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Abstract: Chronic wounds are recalcitrant complications of a variety of diseases, with pathologic features including bacterial 
infection, persistent inflammation, and proliferation of reactive oxygen species (ROS) levels in the wound microenvironment. 
Currently, the use of antimicrobial drugs, debridement, hyperbaric oxygen therapy, and other methods in clinical for chronic wound 
treatment is prone to problems such as bacterial resistance, wound expansion, and even exacerbation. In recent years, researchers have 
proposed many novel materials for the treatment of chronic wounds targeting the disease characteristics, among which metal–phenolic 
networks (MPNs) are supramolecular network structures that utilize multivalent metal ions and natural polyphenols complexed 
through ligand bonds. They have a flexible and versatile combination of structural forms and a variety of formations (nanoparticles, 
coatings, hydrogels, etc.) that can be constructed. Functionally, MPNs combine the chemocatalytic and bactericidal properties of metal 
ions as well as the anti-inflammatory and antioxidant properties of polyphenol compounds. Together with the excellent properties of 
rapid synthesis and negligible cytotoxicity, MPNs have attracted researchers’ great attention in biomedical fields such as anti-tumor, 
anti-bacterial, and anti-inflammatory. This paper will focus on the composition of MPNs, the mechanisms of MPNs for the treatment 
of chronic wounds, and the application of MPNs in novel chronic wound therapies. 
Keywords: metal–phenolic networks, chronic wounds, antimicrobial, antioxidant, reactive oxygen species scavenging, 
revascularization

Introduction
Chronic wounds are pathological disorders of skin healing characterized by wound ulceration, bacterial infection, 
persistent inflammation, and proliferation of reactive oxygen species (ROS) levels.1–3 With a lingering course, most 
chronic wounds do not regain their tissue morphology and functional integrity even after 3 months.4,5 Due to the 
colonization of bacteria in chronic wounds, they possess a more severe inflammatory response and a difficult wound 
remodeling process than normal wounds.6,7 Currently, more than 2% of the global population suffers from chronic 
wounds with a five-year mortality rate approaching 50%.4,8,9 As the aging of the population, chronic wounds caused by 
chronic diseases such as diabetes will increasingly affect people’s lives and health.10

Clinical treatments used for chronic wounds are mainly mechanical debridement, which can quickly and effectively 
remove inactivated tissue from wounds but may damage normal tissue.11,12 Autolytic debridement with endogenous 
hydrolases is also possible, but its onset of action is slow (within 72 hours) and it should not be used in septic patients.13 

For bacterial infection, short-term use of antimicrobial drugs is effective in sterilization, but long-term use is prone to 
drug resistance.14 The short-term use of topical anti-inflammatory drugs can quickly regulate the level of inflammatory 
factors and accelerate wound healing, but long-term use may inhibit platelet aggregation, prolong bleeding time and 
cause skin lesions.15 In addition, hyperbaric oxygen therapy is also an effective method to improve wound hypoxia and 
oxidative stress and inhibit anaerobic bacteria, which can increase blood oxygen concentration, effectively improve 
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microcirculation, and promote capillary regeneration and wound healing, but may also cause oxygen toxicity, pneumatic 
pressure injury, and decompression sickness.16,17

In recent years, researchers have developed several novel materials for wound hemostasis or wound remodeling 
applications.18–22 Tissue adhesives (eg, cyanoacrylate-based glues, purified bovine serum albumin and glutaraldehyde, 
fibrin, and synthetic polymer sealants) are highly adhesive and can be used for wound hemostasis,23 they suffer from 
problems of mechanically inappropriate, cytotoxic, and biocompatible, and their removal can easily cause secondary 
damage.24,25 Some bioengineered materials, such as epidermal and dermal substitutes can mimic real biological 
structures and activate the healing cascade in patient wounds, but they are expensive to produce and have a relatively 
slow speed of clinical translation.26,27 Nanotechnology has opened up a new field of application in the treatment of 
chronic wounds, and some researchers have proposed nanomaterials with their therapeutic properties as “drug-loaded” 
formulations to further improve the efficacy of nanomedicines in the treatment of chronic wounds.5,28–31 However, it also 
suffers from cumbersome synthesis steps and difficulties in clinical translation.32,33 Therefore, there is an urgent need to 
explore the development of novel therapeutic options.34,35

Metal–phenolic networks (MPNs) are supramolecular amorphous molecular networks formed by the coordination of 
multivalent metal ions with polyphenols.36 Structurally flexible MPNs-based nanoparticles or coatings can be constructed 
by various methods, such as the “one-step” assembly method, “multi-step” assembly method, and sol-gel method.37–41 

The excellent physicochemical properties can be used in various biomedical fields such as photothermal therapy and 
Fenton reaction. In the last decade, the research on MPNs has been increasing day by day.42 In the decade following this, 
the research on MPNs has been increasing gradually.41,43–45 One of its main components, natural polyphenols, have been 
shown to have various effects such as anti-tumor,46–48 anti-inflammatory,49–51 anti-bacterial52–54 and anti-thrombotic,55 

and many of the polyphenols have been approved by the US Food and Drug Administration (FDA) as ingredients in food 
or drugs.41 In chronic wound treatment, polyphenols can promote wound healing by alleviating wound oxidative stress 
and modulating excessive inflammatory responses. Metal ions have long been widely used in antimicrobial applications, 
and recent studies have shown that they can not only kill bacteria through direct contact and the production of reactive 
oxygen species but also promote neovascularization at the wound site. The abundance of polyphenols and metal ions 
endows MPNs with a variety of properties that broaden their application in biomedical therapies. MPNs can also play 
a therapeutic role through some novel ROS-based therapies, such as chemodynamic therapy (CDT), photodynamic 
therapy (PDT), and sonodynamic therapy (SDT).56–59 In addition, some studies in recent years have shown that MPNs 
formed by some polyphenols have photothermal effects.38,60,61 Therefore, MPNs can also realize multiple therapeutic 
effects by photothermal therapy (PTT).62 There have been several papers summarizing and organizing the applications of 
MPNs in antibacterial and antitumor applications.36,63–65 However, their role in the treatment of chronic wounds has not 
yet been carefully discussed; therefore, in this paper, we will systematically summarize the composition of MPNs, their 
mechanisms for the treatment of chronic wounds, and the application of MPNs in novel chronic wound therapies.

Composition of MPNs
MPNs are composed of a wide variety of metal ions and polyphenols, and their use in chronic wound therapy in recent 
years is summarized in Table 1. This section will next summarize the typical metal ions and polyphenols that makeup 
MPNs and the role they play in chronic wound therapy, as reported in recent studies.

Metal ions released from metal-containing compounds have significant therapeutic properties for chronic wounds. 
The metal ions in MPNs are mainly multivalent metal ions, including some noble metal ions, alkaline earth metal ions, 
transition metal ions, rare earth metal ions, and some common metal ions, and their roles in MPNs are significantly 
correlated with the properties of the metal ions themselves (Table 1). For example, precious metals, especially silver 
(Ag), gold (Au), and platinum (Pt) have excellent physicochemical properties and biochemical functions which allow 
them to be used as antimicrobials in chronic wound therapy.83–88 Calcium (Ca), an alkaline earth metal, is useful in all 
phases of chronic wound treatment.89 Calcium ions (also known as coagulation factor IV) can trigger an endogenous 
coagulation cascade reaction with other coagulation factors during the hemostatic phase, accelerating the synthesis of 
thrombin to promote coagulation.79 During the inflammatory phase, calcium regulates neutrophil function,90 and it is also 
a major regulator of multiple signaling pathways that promote keratinocyte differentiation and regulate angiogenesis 
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during the proliferative and remodeling phases.91 Some transition metal ions also have positive implications for chronic 
wound treatment. For example, iron ions can sterilize wounds by local production of ROS via the Fenton reaction,56 and 
copper plays a key role in skin regeneration and angiogenesis and accelerates the healing process through induction of 
vascular endothelial growth factor (VEGF) and angiogenesis by hypoxia-induced factor 1-alpha (HIF-1α) action.92

Table 1 Different Combinations of MPNs for Chronic Wound Treatment

Metal Element Types Metal Ions Polyphenols Mechanism of Action Application Form Refs.

Transition metal 
elements

Fe2+ TA NIR/DHA dual-augmented chemodynamic 
antibacterial therapy

Nanoparticles [56]

Fe3+ TA Polyphenol fractions synergize with metal ions 
to produce ROS to damage bacteria

Coating [66]

Fe3+ TA Anti-inflammatory by inhibiting macrophage 
proliferation

Coating [67]

Fe3+ TA Bactericidal and antioxidant biological activity Nanoparticles [68]

Fe3+ TA Bactericidal activity, photothermal properties, 
free radical scavenging ability, and anti- 

inflammatory effects

Aerogel [69]

Fe3+ EGCG Repolarization of M1 macrophages to M2 
phenotype for photothermal antibacterial and 

anti-inflammatory

Nanoparticles [70]

Fe3+ GA Promotes in situ production of ROS for 
hyperglycemic wound sterilization

Nanoparticles [57]

Fe3+ TA, OPC, 
EGCG

Photothermal sterilization and wound healing Nanoparticles [71]

Fe3+ GAG Eliminates infection, reduces oxidative stress 
and inflammation, and promotes angiogenesis

Hydrogel [72]

Cu2+ TA Photothermal sterilization and wound healing Hydrogel [73]

Cu2+ EGCG, kCA Scavenging excessive intracellular ROS by 
releasing EGCG

Hydrogel [74]

Zn2+ EGCG Zn2+ enhances the secretion of VEGF to 
promote angiogenesis, EGCG to scavenge ROS

MPN Capsules [75]

Ti4+ PDA PDT/PTT/SDT synergistic antimicrobial therapy 
with dual excitation of NIR and ultrasound

Nanoparticles [76]

Ti4+, Zn2+, Co2+, Ni2+, 
Fe3+, Cu2+

TA Metal ion sterilization Hydrogel [77]

Rare earth metal 
elements

Yb3+ CAT, EGCG, 
BWT

Yb3+ replaces the binding site for calcium ions 
in the bacterial cell membrane and affects 

bacterial calcium uptake

Membrane Materials [78]

Alkaline earth metal 
elements

Ca2+ TA TA as a vasoconstrictor and Ca2+ as coagulation 
factor IV

Nanoparticles [79]

Precious metal 
elements

Ag+ TA, CS Metal ion sterilization, TA antioxidant, and CS 
promotes hemostasis

Frozen gel [80]

Ag+ PEG- 
polyphenol 
polymer

Ultrasound activated release of silver ions, 
ultrasonic conditions to produce ROS 

sterilization

Nanoparticles [58]

Ag+ GA Silver ions damage bacteria through direct 
contact

Hydrogel [81]

Common metal 
elements

Ga3+ CS Ga3+ as a “Trojan horse” substitute for Fe3+ 

affects iron metabolism in bacteria
Coating [82]
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Polyphenols are secondary metabolites that are widely distributed in fruits and vegetables.93 Natural polyphenols are 
plant-derived organic molecules whose structure is characterized by the presence of two or more phenol units.36,43 

Depending on the chemical structure, natural polyphenols can be divided into different classes: flavonoids, phenolic 
acids, stilbene, lignans, etc.64 Common natural polyphenols used in chronic wound treatment include epigallocatechin 
gallate (EGCG), epigallocatechin gallate (EGC), epigallocatechin gallate (ECG), CAT, TA, quercetin, proanthocyanidins, 
gallic acid (GA), etc.94 These natural polyphenols have excellent biomedical functions, and they can be used not only as 
therapeutic agents for antitumor, antioxidant, anti-inflammatory, and antibacterial diseases but also as major component 
modules that play an important role in novel drug delivery systems.95–98 For example, Polyphenols can protect key 
cellular components from reactive free radical damage, primarily due to their properties of activating antioxidant 
enzymes and mitigating oxidative stress and inflammation.97 It also inhibits or isolates reactive oxygen species and 
transfers electrons to free radicals, thereby avoiding cellular damage.99 It has a regulatory role in glucose metabolism and 
holds great promise in diabetes prevention and intervention. It also prevents cardiovascular disease by regulating blood 
pressure and lipids.100 The multiple hydroxyl groups of natural polyphenols allow them to exhibit strong adhesion not 
only with inorganic molecules (eg, silicon-based materials and metals) through covalent or non-covalent interactions,41 

but also easily with biomolecules through hydrogen bonding and non-covalent interactions for better attachment to the 
wound surface for a longer-lasting therapeutic effect of the material.101

The assembly of MPNs is mainly based on the pH dependence of the ligand bonding between the catechol moiety and 
the metal ion as the crosslinking unit.37 The presence of catechol or catechol groups in phenolic compounds provides 
binding sites for the chelation of metal ions. Depending on the pH, monocomplexes, bicomplexes or tricomplexes can be 
formed.102 Two adjacent phenol groups in polyphenols can be complex with metal ions in the form of oxygen-negative 
ions to form stable five-membered cyclic chelates. The third phenol light group in the structure of o-benzenetriol, 
although not involved in the complexation, can promote the dissociation of the other two phenol light groups, thus 
contributing to the formation and stabilization of the final complex.103

Treatment Mechanisms of MPNs for Chronic Wounds
Organismal wound healing is a dynamic process consisting of four consecutive, overlapping, and precisely regulated 
phases: the hemostatic phase, the inflammatory response phase, the proliferative phase, and the remodeling phase104–106 

(Figure 1). Hemostasis is the first stage of wound healing. When the skin is injured, rapid vasoconstriction and collagen 
exposure in the subendothelial matrix cause platelet aggregation and platelet plug formation.107 In addition, the 
coagulation cascade is activated and soluble fibrinogen is converted to insoluble chains and forms a fibrin network, 
which binds to the platelet plugs to form a thrombus, thereby stopping bleeding.108 Next, the normal wound enters the 
inflammatory response phase, where its microenvironment contains a variety of reactive cells and their regulatory factors 
that adequately and accurately promote neovascularization.109 For example, leukocytes recruited to the wound may 
secrete appropriate concentrations of ROS and proteases to help fight bacteria and foreign pathogens, while wound 
endothelial cells also secrete growth factors that promote extracellular matrix (ECM) remodeling.9 During the prolif-
erative phase of wound healing, healing processes such as re-epithelialization and neovascularization occur simulta-
neously. Fibroblasts synthesize new ECM and aid in wound contraction and also act as scaffolds for newly synthesized 
ECM, neovascularization, and inflammatory cells to promote wound tissue reconstruction.110,111 The remodeling phase 
includes the degradation of neovascularization, periodic deposition of ECM, and subsequent remodeling of granulation 
and scar tissue.112

However, in chronic wounds, due to the presence of bacteria and endotoxins, the levels of inflammatory factors are 
abnormally elevated, causing the wound to enter a vicious cycle of inflammatory response. Bacterial biofilms interact 
with the host immune system through the activation of pro-inflammatory macrophages and neutrophils, leading to the 
accumulation of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), as well as 
metallo-matrix protease (MMP) and promoting sustained inflammation.3 Failure of normal secretion of inflammatory 
factors and macrophage differentiation at the wound site leads to programmed anti-inflammatory modulation and 
antimicrobial failure.113,114 In addition, poor circulation and impaired angiogenesis in the wound site camp lead to 
inadequate nutrient and oxygen supply, aging of fibroblasts, reduced cell proliferation, impaired collagen production and 
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deposition, and failure of ECM remodeling.109,115 In brief, chronic wounds suffer from three main problems: first, 
bacterial infection; second, a chronic state of inflammatory imbalance; and third, the lack of a suitable environment to 
promote cell migration, proliferation, and angiogenesis.4 Ingeniously, recent studies have shown that MPNs can 
simultaneously achieve multiple goals required for wound healing, including antimicrobial, immunomodulatory, and 
regenerative effects, enhancing a beneficial healing environment while disrupting pathogenic mechanisms.

Hemostasis
Hemostasis is a complex process. In this process, vasoconstriction accelerates the formation of coagulation factors, which 
in turn activates platelets to form platelet hemostatic plugs for wound blockage, realizing initial hemostasis. Then, the 
soluble fibrinogen in plasma will be converted into insoluble fibrin and intertwined into a network to reinforce the 
hemostatic thrombus and achieve effective hemostasis. Chronic wounds, however, have poor coagulation function, low 
activity of coagulation factors, and fragile blood vessels at the wound site, leading to repeated wound rupture and 
continuous blood seepage, causing a delay in wound healing. Therefore, hemostasis is one of the first key problems that 
should be overcome in the treatment of chronic wounds.69

TA is a hemostatic adhesive that can adhere to tissues around wounds and directly interact with proteins in the blood 
to promote hemostasis. Based on this, Chen et al prepared mesoporous silica nanoparticles (Ca-TA-MSN@Ag) modified 
by tannic acid (TA), silver nanoparticles, and calcium ions. During the coagulation process, TA plays the role of 
vasoconstriction, and Ca-TA-MSN@Ag with a high specific surface area and large pore volume can induce erythrocyte 
aggregation and form a three-dimensional network structure with fibrin to accelerate coagulation. In addition, calcium 
ions as coagulation factor IV and the negative charge of Ca-TA-MSN@Ag accelerated the coagulation cascade reaction 

Figure 1 The wound healing process in normal (A) and chronic (B) wounds. As shown in Figure A, under normal conditions, when the skin is damaged, the coagulation 
cascade is activated and the wound first enters the hemostatic phase. Subsequently, immune cells are enriched in the wound, sterilizing and releasing inflammatory factors. 
After sterilization is completed, the proliferation phase is entered, the inflammatory response gradually subsides, and the M1 phenotype macrophages polarize to the pro- 
repairing M2 phenotype, creating good conditions for cell proliferation and angiogenesis. In the remodeling stage, the level of growth factors increased, the granulation tissue 
and scar tissue remodeled, then the skin basically returned to normal shape. However, in chronic wounds (B), coagulation factor activity is lower, coagulation function is 
poorer, and after initial hemostasis is completed, the wound enters the inflammatory response phase. Due to the protection of the bacterial biofilm, the bacteria cannot be 
completely removed, and the M1 phenotype macrophages are unable to polarize to the pro-repairing M2 phenotype, resulting in the wound persisting in the inflammatory 
response phase. At this time, wound angiogenesis is impaired, cell proliferation is reduced, fibroblasts are aged, collagen production and deposition are impeded, and the 
extracellular matrix cannot be remodeled.
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(Figure 2A and B). These three synergistic effects on an animal model showed that Ca-TA-MSN@Ag reduced the 
hemostatic time by nearly 50% compared to mesoporous silica. The good biocompatibility and bacteriostatic activity 
(~99%) of Ca-TA-MSN@Ag suggest that it is a promising biomaterial for clinical applications.79

Figure 2 MPNs treat chronic wounds by hemostasis. Potential hemostatic (A) and antimicrobial (B) mechanisms of Ca-TA-MSN@Ag. Reprinted from Chen JW, Qiu LP, Li 
QL, et al. Rapid hemostasis accompanied by antibacterial action of calcium crosslinking tannic acid-coated mesoporous silica/silver Janus nanoparticles. Mat Sci Eng C-Mater. 
2021;123:111958, Copyright 2021, with permission from Elsevier.79 (C) CS/Ag/TA cryogel before and after blood absorption. Hemostasis time (D) and blood loss (E) in a rat 
liver injury model treated with gauze, CS and CS/Ag/TA cryogel. **p-value < 0.01. Reprinted from Xu G, Xu N, Ren TJ, et al. Multifunctional chitosan/silver/tannic acid 
cryogels for hemostasis and wound healing. Int J Biol Macromol. 2022;208:760–771, Copyright 2022, with permission from Elsevier.80
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The ability to enrich blood cells is also a key factor in assessing the hemostatic function of hemostatic materials. 
Therefore, Xu et al prepared a multifunctional cryogel CS/Ag/TA, which has great potential in hemostasis and wound 
healing. The water absorption and hemocyte adhesion functions of CS/Ag/TA enable it to capture a large number of 
hemocytes in a short period, which provides strong hemostatic ability (Figure 2C). The porosity of CS/Ag/TA ensures 
that the material has good mechanical strength, which gives it the shape memory capability while creating a comfortable 
microenvironment for cell proliferation. In addition, Ag NPs introduced as antimicrobial materials can effectively inhibit 
Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli with good antimicrobial effect and low 
cytotoxicity. The natural polyphenol TA in CS/Ag/TA can scavenge free radicals and control oxidative stress in wounds, 
in addition to acting as a cross-linking agent to improve the mechanical properties of the gel. The above advantages 
suggest that it is expected to be used as a hemostatic and pro-wound healing material for clinical applications.80

Antibacterial
Antimicrobial therapy is a priority in the treatment of chronic wounds because they are often accompanied by bacterial 
infections.4 Currently, widely acceptable antimicrobial mechanisms of MPNs include: 1) release of metal ions to disrupt 
bacterial cell membranes; 2) generation of ROS to damage bacteria and their biofilms; and 3) interaction with proteins, 
polypeptides, deoxyribonucleic acid (DNA), and other substances to damage and affect their functions.

Antimicrobial metal ions have been used in the treatment of infections and can damage bacteria by direct contact with 
them and their biofilms, but their application has been limited by greater cytotoxicity. Recent studies have reduced the 
undesirable cytotoxic and genotoxic effects caused by Ag NPs alone as well as bimetallic antimicrobial systems (eg, Fe- 
Ag, Pt-Pd, Co-Au, etc.) through the introduction of MPNs doped with polyphenolic compounds or metal ions (Fe3+, Al3+, 
Sm3+, etc.), which have dramatically improved their biocompatibility and made it possible to design safer and more 
effective materials for biomedicine.116–120 For example, in the study of Hu et al, silver nanoparticles modified with gallic 
acid (GA@AgNPs) were enriched with carboxyl groups, which could chelate with divalent ions in the gel network and 
form ionic bonds with sodium alginate (SA), strongly immobilizing the silver nanoparticles in the hydrogel network. Ag+ 

was sustainably released from the GA@AgNPs-SA hydrogels, with a cumulative leaching rate of 8.74% over seven days. 
Cellular experiments showed that it possessed good cytocompatibility, and the bacterial morphology treated with the gel 
exhibited significant cell membrane rupture and cell shrinkage or rupture, suggesting that the GA@AgNPs-SA hydrogel 
exhibited excellent bactericidal ability.81

Due to the presence of multiple phenolic hydroxyl groups in polyphenols, they exert antioxidant effects mainly by 
scavenging reactive oxygen species when used alone.121 However, when polyphenols are used as constituent structures to 
prepare with metal ions to obtain MPNs, polyphenols can enhance the Fenton reaction by reducing metal ions in high 
oxidation states to metal ions in low oxidation states, which improves the reutilization of metal ions,122 thus produce 
more ROS to cause damage to bacteria. For example, Arakawa et al showed that the tea polyphenol EGCG can react with 
dissolved oxygen in an alkaline aqueous solution and act as a pro-oxidant for auto-oxidation by generating hydrogen 
peroxide (H2O2).123,124 Based on this, Chen et al synthesized eight metal-EGCG networks and experimentally verified 
that metal ions can accelerate the production of H2O2 from EGCG, while Fe3+ can further catalyze the decomposition of 
hydrogen peroxide to generate ·OH, which is effective against bacteria and their pathogenic biofilms125 (Figure 3). Xie 
et al synthesized Ag@Cu alloy nanostructures (Ag@Cu-MPNNC) employing iron (III)-tannic acid (FeIII-TA) MPN 
support, which could damage bacteria by producing high levels of ROS, while the released Ag+ ions disrupted the 
bacterial cell membranes further contributing to the effective penetration of ROS into the cytoplasm and the oxidized 
intracellular contents. The coating exhibited effective antibacterial activity against both Gram-positive and Gram- 
negative bacteria without any off-target effects on mammalian cells. Importantly, Ag@Cu-MPNNC also showed 
significant therapeutic effects on wound healing in infected animals with infected skin wounds by reducing inflammation 
and promoting hemotransfusion remodeling of injured tissues.66

In recent years, studies on antibacterial mechanisms have gradually increased, and researchers have gradually devoted 
their attention to killing bacteria by delivering some agents that interact with other components such as bacterial 
membrane proteins and secreted proteins. For example, siderophore is a low molecular weight substance secreted by 
microorganisms, such as bacteria and fungi, that efficiently binds iron in the surrounding environment to form stable 
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chelates with it. Since Ga3+ is similar to Fe3+ in terms of radius, electronegativity, charge, and coordination number, it 
can replace iron as a “Trojan horse” against bacteria. Ga3+ in the environment can be taken up by bacteria through their 
iron carrier system, and since Ga3+ is not reducible, the continuous oxidation and reduction cannot continue, preventing 
the critical oxidation of iron (from Fe2+ to Fe3+), which in turn affects the normal physiological metabolism of 

Figure 3 MPNs treat chronic wounds with antimicrobial therapy. (A) Schematic diagram of the MPN formed by 8 metal ions and EGCG to promote H2O2 production by 
EGCG. (B) Antimicrobial screening experiments. Growth inhibition curves of EGCG, Zn2+, Mn2+, Ni2+ against E. coli at specified time and concentration. (C) Bacterial 
culture experiment of E. coli with MEN. Reprinted from Chen S, Yan Y, Yu Y, et al. Ferric Ions as a Catalytic Mediator in Metal-EGCG Network for Bactericidal Effect and 
Pathogenic Biofilm Eradication at Physiological pH. Adv Mater Interfaces. 2021;8(23):2101605, Copyright 2021, with permission from John Wiley and Sons.125
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bacteria.126,127 Based on this, Ghalayani Esfahani et al designed chitosan (CS)/gallium (Ga) composite coatings, which 
were applied to implant surfaces by electrophoretic deposition. It was shown that the CS/Ga coatings on orthopedic 
implants showed good bactericidal activity and biocompatibility, and could effectively reduce infections in orthopedic 
implant applications.82 It has also been shown that rare earth ions ytterbium ions, whose ionic radius is close to that of 
calcium ions, can displace calcium ions in the binding sites on cell membranes and thus inhibit microbial growth. Natural 
polyphenolic compounds possess a large number of phenolic hydroxyl groups, which can be used to capture metal ions 
and immobilize them on the substrate, giving new properties to the materials. Thus, Liu et al synthesized an antimicrobial 
membrane material by covalently bonding ytterbium ions (Yb3+) to the plant polyphenols catechin (CAT), EGCG, and 
black catechin (BWT) and immobilizing them on a polyamide membrane, which can prevent biofilm-induced associated 
infections in a safe, inexpensive, and sustainable manner.78

Anti-Inflammatory
Inflammation is a natural defense response to irritants such as infection, injury, and toxins.128–130 However, excessive and 
uncontrolled inflammation has been shown to contribute to many diseases such as cardiovascular disease, hepatitis, 
nephritis, and delayed wound healing.9,131 For chronic wounds, infection by bacteria and their biofilms, failure of the 
body’s immune regulation, and hypoxia in the wound microenvironment all contribute to the persistence of wound 
inflammation. Macrophages are the most abundant immune cells during the inflammatory phase and are crucial in the 
healing process.132,133 However, failure of macrophages to polarize from pro-inflammatory (M1 phenotype) to reparative 
(M2 phenotype) phenotypes may also lead to chronic wounds.3,134,135 At this time, macrophages of the M1 phenotype are 
impaired in scavenging apoptotic neutrophils, and overexpressed inflammatory mediators [eg, IL-17, TNF-α, inducible 
nitric oxide synthase (iNOS), and ROS] accumulate in the wound, which will negatively affect the wound microenvir-
onment. In contrast, macrophages of the M2 phenotype, known as healing-associated macrophages, can secrete 
chemokines, cytokines, and growth factors, such as TGF-α, TGF-β, and VEGF, which are beneficial for stimulating 
the proliferation of wound cells and initiating angiogenesis.3 Polyphenols are one of the important anti-inflammatory 
components in MPNs, some of which can act directly on inflammatory response pathways to affect macrophage 
polarization, for example, by inactivating the nuclear factor-kappa light-chain enhancer (NF-κB), which activates 
B-cells, and by regulating the mitogen-activated protein kinase (MAPK) and arachidonic acid pathways.136 For example, 
Corrêa et al investigated the effects of a Brazilian red propolis extract that contains several polyphenolic fractions 
(catechins, flavonols, chalcones, isoflavones, isoflavans, pterocarpans, and bioflavonoids) on inflammation and wound 
healing in mice, and found that the extract could down-regulate the expression of the inflammatory transcription factor 
pNF-κB protein and reduce the secretion of inflammatory cytokines (eg, TGF-β, TNF-α) and IL-6, which had a positive 
effect in the wound healing process.137 In addition, due to their antioxidant activity, polyphenols can exert anti- 
inflammatory effects by scavenging ROS or inhibiting certain enzymes involved in the production of ROS, such as 
xanthine oxidase and NADPH oxidase, thereby slowing down the induction of ROS on macrophages, promoting the shift 
of macrophages from a pro-inflammatory M1 phenotype to a pro-repairing M2 phenotype, and facilitating wound 
remodeling.136,138

As the most abundant polyphenol in green tea, EGCG has been reported to be a potent anti-inflammatory agent through 
the repolarization of macrophages from M1 to M2 phenotype.70,139,140 Unfortunately, its poor bioavailability and rapid 
metabolism severely limit its application. To address this problem, Xu et al designed Fe3+/EGCG-based photothermite 
nanoparticles (BSA@MPN) by self-assembly of Fe3+ and EGCG using BSA as a nanoreactor and colloidal stabilizer. Based 
on the high photothermal conversion efficiency of Fe3+/EGCG-based MPNs in the NIR region and the fact that BSA@MPN 
can be decomposed in infected tissues with the continuous release of acidic pH after photothermal sterilization treatment. 
The delivery of EGCG through this nanosystem enhanced the colloidal stability and biosafety of EGCG. Due to the release 
of EGCG, BSA@MPN repolarized M1 macrophages to M2 phenotype, which successfully achieved a satisfactory 
therapeutic effect of combined photothermal antimicrobial and anti-inflammatory treatment70 (Figure 4A).

In addition, due to the antioxidant activity of polyphenols, they can indirectly exert anti-inflammatory effects by 
scavenging ROS. For example, Li et al developed a TA-engineered non-porous copper (II) nanoplatforms (Cu-PTA NPs) 
for antibacterial and anti-inflammatory synergistic therapeutic use. Cu-PTA NPs have a ROS-stimulated responsive 
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Figure 4 MPNs treat chronic wounds through anti-inflammation. (A) Schematic representation of the synthesis of BSA@MPN and its application in antibacterial and anti- 
inflammatory therapy. Reprinted from Xu YY, Cai YJ, Xia Y, et al. Photothermal nanoagent for anti-inflammation through macrophage repolarization following antibacterial 
therapy. Eur Polym J. 2023;186:111840, Copyright 2023, with permission from Elsevier.70 (B) Scheme illustrates that stimulated by LPS, M0 macrophages transformed to M1 
phenotype in the pro-inflammatory phase. Treated with Cu-PTA NPs, the macrophages experience polarization and differentiate into M2 phenotype. (C) Quantitative 
analysis of TNF-α levels using ELISA kit in LPS-treated RAW264.7. (D and E) Fluorescent intensity quantitated by Image J culturing in LPS with Cu-PTA NPs for 24 h with 
immuno-fluorescent stained iNOS and CD206. (F) Representative morphology of macrophage under LPS stimulating and skeletal polarization over 4/24 h in the absence or 
presence of 25 μg mL−1 Cu-PTA NPs. Scale bar = 20 μm; ns, p-value > 0.05, **p-value < 0.01, ***p-value < 0.001. Reprinted from Li DY, Li JR, Wang SW, Wang QM, Teng 
W. Dually Crosslinked Copper-Poly (tannic acid) Nanoparticles with Microenvironment-Responsiveness for Infected Wound Treatment. Adv Healthc Mater. 2023;12-
(17):2203063, Copyright 2023, with permission from John Wiley and Sons.139
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release mode, which is a structure that allows for ROS-responsive degradation of the bacterial infected region and on- 
demand release of Cu2+, significantly prolonging the antimicrobial period and minimizing side effects. In addition, the 
degradation of Cu-PTA NPs scavenges ROS, which can subsequently promote macrophage M2 polarization and facilitate 
angiogenesis by upregulating M2 phenotype-related gene expression, thereby systematically promoting infected wound 
healing139 (Figure 4B–F).

Removal of Excessive ROS
ROS, which are produced early in wound formation and are essential for wound healing, are the primary reactive 
substances for the immune system to exert antimicrobial activity during inflammatory processes. Trace amounts of ROS 
can recruit neutrophils and other leukocytes to the wound site and act as signaling molecules to activate epithelial 
signaling pathways involved in epidermal regeneration.77,141 Subsequently, these ROS are usually rapidly neutralized by 
non-enzymatic and enzymatic antioxidants, thereby maintaining oxidant/antioxidant balance and hence tissue 
homeostasis.142 However, oxidative stress from uncontrolled ROS production or depletion of the antioxidant system 
may lead to inappropriate or defective wound responses and promote chronic injury and inflammation. In chronic 
wounds, neutrophils and monocytes produce excess ROS, activate NF-κB, and upregulate MMP-9. Excess unregulated 
MMP-9 disrupts the ECM and prevents wound healing. In addition, advanced glycosylation end products (AGEs) in 
diabetic wounds can induce excessive ROS production, leading to severe oxidative damage and aging of the ECM and 
cell membranes, which ultimately results in poor angiogenesis and re-epithelialization, insufficient growth factor 
production, and prolonged inflammatory response.131,141

To achieve sustained release of the polyphenol EGCG, which can play a role in scavenging ROS,143 Zeng et al 
designed and prepared a multifunctional hydrogel (SC-E@Cu) dressing containing N-methacryloyl true silk phenan-
threne, k-type carrageenan (kCA), EGCG and Cu2+. The polyphenol-metal functional complexes and ion-covalent 
entanglement networks were formed by introducing Cu2+, and the mechanical properties of the gels were enhanced. In 
addition, Cu2+ chelated with EGCG to form an EGCG-Cu2+ complex, which could continuously release EGCG. The 
phenolic hydroxyl structure of EGCG makes it easy to release protons and can effectively capture ROS. It was shown 
that the structure has sufficient mechanical strength, excellent antimicrobial properties, controlled antioxidant action, and 
good biocompatibility, providing a new strategy for chronic wound care74 (Figure 5).

Oxygen free radicals play a key role in inflammatory processes; therefore, nanocarriers with free radical scavenging 
properties may have anti-inflammatory and cytoprotective effects. Inspired by MPNs, Qin et al introduced a metal- 
phenolic assembly strategy into the field of starch science to prepare a novel multifunctional modified starch. Two series 
of novel multifunctional modified starch nanoparticles (MPN@DBS-NPs and MPN@SNCs) were obtained based on the 
introduction of TA and iron ions. The functionalized cellular assay confirmed the non-toxicity and high biocompatibility 
of MPN@DBS-NP, which has good prospects for application.68

TA is a common antioxidant that has been reported to eliminate various types of free radicals and is beneficial for the 
healing of damaged skin.41 MPNs represented by iron tannate (TA-Fe) complexes have shown many fascinating 
properties in skin wound care, including bactericidal activity, photothermal properties, free radical scavenging ability, 
anti-inflammatory effects, etc. Li et al reported an alginate-based aerogel dressing (TA-Fe MPN) with application to 
photo-thermally-responsive antimicrobial wound dressings. It combines photothermal bactericidal activity, hemostatic 
properties, and free radical scavenging for disinfecting skin wounds and accelerating wound healing. After 10 days of 
treatment of MRSA-infected whole-skin wound model mice with this gel, the state of wound healing and recovery of 
new hairs on the skin in the treated group showed comparable results to clinical antibiotic drugs, providing a viable route 
for photoactivated wound dressings.69

Promotion of Revascularization
The formation of neovascularization or new blood vessels is essential for wound healing. It provides oxygen, growth 
factors, and immune support to the healing tissues, thus allowing cell proliferation and tissue regeneration to occur.144 

However, in chronic wounds, excessive inflammatory response prevents or impairs the initial formation of microvascu-
lature, further disrupting ECM remodeling and causing delayed wound healing. For example, in diabetic patients, 
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Figure 5 MPNs treat chronic wounds by removing ROS. (A) Preparation of SC-E@Cu hydrogels with multifunctional properties for potential application in chronic wound 
treatment. Plate images of (B) E. coli and (C) S. aureus after co-culture with each dosing group. Relative bactericidal rates of each dosing group against (D) E. coli and (E) 
S. aureus. *p ≤ 0.5. Reprinted from Zeng ZW, Guo CP, Lu DH, Geng ZJ, Pei DT, Yu S. Polyphenol-Metal Functionalized Hydrogel Dressing with Sustained Release, 
Antibacterial, and Antioxidant Properties for the Potential Treatment of Chronic Wounds. Macromol Mater Eng. 2022;307(10):2200262, Copyright 2023, with permission 
from John Wiley and Sons.74
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a number of them develop a chronic wound complication, diabetic foot ulcer (DFU), caused by microvascular or 
macrovascular injury.8,145 Therefore, promoting wound angiogenesis and establishing normal tissue cell microcirculation 
at the wound site is also a critical component in the treatment of chronic wound injury.146

VEGF is a key dynamic molecule in angiogenesis, and several studies have shown that metal ions released from 
metal–phenolic networks have a significant promotional effect on VEGF production.147–149 Zinc-based metal- 
epigallocatechin gallate capsules (EGCG/ZnPs) prepared by Chen et al could reduce the in vitro cytotoxicity of VEGF 
by slow and sustained release of zinc ions (Zn2+) and cytotoxicity in vitro and in vivo, enhance VEGF secretion, and 
promote angiogenesis. EGCG can scavenge ROS and realize the improvement of microenvironmental oxidative stress. In 
a mouse limb ischemia model, EGCG/ZnPs significantly promoted angiogenesis and cell proliferation in ischemic 
tissues.75

Liu et al developed a controlled-release antimicrobial composite hydrogel system that also promotes wound 
angiogenesis and inhibits the development of inflammation through sustained release of Cu2+ and EGCG. The prepared 
SilMA/HAMA/Cu-EGCG hydrogels showed significant inhibitory effects on E. coli and promoted the proliferation and 
migration of L929 fibroblasts. In addition, the results of tube-forming experiments using matrix gels showed that the 
SilMA/HAMA/CuEGCG group had significant tubule formation and branching points, which was attributed to the fact 
that Cu2+ could increase the expression levels of PDGF-BB and VEGF and promote angiogenesis. In vivo whole-layer 
infected wound healing experiments confirmed its angiogenic and inflammation-modulating effects. Accelerated collagen 
deposition and accelerated wound healing were also observed, suggesting that this controlled-release antimicrobial 
composite hydrogel has great potential for application in chronic wound healing.150

Application of MPNs in Novel Therapies
Currently, clinical management of chronic wounds includes mechanical debridement, autolytic debridement, hyperbaric 
oxygen therapy, and the use of antimicrobial and anti-inflammatory drugs. These therapies may not only cause wound 
recurrence and expansion but also tend to trigger drug resistance, which prevents wound recovery and remodeling. In 
recent years, there has been a gradual increase in the number of novel therapies applied to chronic wounds. These drug- 
free therapies avoid drug resistance and can exert their therapeutic effects by other means, such as physical and chemical. 
Some novel therapies that play a therapeutic role based on ROS, such as CDT, PDT, and SDT, can better promote wound 
healing by locally modulating ROS levels at the wound site.151–154 In addition, PTT utilizes a photothermal agent that 
absorbs the energy of near-infrared (NIR) light and converts it into heat, effectively killing bacteria by disrupting the 
structure of their membranes, thus facilitating the wound’s timely entry into the recovery remodeling phase.155,156 

Compared with traditional therapeutic drugs, MPNs have the dual characteristics of metal ions and polyphenols, which 
can not only exert the properties of each component to achieve antibacterial, anti-inflammatory, and oxidative stress 
relief, but also interact with each other, and achieve the therapeutic effect of “1+1>2” through the novel therapeutic 
approach.

Chemodynamic Therapy Based on MPNs
Chemodynamic therapy (CDT) uses the chronic wound microenvironment Fenton reaction to produce highly toxic 
hydroxyl radicals (·OH) to achieve bactericidal treatment. Fenton and its associated reactions have attracted widespread 
interest in several fields due to the discovery by Henny J. Fenton that H2O2 can be activated by Fe2+ to oxidize tartaric 
acid.157,158 The reaction between Fe2+ and hydrogen peroxide (Fe2+ + hydrogen peroxide → Fe3+ + ·OH + hydroxide) 
can produce highly active ·OH. ·OH with high redox potential (E (·OH /H2O) = 2.8 V) can regulate cellular metabolism 
in the chronic wound microenvironment and act as a bactericidal agent to repel infection. Therefore, MPN materials 
containing multivalent metal ions based on this design can achieve the treatment of chronic wound infections by CDT 
and have negligible resistance to bacteria. For example, in Fenton-reactive nanosystems mediated by transition metal ion 
materials (eg, Fe2+ and Cu2+), high-activity low-valence state ions are oxidized to low-activity high-valence state ions 
(eg, Fe2+ is oxidized to Fe3+ and Cu+ is oxidized to Cu2+). As polyphenols contain multiple hydroxyl groups, they can 
exhibit reducing properties, and when containing 1,2,3-trihydroxyl or 1,3,5-trihydroxyl arrangement (eg, epicatechin 
gallate, epigallocatechin gallate, and gallic acid), the polyphenols are more antioxidant and have superior reducing 

International Journal of Nanomedicine 2023:18                                                                                   https://doi.org/10.2147/IJN.S434535                                                                                                                                                                                                                       

DovePress                                                                                                                       
6437

Dovepress                                                                                                                                                            Wang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


properties.122 Therefore, when the polyphenols with good reducing properties are introduced to construct MPNs, the 
transition metal ions can be realized from the high valence state (Fe3+) to the low valence state (Fe2+), which enhances 
the conversion of low-activity Fenton chemical ions to the high-activity chemical ions and improves the Fenton effect.

However, it is hindered by constant body temperature, lack of Fe2+ ions in infected tissues, and insufficient H2O2 

levels. To improve the therapeutic efficiency of CDT, Xu et al developed an infection microenvironment-responsive 
nanotherapy using dual near-infrared (NIR)/dihydroartemisinin (DHA) enhanced antimicrobial CDT. The antimicrobial 
nanoagent Fe2O3@DHA@MPN (FDM) was synthesized by wrapping α-Fe2O3 loaded with DHA in an MPN shell. The 
MPN component in this system played a multifunctional role. First, pH-induced degradation of MPN can induce the 
simultaneous release of TA and Fe2+ ions; second, MPN degradation can achieve the release of DHA at the site of 
bacterial infection, while the breakage of the weak internal peroxide bridge of DHA in the presence of Fe2+ ions lead to 
the generation of toxic ROS (alkoxyl radicals) mediating the onset of CDT. Third, Fe3+ ions generated in H2O2-mediated 
CDT can be reduced to Fe2+ ions by TA to achieve the sustainability of DHA-mediated CDT. Fourth, MPN coatings with 
excellent photothermal properties can be used for PTT and NIR-enhanced CDT. Fifth, the TA-mediated bacterial 
adhesion effect can enhance the bactericidal effect of nanoparticles.56

Due to the high systemic glucose concentration in diabetic patients, the sterile healing of infected skin wounds is 
severely hampered, while glucose oxidase can produce gluconate and H2O2 while consuming glucose, lowering the pH of 
the wound microenvironment while increasing the H2O2 level, thus achieving enhanced CDT. Based on this, Shi et al 
designed a smart natural product for high glucose wound microenvironment activation and synthesized GOx-GA-Fe 
nanoenzyme (GGFzyme). GGFzyme can consume high concentrations of glucose and produce hydrogen peroxide in 
hyperglycemic wounds. The conversion of glucose to gluconic acid lowers the pH of the wound microenvironment, 
thereby increasing the catalytic activity of the nanase (GA-Fe) and the natural enzyme (GOx), promoting efficient 
catalytic production of ·OH and O2- against pathogenic bacteria. GGFzyme is useful in eradicating methicillin-resistant 
staphylococcus aureus infections, relieving hyperglycemia, alleviating excess H2O2 caused by oxidative stress, and 
effectively promoting hyperglycemic wound healing in vivo.57

Photodynamic Therapy Based on MPNs
Photodynamic therapy (PDT) is a new technology that uses photodynamic action for the diagnosis and treatment of 
diseases. The basis of its action is photodynamic action, ie the reaction of cells to chemical agents, light, and 
oxygen.159,160 The process is that laser irradiation at a specific wavelength excites a photosensitizer absorbed by the 
tissue, and the excited state of the photosensitizer in turn transfers energy to the surrounding oxygen, generating highly 
reactive monomorphic oxygen, which reacts with adjacent biological macromolecules in an oxidative manner, producing 
cytotoxic effects that lead to cell damage and even death.161 The advantage of PDT over conventional therapies is its 
ability to deliver precise and effective treatment with minimal side effects. As far as the current study is concerned, the 
metal–phenolic network is not able to produce PDT therapy directly, but it can be used to achieve the treatment of 
chronic wound infections by augmenting PDT.59

Titanium dioxide is considered a promising PDT material, but its wide optical band gap (3.2–3.2 eV) allows it to be 
excited only by UV light, which has limited penetration into the skin, greatly limiting its clinical applications. To address 
this issue, Cheng et al proposed a novel ligand-metal charge transfer (LMCT)-mediated PDT strategy for titanium 
dioxide (TiO2) using polydopamine (PDA) involved in the formation of mesoporous TiO2@PDA nanoparticles (mTiO2 

@PDA NPs). In this nanoparticle, the catechol group of PDA enables it to tightly attach to TiO2 in a colloidal 
environment and also to form LMCT bridges, which are excited by 808 nm irradiation to transfer electrons to TiO2 

for PDT treatment. Combining the SDT) of TiO2 and the photothermal therapeutic properties of PDA, this simple 
structure mTiO2@PDA can achieve PDT/PTT/SDT synergistic antimicrobial therapy under the dual excitation of NIR 
and ultrasound, which can achieve good antimicrobial effect and rapid repair of infected wounds76 (Figure 6). This study 
showed that PDA molecules tend to form coordination bonds between the oxygen atom of catechol and the titanium atom 
of titanium dioxide. Hydrogen atoms in the other hydroxyl groups in catechol can form hydrogen bonds with the 
unsaturated oxygen in titanium dioxide. This leads to a promising research direction that electron transfer between tightly 
bound polyphenols and metal oxides can be achieved, resulting in enhanced PDT effects based on MPNs.
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Sonodynamic Therapy Based on MPNs
Ultrasound (US) is a non-invasive method to safely deliver physical energy to deep tissues of the body and has been 
widely used clinically for controlled drug delivery, vasodilation, and SDT.162,163 Ultrasound-triggered methods can 
achieve the on-demand release of antimicrobial agents when used for antimicrobial therapy, reducing the side effects of 

Figure 6 Application of MPNs in novel therapies. (A) Schematic diagram of NIR/US triggered PDT/PTT/SDT synergistic antibacterial action of mTiO2@PDA. (B) Images of 
skin wounds in each group at day 1 to day 10 (scale bar: 4 mm). (C) Changes of skin wound areas of different groups over time. (D) Representative changes of wound sizes 
over time. Reprinted from Cheng S, Qi ML, Li W, et al. Dual-Responsive Nanocomposites for Synergistic Antibacterial Therapies Facilitating Bacteria-Infected Wound 
Healing. Adv Healthc Mater. 2023;12(6):2202652, Copyright 2023, with permission from John Wiley and Sons.76
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antimicrobial agents on normal organs.154 In some studies, MPNs have been used as carriers of “acoustic sensitizers” to 
enable SDT treatment of chronic wound infections.

Ultrasound-driven Ag ion release is a promising strategy for antimicrobial therapy. In the study of Lu et al, 
they synthesized a P18-polyethylene glycol (PEG)-polyphenol polymer and then used the polyphenol to reduce Ag 
ions to Ag NPs for the preparation of P18-Ag NPs. The prepared PEG-P18-Ag NPs can produce ROS under 
ultrasonic conditions due to SDT. Such antimicrobial materials do not exert bacterial killing in vivo or in vitro The 
PEG-P18-Ag NPs exhibited strong bacterial inhibition against multidrug-resistant bacteria both in vivo and in vitro 
after ultrasonic activation. The promotion of ROS plays a key role in the bacterial killing process induced by PEG 
P18- Ag NPs. The results of this study provide a new approach for next-generation antimicrobial therapy.58

Photothermal Therapy Based on MPNs
Photothermal therapy (PTT) is a new minimally invasive treatment method that has been developed rapidly in recent years. It 
uses some photothermal agents (PTAs) with strong absorption in the near-infrared (NIR) light region to effectively convert 
the absorbed light energy into thermal energy under NIR irradiation to effectively kill bacteria by disrupting cell membranes, 
denaturing proteins and enzymes, cavitating cells, and evaporating cellular fluids to achieve therapeutic purposes.155,164 The 
ability of photothermal transduction is induced by electronic leaps between molecular/atomic orbital energy levels.165 Many 
studies have shown that MPNs also have photothermal effects, and their photothermal properties and photothermal stability 
are related to the species of metal ions and polyphenols. For example, the complexes of iron and polyphenols have strong 
absorption in the NIR region due to ligand interactions leading to electron leaps and atomic orbital splitting, which makes 
electron leaps after photothermal possible, and thus are suitable for PTT.

To realize PTT-dominated antimicrobial applications, Zhang et al constructed a series of core-shell 
GNRs@MPN nanodrugs by encapsulating GNRs in MPNs using a simple one-pot coordination reaction. They 
noticed that the photothermal conversion efficiency (η) of the procyanidin-constructed GNRs@MPNs was 44.0% 
by experimental comparison, and the antimicrobial performance was also superior to that of the GNRs made of 
tannins (η=38.14%), epigallocatechin gallate (η=29.29%), or simple GNRs (η=12.24%). The experiments on the 
mouse skin trauma model showed that the prepared GNRs@MPN also had excellent bactericidal properties in vivo 
and could promote the regeneration of wound epidermal tissues. This study provides suggestions for designing 
more MPNs with excellent photothermal properties71 (Figure 7).

In addition, Lin et al attempted to prepare a chitin-polyphenol-metal hydrogel framework using a series of polyphenols (gallic 
acid, tannic acid, quercetin, pyrrole aldehyde, and protocatechuic acid) and metal substrates (Fe, Cu, Ti, Zn) and verified their 
photothermal properties and therapeutic effects, respectively. The experimental results showed that the chitin-TA-Cu hydrogel 
exhibited significant photothermal antibacterial activity, and the photothermal effects of Cu and hydrogel materials could also 
synergistically promote cell proliferation and angiogenesis, ultimately accelerating the healing of infected wounds.73

He et al designed a multifunctional hydrogel (OGF) with ROS scavenging and photothermal antimicrobial activity based 
on oxidized dextran (Odex), gallic acid grafted gelatin (GAG), and trivalent iron ions for the treatment of infected wounds in 
diabetic mice. The hydrogels are double cross-linked by dynamic Schiff base bonds formed between the aldehyde group in 
Odex and the amino group in GAG and metal-ligand bonds formed between the iron ions and the polyphenol groups or 
carboxyl groups in GAG, resulting in good injectability, self-healing and adhesion properties of the resulting OGF hydrogels. 
Due to the efficient photothermal effect of the iron ion/polyphenol chelate, the hydrogel can rapidly and completely kill 
Staphylococcus aureus and Escherichia coli within 3.5 min under near-infrared light radiation. In addition, the combined 
hydrogel has good antioxidant, hemostatic, and biocompatible properties. It also significantly accelerated the complete re- 
epithelialization of S. aureus-infected wounds in diabetic mice within 18 days by eliminating infection, reducing oxidative 
stress and inflammation, and promoting angiogenesis.61

Conclusion and Outlook
In recent years, metal–phenolic networks have gradually increased in various applications such as anti-inflammatory,50,51 

antibacterial,36 and antitumor.166 Since they can functionally combine the dual advantages of metal ions and polyphenols 
in structures that can be prepared in various forms such as nanoparticles, gels, and coatings, and structures with multiple 
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Figure 7 Application of MPNs in novel therapies. (A) Preparation scheme and antimicrobial mechanism of GNRs@MPNs. (B) The scheme of in vivo anti-infection 
treatment with GNRs@MPNs in a mice model. (C) Photographs of the MRSA-infected wound treated with different formulations for 8 days (scale bar, 1 mm). (D) The bar 
graph of relative wound areas infected by MRSA after various treatments. (E) The tissue photomicrographs of MRSA-infected wounds with H&E staining after different 
treatments (scale bar, 0.5 mm). Reprinted from Zhang CY, Huang LJ, Sun DW, Pu HB. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex- 
evolved biocompatible bactericidal activity. J Hazard Mater. 2022;426:127824, Copyright © 2021 The Author(s). Published by Elsevier B.V. Creative Commons CC-BY.71
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therapeutic effects can be designed based on MPNs, research on this material has gradually increased. Some articles have 
summarized their applications in cancer diagnosis,64,167,168 antibacterial,41 etc., while the summary of MPNs in chronic 
wound treatment is still incomplete. In this paper, we compile how MPNs have been designed by researchers for 
application in chronic wound treatment in recent years. Due to the selectivity of MPN components, MPNs based on their 
use with multiple therapies for chronic wound treatment are also very beneficial for wound repair and remodeling, so this 
is also a direction of interest for researchers.

However, there are some shortcomings in the current studies of MPNs applied to chronic wounds. First, the design 
systems in some studies are more complex and the synthesis steps are cumbersome, which is not conducive to industrial 
production and clinical translation. Second, the issue of the potential safety of MPNs and their composites has not been 
carefully discussed. Third, the molecular mechanism of MPNs used in anti-inflammatory, antibacterial, and vascular 
neovascularization-promoting therapies is still unclear, but this is crucial for us to gain a deeper understanding and 
expand the application of MPNs. Fourth, the quantitative efficacy of MPNs applied to therapies such as CDT, PTT, and 
PDT is uncertain and there are no quantitative pharmacological studies, which is, however, a critical issue before clinical 
translation.71 Furthermore, regarding oxidative stress in chronic wounds, there is still a debate on exactly how ROS levels 
should be adjusted to accommodate the wound recovery process.77

Due to the great number of advantages of MPNs, there are many directions for their future research. First, exploring 
more natural and artificial polyphenolic materials with specific properties to design some MPNs with a simple synthesis 
process for clinical translation. Second, there is an urgent need for large-scale studies to evaluate the long-term safety of 
MPNs and their composites, to provide a comprehensive understanding of their biocompatibility, potential adverse 
reactions, and complications. Thirdly, in-depth research should be carried out to clarify the molecular mechanisms by 
which MPNs exert their therapeutic effects, to lay the foundation for expanding the application of MPNs. Fourth, to 
establish assays, pharmacokinetic, and pharmacodynamic investigation protocols for MPNs-based drug delivery systems 
in preparation for clinical translation and individualized drug delivery of MPNs-based drugs. Fifth, to design materials 
with better ROS response for rational wound oxidative stress regulation. For example, designing multifunctional 
materials that can perform different therapeutic roles as chronic wound recovery progresses.169,170 In the early stages 
of chronic wound treatment, the main role is to target the bacterial infection and inflammatory imbalance of the wound, 
while when the wound enters the proliferative and remodeling phase, it can achieve the promotion of neovascularization, 
collagen deposition, and remodeling of the ECM. Currently, the platforms of combined therapeutic strategies, multi- 
response delivery vehicles, and natural biomaterials with MPNs as the main body of the structure are developing rapidly 
and many research results have been achieved. Although there is still a long way to go from conceptual design to actual 
clinical therapeutic products, metal–phenolic networks have provided biomedical practice with unique ways to design 
functional nanomaterials and new means to overcome long-standing scientific and technological problems in the clinic, 
and it is believed that the research on MPNs can also be taken to the next level and ultimately benefit human health.
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