatures, driver
genes, enriched gene sets, and chemotherapy sensitivity. We named
the three subtypes according to their unique mutated driver genes,
that is, ARID1A, TP53, and CDH1, which are the reported top driver
genes enriched in the specific molecular subgroups.33,34 Frequent in-
activating mutations or protein deficiency of ARID1A are found in
the majority of GC withMSI and EBV. Themutation spectrum differs
between molecular subtypes, and the mutation prevalence is nega-
tively associated with mutations in TP53, suggesting that ARID1A al-
terations are associated with a better prognosis in a subtype-indepen-
dent manner.35 A study also demonstrated that ARID1A mutations
were significantly correlated with increased phosphorylation of onco-
genic signaling proteins and are a biomarker for promising GC ther-
apeutics.36,37 TP53 is one of the key driver genes that are frequently
mutated in GC38,39 and is widely used to differentiate subtypes.
TP53 is a low-frequency mutation gene in bothMSI and EBV tumors,
but it is positively associated with the CIN subtype,8 which is consis-
tent with the results of this analysis. CHD1 mutations are frequently
associated with TCGA GS subtype and have a unique role in driving
diffuse-type gastric carcinogenesis.9,40,41 In addition, TP53 and
CDH1 are frequently mutated in peritoneal metastases of GC, and
the co-inactivation of CHD1 and TP53 may lead to poor progres-
sion42; however, their co-occurrence was not found in this analysis.
These results suggest that the unique mutated driver genes can distin-
guish each subtype fairly well.
Figure 7. Chemotherapy sensitivity and the predicted drugs for the three subty

(A and B) Kaplan-Meier curves showing the RSF rate of patients with or without adjuvant

20 sensitive drugs with lower half-maximal inhibitory concentration (IC50) value. (D) He

sensitivity (IC50); only drugs and genes with a correlation coefficient of greater than 0.6
Based on the proposed prediction model, it was found that the three
subtypes were present in independent test cohorts, and the corre-
sponding relationship and clinical characteristics of patients were in
good agreement with previously reported classifications, demon-
strating the robustness and reproducibility of the proposed classifica-
tion. Moreover, the three subtypes showed different clinical outcomes
in terms of survival and RFS. We found that the ARID1A+ type had a
better prognosis than the other subtypes, which is consistent with the
previously reported EBV, MSI, and EP types.12,15 Similar to the sur-
vival outcomes, a subset analysis of patients with the available chemo-
therapy data strongly suggested that the ARID1A+ type is associated
with a benefit from adjuvant chemotherapy, which is also consistent
with the EP type.15 These results indicate that the molecular charac-
teristics of each subtype may help to develop rational therapy recom-
mendations for patients with GS.

In addition to unique mutation signatures, network-based driver
DEGs for each subtype were also reported, including ORC1, EZH2,
CDC7, ASF1B, CDCA7, MAPK4, SLC22A17, and DUSP26 for the
ARID1A+ type; IGFBP1, MATN3, DKK1, and ADAMTSL3 for the
TP53+ type; and APOA1 for the CDH1+ type, most of which have
not been previously reported in GC. Studies have suggested that
EZH2 may serve as a potential target in ARID1A-deficient GC.43

CDCA7 may regulate inflammation through the toll-like receptor
4/nuclear factor kB signaling pathway to regulate GC development.44

ASF1B, ORC1, and SLC22A17 have also been found to be related to
the progression or metastasis of GC.44–46 It has been reported that the
expression levels of DKK1, MATN3, and IGFBP1 are significantly
associated with survival in patients with GC.47–49 In addition to
CDH1, RHOA is a representative mutation driver gene for the
diffuse-type and GS subtype.12,26,50 RHOA mutations were found to
be associated with poor tumor differentiation, and patients with
RHOA mutations were less likely to have TP53 mutations.33

In summary, we identified a three-subtype classification framework of
GC that is associated with distinct survival outcomes and molecular
features. Consensus regarding the clinical significance and multiple
molecular signatures of the three subtypes were revealed. Although
these molecular subtypes should be further evaluated in clinical trials
for distinct patients with GC, we believe that the refined classification
scheme may contribute to the development of more effective thera-
peutic strategies.

MATERIALS AND METHODS
Genomic data collection and processing

Multi-omics data from TCGA stomach cancer cohort were down-
loaded from the UCSC Xena platform (https://xenabrowser.net/),
including 407 samples for gene expression from RNA sequencing (Il-
lumina HiSeq), 477 samples for miRNA (Illumina HiSeq), 397
pes

chemotherapy. The p values were obtained using the log rank test. (C) Predicted top

atmap showing the correlation coefficient of the subtype-specific DEGs and drug

and a p value of less than 0.05 are listed. ACT, adjuvant chemotherapy.
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Figure 8. Salient features of the three GC subtypes
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samples for DNAmethylation (Illumina HumanMethylation 450 K),
and the corresponding clinical phenotypes. All multi-omics datasets
were pre-processed to a normalized value. The analysis was limited
to samples with all of the three kinds of omics and survival data avail-
able; thus, a total of 323 cancer samples were used for classification
analysis.

Gene expression profiling data of GC tissues were downloaded
from the GEO (http://www.ncbi.nlm.nih.gov/geo/) database to
test the classification results, including GSE26253 (SMC cohort;
n = 432), GSE62254 (ACRG cohort; n = 300), GSE26899
(KUGH cohort; n = 93), GSE13861 (YUSH cohort; n = 65), and
GSE26901 (KUCM cohort; n = 109). All gene expression datasets
were normalized and transformed into log2 bases before further
analysis.

Clustering analysis and subtype identification

To identify clinical outcome-related molecular subtypes of GC,
optimal multi-omics data-based clustering methods of SNF and
CC, which were integrated into the CancerSubtypes R package,
were used.28 CancerSubtypes integrates four highly cited cluster
methods for cancer subtyping and provides a standardized frame-
work for data preprocessing, feature selection, and result analyses.
SNF outperforms other commonly used multi-omics-based methods
236 Molecular Therapy: Nucleic Acids Vol. 31 March 2023
in terms of accuracy, robustness, and computation efficiency criteria
and is recommended for cancer subtyping because it can capture both
shared and specific information from different omics data and make
the integrated similarity networks retain more information from
every single similarity network with low-level noise.21 Combining
SNF and CC takes advantage of both achieved superior performance
of clinical relevance on survival differences.28 CancerSubtypes also
provides four important built-in feature selection methods and a
CC algorithm to uncover potential differences among the various
subtypes. In this study, a multivariate Cox regression model was
used to select important features based on the mRNA, miRNA, and
DNA methylation data. For consensus k-means clustering, the
NbClust R package, which integrates 26 criteria, was used to choose
the optimal clustering number, and up to 10 clusters were evaluated
for all samples. Cluster quality was assessed using the silhouette
widths of the final cluster results.

Differential expression analysis

Based on the classification results, we next identified differentially ex-
pressed mRNAs, miRNAs, and DNA methylation sites between tumor
samples in each subtype and normal samples. DEGs were used as fea-
tures for building the prediction model. Differential expression analysis
was performed using the limma R package, which identifiesDEGs using
the log2-fold-changes (logFC). Limma fits a linear model to compute

http://www.ncbi.nlm.nih.gov/geo/
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moderated t-statistics using a Bayesian model and adjusts the p values
for multiple testing using Benjamini and Hochberg’s method. Genes,
miRNAs, and DNA methylation sites with an adjusted p value of 0.05
or less and |logFC| of 1 or less considered differentially expressed.
Prediction model and independent validation

To validate the classification results on independent GC datasets, we
generated a predictionmodel based on the optimalmachine learning al-
gorithmXGBoost51 to predict eachnew sample into a particular subtype
group. XGBoost is an efficient and scalable machine learning classifier
based on the gradient boosting decision tree algorithm, which provides
parallel tree boosting and enhances performance using learning rate,
subsampling ratio, and maximum tree depth to make the model less
prone to overfitting.51 XGBoost can achieve remarkable accuracy in
multiple regression tasks and provides satisfactory results in several ma-
chine learning competitions comparedwithotheralgorithmscommonly
used in predictivemodel construction.52–55 Given a datasetD= {(xi, yi)},
where xi denotes the gene expression profile of tumor, yi is the corre-
sponding sample, assuming it has k decision trees, the optimization
objective function is calculated using Equation 1:

byi =
XK
k = 1

fkðxiÞ; fk ˛ F; (1)

where fk is an independent tree with leaf scores and F is the space of
the regression tree. The loss function is calculated using Equation 2:

L
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where l is a differentiable loss function that measures the difference be-
tween the predicted output byi and true output yi, and U is a regulariza-
tion term that penalizes the complexity of the model to prevent overfit-
ting. The byi and U can be written as Equations 3 and 4, respectively:

byi ðtÞ = byi ðt� 1Þ
+ ftðxiÞ (3)

Uðf Þ = gT +
1
2
kwk2; (4)

where T is the number of leaf nodes and w is the score on each leaf.
Thus, the loss function is calculated using Equation 5:
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where GI and ℎi are first-order and second-order gradient statistics of
the loss function. The parameters g and l are constants that control
the degree of regularization and are used to prevent overfitting.

In this study, all DEGs in the three subtypes were used as feature gene
sets for the development of the model. Based on the classification re-
sults in the training set, the model was performed using the XGBoost
Python package (https://pypi.org/project/xgboost/v1.6.2). To obtain a
better fit, the AUC value based on 5-fold cross-validation was used to
adjust the model parameters. The maximum depth of the tree was set
to k = 3 and l = 4 in the prediction model. When the classifier was
applied to independent test sets, prognostic significance was esti-
mated using Kaplan-Meier survival plots and log rank tests between
the predicted subtypes of patients.

To further test the performance of our three subtypes compared with
TCGA four subtype classification scheme, the multinomial naive Bayes
modelwas used to evaluate the classification effect specific to real clinical
outcomes. The pathological type (Lauren classification andWHO clas-
sification), TNM stage, and survival status were selected as features to
perform naive Bayes classification. The sensitivity, specificity, and area
under the receiver operating characteristic curve were used to compare
the performance of the two classification schemes.

Mutation signature analysis

Next, we attempted to clarify themutation characteristics and identify
specific mutation signatures of the three GC subtypes. Somatic muta-
tion and signature analysis were performed and visualized using the
Maftools and musicatk R package.56,57 Frequency matrix generation
and nonnegative matrix factorization were performed to extract
mutational signatures for each subtype and compare them with 30
known signatures referenced in the COSMIC,58 and a cosine similar-
ity value was estimated for the best possible match. To identify the
differentially mutated genes, a 2 � 2 contingency table of mutation
frequencies was calculated for every gene from the input cohorts,
and the significant differences were estimated by Fisher’s exact test.
The results from pairwise subtype cohort comparisons were visual-
ized as forest plots. The gene sets mutated in a mutually exclusive
or co-occurring manner were also identified by performing Fisher’s
exact test on a 2 � 2 contingency table containing frequencies of
mutated and non-mutated samples. To view the relationships be-
tween tumors in two dimensions, uniform manifold approximation
and projections were used to display the levels of each signature
exposure.

GSVA

GSVA59 was performed to determine the biological functions of each
subtype. GSVA can estimate the relative enrichment of a gene set of
interest over a sample population, and is used to observe the variation
in the activity of a set of genes (e.g., a pathway) corresponding with a
particular biological condition.59 This method outperforms single-
gene analysis in terms of feature dimension, noise interference, and
biological interpretability.59 The major cancer-related gene set collec-
tions were downloaded from the MSigDB, http://www.gsea-msigdb.
org/gsea/msigdb,60 which is one of the most widely used and compre-
hensive databases for performing gene set enrichment analysis. The
normalized GSVA ES for each collection of gene sets was measured
for each GC sample using the GSVA R package. Based on the ES, dif-
ferential gene sets between the two groups were measured using the
limma R package, terms with |logFC| R 0.2 and an adjusted p value
of 1e-5 or less were considered statistically significant.
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Characteristic network and driver gene identification

Next, we explored the molecular characteristics of each subtype based
on a network approach. Based on the DEGs of each subtype, PPI net-
works were constructed using the STRING database (https://cn.
string-db.org/).61 For the subtype-specific DEGs, the igraph R pack-
age was used to identify the community structure (module) via the
walktrap random walk algorithm. The driver genes were selected
based on network topological parameters such as degree and
betweenness centrality. The network and modules were visualized us-
ing the igraph R package and Cytoscape v3.8.0.62

Chemotherapeutic benefits and drug sensitivity prediction

To determine whether each subtype is associated with different clin-
ical benefits from adjuvant chemotherapy, the RSF rate was compared
between subsets of patients with or without adjuvant chemotherapy
in the KUGH, YUSH, and KUCM cohorts. Sensitive drugs associated
with certain subtypes were predicted using the OncoPredict R pack-
age.63 According to subtype-specific DEGs, the half maximal inhibi-
tory concentration values of 198 drugs for each sample were predicted
based on the cell lines from the GDSC2.64

Statistical analyses

All statistical analyses were performed in the R environment.
Unpaired Student’s t-tests were used to evaluate the statistical signif-
icance of the normally distributed variables between the two groups.
Continuous or non-parametric variables were assessed using one-way
ANOVA or the Mann-Whitney test, respectively. Differences be-
tween categorical variables were compared using Pearson’s c2 test
or Fisher’s exact test. The association between survival and molecular
subtypes was analyzed using the Cox proportional hazards model.
Survival data were analyzed by Kaplan-Meier curves with a log
rank test. The LASSO regression method was used to identify poten-
tial prognostic gene sets. The ComplexHeatmap R package generated
all heat maps.
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