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Abstract

Previous efforts to determine structures of non-coding RNA (ncRNA) probed only one RNA at a 

time with enzymes and chemicals, using gel electrophoresis to identify reactive positions. To 

accelerate RNA structure inference, we have developed FragSeq, a high-throughput RNA 

structure probing method that uses high-throughput RNA sequencing on fragments generated by 

nuclease P1, which specifically cleaves single stranded nucleic acids. In experiments probing the 

entire mouse nuclear transcriptome, we show that we can accurately and simultaneously map 

single-stranded regions (ssRNA) in multiple ncRNAs with known structure. We carried out 

probing in two cell types to demonstrate reproducibility. We also identified and experimentally 

validated structured regions in ncRNAs never previously probed.
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Introduction

Many RNAs function as folded, structured molecules rather than as protein-encoding 

messengers. In fact, highly conserved, structured non-coding RNAs (ncRNAs) essential to 

basic cellular processes represent the majority of a cell's RNA. Such ncRNAs are 

responsible for translation, pre-mRNA splicing, histone mRNA maturation, guiding RNA 

modifications, and other essential cellular processes1. Recent genome-wide transcriptome 

analyses in multiple organisms indicate that many regions of the genome are transcribed into 

ncRNAs, leading to discoveries of low-abundance, functional RNAs that were previously 

missed2, 3. Several new classes have emerged in the last decade, such as microRNAs, large 

intergenic non-coding RNAs (lincRNAs), and promoter- or termini-associated short 

RNAs3-5. The functions of most of these ncRNAs remain undiscovered. Because many 

abundant ncRNAs function as folded structures, it is likely that some of these less abundant 

ncRNAs also fold to perform their cognate functions.

Determination of RNA structure is largely performed by biochemical experiments that probe 

one RNA sequence in solution. Chemical agents or nucleases that react with RNA bases 

depending on their structural context can help distinguish between bases that participate in 

base pairing and other stabilizing interactions versus bases that do not6. Recent advances in 

probing by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE)7 enable 

faster, higher-quality probing, but still focus on just one RNA sequence per experiment.

In contrast, computational structure prediction methods allow rapid, large-scale analyses of 

many RNA sequences. In addition to methods rooted in comparative sequence analysis, 

which require several RNA sequences with a conserved structure, there exist methods that 

predict structure from a single sequence and are useful for RNAs for which structural 

homologs are not known or that undergo lineage-specific structure changes and thus lack 

structure conservation. Such methods provide theoretical folds for a RNA sequence, usually 

using thermodynamic models8. While generally powerful, they often suffer from ambiguity 

since they can predict several different structures for a sequence, necessitating biochemical 

data to choose amongst candidate folds.

To draw on both the speed of computational methods and the quality of RNA probing 

experiments, we developed FragSeq (“fragmentation sequencing”), a method that uses a 

nuclease specific for single stranded RNA on a complex RNA mixture followed by high-

throughput sequencing and bioinformatic analysis to deduce cut sites (phosphate backbone 

scissions). This analysis provides an “RNA accessibility profile,” akin to DNase 

hypersensitivity assays on chromatin9. We apply FragSeq to naked RNAs from the mouse 

nuclear transcriptome and deduce structure data for known and novel ncRNAs.

Results

FragSeq methodology

We chose nuclear RNA from undifferentiated mouse embryonic stem cells (UNDIFF) or 

cells differentiated into neural precursors (D5NP)10 to assess whether our method gave 

reproducible results for RNAs present in both samples. The nucleus contains many RNAs in 
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the 70-300 nucleotide range; nuclease treatment yielded fragments in the 20-100 nucleotide 

range required for the high-throughput sequencing protocol used (Fig. 1a). To specifically 

clone RNA fragments derived from nuclease cuts and not those derived from random 

hydrolysis, we used endonuclease P1 (EC 3.1.30.1), which has preference for single-

stranded DNA and RNA and yields 5′ monophosphate and 3′ OH products11. In our buffer 

conditions, P1 specifically cut single-stranded regions of well-characterized RNAs (U1a 

snRNA and 5S rRNA). Importantly, we tested whether addition of mouse total nuclear RNA 

to U1a or 5S rRNA in vitro transcripts would influence the pattern of digestion, implying 

trans interactions. When performing the reactions at dilute RNA concentrations, both RNAs 

had an identical pattern of digestion whether probed in homogenous or complex mixture 

(Supplementary Fig. 1).

We either gel-isolated intact nuclear RNAs of 20-100 nucleotides directly or first performed 

a limited P1 nuclease digestion before gel isolation. The control treatment without nuclease 

digestion allowed us to estimate the occurrence of fragments with an endogenous 5′ 

phosphate, as opposed to fragments with a 5′ phosphate produced by nuclease cleavage. 

Additionally, we treated an equal mass of input 20-100 nucleotide RNAs with 

polynucleotide kinase (“PNK” treatment) and ATP, catalyzing 5′ phosphorylation and 3′ 

cyclic phosphate removal12, which allowed us to examine endogenous breaks that do not 

leave a 5′ phosphate and 3′ OH. After gel isolation of these three parallel treatments, 

adapters were ligated directly to RNA fragments in a manner requiring both a 5′ phosphate 

and 3′ OH on each RNA, thus preserving orientation information for each fragment. After 

subsequent reverse transcription, the libraries were individually barcoded during PCR, 

pooled and sequenced using the ABI SOLiD3 platform, then mapped to the mouse genome 

using the ABI Small RNA Analysis Pipeline (http://solidsoftwaretools.com).

Sequencing summary statistics of the barcoded samples (Supplementary Table 1) show that 

we obtained ∼2.4 to ∼5.9 million genome-mapped reads per sample. The distribution of 

read mappings by annotation type (Supplementary Fig. 2) and the coverage of individual 

RNAs in nuclease versus control treatment (Supplementary Fig. 3) are consistent with our 

experimental design and show that we obtained good coverage of ncRNAs. Most known 

ncRNAs longer than 100 bases have higher coverage in the nuclease sample than in the 

control because their native form is too long to sequence and does not contain an 

endogenous 5′ phosphate; whereas a single nuclease cleavage creates the 5′ phosphate 

required for cloning and brings the RNA into sequencing size range (Supplementary Fig. 3). 

The exceptions are short C/D box snoRNAs, which tend to have native 5′ phosphates and 

fall within our sequencing size range; indeed, they occupy a greater fraction of read 

mappings in the control sample than in the nuclease or PNK samples, indicating we are 

correctly enriching for 5′ phosphate products.

The FragSeq algorithm (Fig. 1b) takes genome-mapped reads from the nuclease and control 

treatments, as well as a set of transcript coordinates, and outputs cutting scores for each site 

within each transcript. A “site” is the phosphate backbone between two adjacent bases 

where scissions can occur; a “cutting score” is a value (greater than zero) that reflects the 

preference of the nuclease for catalyzing scissions at that site relative to other sites in the 

same RNA. Briefly, the cutting score is the log ratio of probabilities of observing a break in 
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the nuclease treatment versus the control treatment, after correcting for abundance 

differences and missing/low-valued data (see Supplementary Note 1 for the exact algorithm 

definition and Supplementary Note 2 for design rationale). Because P1 cuts 3′ of an 

unpaired base, a high cutting score at a site indicates that the upstream base is unlikely to be 

involved in base pairing or tertiary interactions13. These cutting scores form the basis of our 

subsequent analysis (see also Supplementary Discussion).

Cutting scores locate ssRNA in known ncRNA structures

We show the flow of data through the algorithm, from genome-mapped reads to cutting 

scores, for the example RNA U1a (Fig. 2a-f), a highly abundant mouse homolog of 

spliceosomal snRNA U1. For each site along the transcript, we counted how many reads 

begin there, and how many trim reads (defined in Supplementary Notes 1 and 2) end there, 

summing them to get counts of observed breaks in each sample (Fig. 2c, Supplementary Fig. 

4). We corrected these counts for missing data and normalized to get probabilities of 

observing breaks at each site in each RNA in each sample (Fig. 2d), which are used to 

compute cutting scores for each site (Fig. 2e).

High cutting scores tend to occur only in regions of single-stranded RNA (Figs. 2e-g, 3, 4a). 

Moreover, cutting scores obtained from UNDIFF versus D5NP cells correlate well (Fig. 2e) 

with Pearson correlation coefficients of 0.889, 0.813, and 0.817 for U1a, C/D box snoRNA 

U3b, and spliceosomal snRNA U5, respectively (Supplementary Fig. 5). This indicates that 

our method obtains similar structure data in biological samples with different transcriptional 

profiles.

FragSeq cutting scores are in good agreement with known secondary structures of U1a (Fig. 

2g), U3b, and U5 (Fig. 3), as well as several other ncRNAs whose secondary structures have 

been examined (Fig. 4a). Our method is particularly good at locating stem-loops and hinge 

regions, producing consecutive high cutting scores in those areas. However, it generally 

does not reveal small interior loops or bulges. This is expected, as P1 has been shown to 

prefer a minimum of 3 consecutive ssDNA bases to catalyze scission, but operates most 

optimally on runs of 4-6 bases of ssDNA14, and likely has the same preference for ssRNA. 

We occasionally observe weak cutting scores in regions believed to be dsRNA, but this 

signal is generally not above the spurious level of other probing agents observed in 

conventional probing experiments.

Cutting scores correlate with reactivity to probing agents

We examined whether the extent of P1 cutting as inferred by our assay correlates with 

susceptibility to ssRNA probing chemicals and enzymes in previous studies, to show that 

FragSeq can capture information about the susceptibility of a site uncovered by conventional 

methods, but in a high-throughput manner. We compared our cutting scores to probing 

performed on human U315 and human U516 which are sufficiently similar to the mouse 

homologues (U3b: 87% identity, U5: 95% identity). Like our study, these studies probed 

naked RNA in solution after purification from cell lysate, so they contained endogenous 

base editing and modifications. For U3, we focused on the mouse U3b homolog, which has 

3.3 to 5.4 times more reads than homolog U3a across our samples and treatments.
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We find that for both RNAs, previously determined regions of high reactivity towards 

probes specific for unpaired bases (Fig. 3a for U3b, 3c for U5) correlate with high FragSeq 

cutting scores (Fig. 3b for U3b, 3d for U5). Stem-loops SL1 and SL2 and the hinge region in 

U3b and stem-loop SL1 in U5 have strong reactivity in all studies including ours. For large 

interior loops, moderate to strong reactivity in prior studies is also seen in our studies, except 

for IL5 in U3b; however, it contains B and C boxes that may form base-pairs and non-

canonical K-turn interactions17 that could prevent cleavage by P1. It should also be 

mentioned that P1 is a far larger enzyme (45-50 kDa) than other single stranded 

ribonucleases like RNase A and T1 (14 and 11 kDa, respectively). This difference could 

account for reactivity at certain internal sites where steric clashes may play a role.

Validation of FragSeq results on novel structures

We wanted to validate FragSeq results on previously unprobed RNAs using conventional 

techniques to ensure that our algorithm was not over-fit towards RNAs with previously 

known structures. We chose long (> 120nt) C/D box snoRNAs. Unlike canonical C/D box 

snoRNAs that guide 2′-O-methylation in a RNP complex and are therefore thought to lack 

structure in the absence of protein partners, the long C/D box snoRNAs U3 (Fig. 3a) and U8 

(Fig. 4a) are structured and function in rRNA processing18, 19. The boxes, guides, and other 

features of a canonical C/D box snoRNA generally do not comprise more than 80 bases, so 

it is unclear what structural role the remaining sequence performs in uncharacterized long 

snoRNAs. We examined cutting scores for all C/D box snoRNAs over 120 bases (Fig. 4b), 

and selected U15b which has a predicted 2′-O-methylation target, U22, required for 

processing of 18S rRNA by an unknown mechanism20, and U97, which has no predicted 

target, for follow-up probing with conventional methods. These examples also span a wide 

range of read coverage in our data, which allowed us to examine how well FragSeq 

performs at different coverage levels.

We carried out enzymatic probing of these RNAs, transcribed in vitro, with RNases V1, 

which prefers stacked bases, and T1, A, and P1, which prefer ssRNA (Supplementary Fig. 

6). We see (Fig. 5a, Supplementary Fig. 7a, and Supplementary Fig. 8a) that regions that 

behave as ssRNA on the FragSeq assay also tend to behave as ssRNA in our follow-up 

probing, indicating that moderate to high cutting scores are accurate evidence of ssRNA 

(Supplementary Note 3). When compared to follow-up probing, U15b and U22 have more 

reliable cutting scores than U97, probably because the coverage for U97 is the lowest (see 

Supplementary Discussion). However, some ssRNA regions are not picked up by FragSeq. 

For example, we did not detect breaks at U15b bases 116 to 126 in any samples (data not 

shown), although they are highly reactive in follow-up probing. This is probably because 

cuts in that region would produce fragments that are outside of the 20-100 base size 

selection range.

We constructed structure models for these three snoRNAs using computational methods, 

phylogeny information, and data from our follow-up probing (Fig. 5b, Supplementary Fig. 

7b, Supplementary Fig. 8b, Supplementary Note 3). Superimposing the cutting scores on 

these secondary structure models (Fig. 5c, Supplementary Fig. 7c, Supplementary Fig. 8c) 
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shows that FragSeq data agrees with models derived using conventional techniques because 

high cutting scores tend to occur in ssRNA regions.

Discussion

Due to read length limitations, most RNA-Seq studies turn to random hydrolysis of the 

sample before sequencing21. Instead, we fragmented RNA in a structure-specific manner, 

reporting on nuclease susceptibility along each transcript. FragSeq will not generate the 

uniform coverage across a transcript needed for accurate abundance estimates or alternative 

splicing characterization. Instead, quantitative comparisons along each transcript, expressed 

as cutting scores, are made between enzyme-treated samples versus control samples, 

yielding information about RNA structure. For analysis of a novel transcriptome, the 

FragSeq preparation can be done in parallel with other preparations that quantify abundance, 

barcoding the samples for analysis in a single sequencing run.

By using nuclease P1, we were able to specifically enrich for its products and avoid products 

of spontaneous or canonical RNase degradation. Using the parallel PNK treatment where 

these latter products were converted to clonable RNAs showed how sequencing multiple 

treatments yields insights into naturally labile sites.

In parallel with this manuscript, a similar technique for high-throughput RNA structure 

probing was introduced22. That study utilized nuclease S1, which has similar properties to 

P1, and RNase V1, which cleaves stacked bases. Their readout of structure is reported as a 

ratio of susceptibilities of each RNA site to the two nucleases, whereas FragSeq monitors 

one nuclease with respect to a control run without nuclease. We favor cutting scores that are 

log ratios of data from nuclease versus control treatments because they describe, for each 

site, its nuclease susceptibility relative to its natural degradation susceptibility in the cell or 

during the preparation. Cut counts per site in the nuclease-treated sample alone do not 

provide data as informative as cutting scores (compare Fig. 2g with Supplementary Fig. 4).

We provide configurable software to compute cutting scores from mapped sequencing reads, 

outputting them and intermediate analysis data in formats compatible with the UCSC 

Genome Browser (http://genome.ucsc.edu), allowing visualization of structure data in a 

genomic context. This allows straightforward application of our analysis tools to future 

sequencing runs. We also modified the well-established RNAstructure software23 to allow 

input of FragSeq data to guide computational structure prediction (Supplementary 

Discussion).

We do not observe single-hit kinetics for which probing studies generally aim, as many 

ncRNA reads do not contain the native 3′ ends of the RNA from which they originate 

(Supplementary Fig. 9). We also do not observe native 5′ ends for those RNAs, but that is 

due to the trimethylguanosine cap blocking adapter ligation. We have not determined 

whether multiple cuts by P1 in solution are indeed the general case, or whether our size 

selection step enriches for products of multiple hits. Perhaps calibrating P1 for single-hit 

kinetics on in vitro transcribed test RNAs did not translate to single-hit kinetics in the 

nuclear transcriptome where many ncRNAs are highly modified. In addition, the test RNAs 
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in our probing experiment were all intact at the beginning of digestion, whereas a portion of 

the ncRNAs in the nuclear sample may be partially degraded. In any case, it is clear that 

reads produced by multiple cuts are providing reliable structure data. This is likely because 

P1 prefers to cut in stem-loops or hinge regions and these cuts are unlikely to cause the 

closing helix to denature under our salt conditions, so the original structure may not change 

before subsequent cuts. As hinge regions often connect domains that fold separately, cuts 

there would not lead to refolding of those independent domains. This may not be true for 

larger structured RNAs with long-range tertiary interactions, but these RNAs fall outside of 

the scope of our current method. Rather than comparing to conventional single-hit probing, 

it is more fitting to liken FragSeq nuclease data to DNase hypersensitivity assays on 

chromatin in that it gives a global perspective of RNA structure (e.g. stem-loop positions) 

rather than fine details (e.g. bulges in a helix).

We envision several areas of RNA biology where refinement of a FragSeq protocol might 

prove fruitful. One topic of particular interest is riboswitches, RNA molecules that change 

structure upon the binding of a metabolite ligand24. Using parallel sequencing runs with and 

without the ligand of interest could yield a differential pattern of cutting scores along such 

RNAs that would serve as a signature of a conformational change.

Additionally, nuclease protection assays25 could be scaled up to whole transcriptomes by 

performing parallel nuclease digestions with and without an RNA-binding protein pre-

incubated with the whole-cell RNA. Identifying differentially protected regions would hone 

in on the RNA binding protein's specificity for sequence or structural context. Likewise, 

such digestions could be carried out on whole cell or nuclear extracts with proteins still 

bound. Nuclease P1 would be a good candidate for these digestions since the buffer 

conditions for extracts are usually similar to the relatively physiological pH and salt 

concentrations used in this study.

Nuclease P1 is also stable at high temperatures so we envision that FragSeq could be another 

way to monitor thermal denaturation of RNA domains. By parallel sequencing from 

nuclease reactions performed at different temperatures, the single-stranded character of a 

given transcript could be monitored and act as a proxy for unfolding.

Though we focused on one enzyme here, our experimental pipeline and software could be 

easily adapted to other enzymatic or chemical probes, so long as a proper control is carried 

out in parallel. FragSeq, combined with methods developed in previous RNA-Seq studies, 

enables researchers to take high-throughput transcriptome analysis beyond one-dimensional 

sequence to reveal structural features of RNAs and provide clues to their underlying 

biology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the FragSeq method
a, Preparation of FragSeq libraries for sequencing. RNA 5′ and 3′ end chemistry is 

specifically shown to highlight PNK and nuclease products; when RNA end chemistry is not 

shown, it denotes any possible end chemistry. Only clonable RNA fragments are shown at 

and after the size-selection step. Lightning bolts represent the specific ligation events at each 

end of the RNA fragment. b, Overview of the FragSeq algorithm.
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Figure 2. Visual representation of data at progressive stages in the FragSeq algorithm, from 
genome-mapped reads to cutting scores
a-e, Data tracks in the UCSC Genome Browser (mm9 mouse genome assembly) showing 

spliceosomal snRNA U1a (a); data from mouse undifferentiated embryonic stem cell 

samples (UNDIFF) (b-d) is processed to get cutting scores, which are compared to cutting 

scores from D5NP cells (e). Ignored sites (Supplementary Note 1) are denoted in (e) as areas 

for which no data is shown (e.g. the sequence GUG in the Sm region). f, Sequence of U1a, 

highlighting regions shown in (g) using the same color code; green and yellow subsequences 
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are expected to be single-stranded. g, Cutting scores (blue arrows) from UNDIFF sample (e) 

superimposed on the known secondary structure. Non-canonical base pairs in interior loops 

of stem 2 are shown as unpaired. 2′-O-methylated positions are not depicted. SL, stem-loop; 

IL, interior loop; MBL, multibranch loop. U1a structure is from several sources 

(Supplementary Note 3).
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Figure 3. Comparison of FragSeq with previous probing experiments
a-b, Probing results for human U3 purified from HeLa cells15 (a) and FragSeq cutting 

scores for mouse U3b (b). c-d, Probing results for human U5 purified from HeLa cells16 (c) 

and FragSeq cutting scores for mouse U5 (d). Black arrow shows priming position for 

primer extension; only bases downstream of the primer were probed in that study (c). 

Reactivities in (a) and (c) are taken verbatim from ref. 15 and ref. 16, respectively; 

structures and other annotations were compiled from multiple sources (Supplementary Note 

3). 2′-O-methylated positions are not depicted.
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Figure 4. FragSeq cutting scores and coverage for ncRNAs with known structures and long C/D 
box snoRNAs
Coverage (mean reads per nucleotide) is shown at right for nuclease and control treatments. 

a, Cutting scores compared to ssRNA regions greater than three bases long (green boxes) for 

ncRNAs with published structure models (Supplementary Note 3). Regions exist where the 

in vitro structure of a single, naked RNA is uncertain (olive boxes). SL, stem-loop; Sm, Sm 

protein binding site; BP, splicing branch-point binding site; Flank, flanking ssRNA region of 

a nearby motif; IL, interior loop; Hinge, ssRNA region connecting two RNA domains; 
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Kturn, kink-turn RNA motif containing non-canonical base pairs. b, Cutting scores for all 

long (> 120nt) C/D box snoRNAs considered for follow-up probing. RNAs with an asterisk 

(*) were chosen for follow-up probing.
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Figure 5. FragSeq probing versus conventional nuclease probing of U15b C/D box snoRNA
a, FragSeq ssRNA cutting scores (bottom, dark blue) and band quantification readouts 

(SAFA counts) based on the gel resolving 5′-end-labeled probing products. X-axis shows 

nucleotide numbering; gridlines appear every five nucleotides. Gray nucleotides in sequence 

show areas that were outside of the reliably quantifiable area on the gel. Parentheses denote 

Watson/Crick base pairs and dots denote ssRNA. Triangles denote bases where a nuclease 

can cut: T1, gray triangles at G; RNase A, black triangles for C and red triangles for U. 

Outlier values were truncated and marked with red zigzag lines. b, Follow-up probing data 

superimposed on our structure model, with probing enzymes color-coded as in (a). 

Marginal, weak, moderate, or strong enzyme activity was inferred from manual inspection 

of the gel and Safa quantification from (a) (Supplementary Note 3). c, FragSeq cutting 

scores superimposed on the same structure model as (a) and (b). Boxes (green) and the 
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putative region that base-pairs with target rRNA (orange) are highlighted, with the base 

opposite of the methylated position26 in red. Highlighting is as in (b).
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