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Abstract: Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria’s
role in energy production, calcium homeostasis, and ROS balance makes them essential for cell
survival and fitness. However, there are no effective treatments for most mitochondrial and related
diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial
unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation
processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic
response, promotes cell homeostasis and improves lifespan and disease conditions in biological
models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt

activation is a promising therapeutic option for many conditions, its overactivation could lead to
non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer
progression in oncologic patients. In this review, we present the most recent UPRmt activation
therapeutic strategies, UPRmt’s role in diseases, and its possible negative consequences in particular
pathological conditions.

Keywords: mitochondria; homeostasis; unfolded protein response; proteostasis; therapeutic target;
mitochondrial diseases; neurodegeneration; lifespan; aging; heart diseases

1. Mitochondria and Homeostasis

Homeostasis is defined as any self-regulating process by which biological systems
tend to maintain stability while adjusting to conditions that are optimal for survival. In
short, homeostasis is the capacity of organisms to adapt to external or internal changes.
The cellular responses must be tightly regulated and fast in order to allow for adaptation
to environmental or internal changes and the maintenance of cellular survival. These
mechanisms are the basis of cellular homeostasis, organized at several molecular levels,
and require a perfect coordination: epigenetic remodeling [1], transcriptional responses [2],
post transcriptional modifications [3], organelle reorganization [4,5], osmotic control [6],
and protein regulation [7], among many other things, determine if the cells will survive or
die depending on whether their responses are flexible enough to adapt.

Mitochondria are a key organelle for cell homeostasis [8]. They are vital com-
partments for every nucleated cell, given that energy production through oxidative
phosphorylation (OXPHOS) is their main function. Additionally, mitochondria are nec-
essary for steroid and heme biosynthesis [9], numerous metabolites’ production [10],
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ion regulation [11,12], redox signaling [13], programmed cell death [14], and innate im-
munity [15]. Because of mitochondria’s importance for cell homeostasis, mitochondrial
dysfunctions cause a great variety of diseases which can affect almost all the tissues in
the body. Mitochondrial dysfunction is generally associated with reactive oxygen species
(ROS) overproduction, being closely correlated and present in all mitochondrial diseases
and aging [16]. Due to the high ROS production of these organelles, their components
tend to degenerate, resulting in underperforming mitochondrial function [17]. On the
other hand, mutations in the mitochondrial or nuclear genome produce aberrant proteins
that contribute to ROS overproduction and functional loss [18]. These alterations might
not only lead to mitochondrial diseases but also to the development of neurodegener-
ative diseases [19], aging [20], fertility loss [21], cancer [22], diabetes [23], and a vast
spectrum of related pathologies.

In order to maintain a healthy mitochondrial network, cells must possess mechanisms
to recycle and repair defective mitochondria. Mitochondrial quality control is an important
aspect of cellular homeostasis, especially in postmitotic tissues, since it protects against
the release of pro-apoptotic proteins, ROS production, and ineffective generation of ATP
by damaged or aged mitochondria. The regulation of the mitochondrial life cycle and the
maintenance of a robust functional network within cells are achieved through the mainte-
nance of a precise balance between mitochondrial turnover and biogenesis [24]. Mitophagy,
the selective degradation of damaged mitochondria by autophagy [25], is necessary for
mitochondrial quality control and is the only known pathway to enable the turnover
of whole mitochondrial genomes [26]. Mitochondria could be targeted for autophagic
degradation for a variety of reasons, including basal turnover for recycling, starvation
induced degradation, and degradation due to damage [25]. The core autophagic machinery
is evolutionarily highly conserved, and the signaling cascades regulating autophagy are
common to both bulk and selective autophagic processes [27]. Damaged or depolarized
mitochondrial fragments are engulfed by autophagosomes, double-membraned organelles
that are central to macroautophagy. Autophagy initiation depends on the recruitment and
maturation of microtubule-associated protein-1 light chain-3 (LC3) to the autophagosomal
membrane. In selective autophagy processes, such as mitophagy, the recognition of the
cargo is mediated by cargo receptors that interact with matured LC3 (LC3-ll) through the
LC3-interacting region (LIR) domain. Acidification and degradation of the cargo follow
the formation of autolysosomes by fusion of the autophagosomes with lysosomes. Under
physiological conditions, mitochondrial removal and replenishment reaches an equilibrium,
allowing the maintenance of a constant mitochondrial volume. This balance is established
according to tissue type, energy demand, activity level, stress, mutations, and abundance
of nutrients [28].

Contrary to mitophagy, the mitochondrial unfolded protein response (UPRmt) is a
mechanism aimed to preserve or repair damaged mitochondria. UPRmt is responsible for
maintaining mitochondrial proteostasis via mitochondrial activation of a transcriptional
program in the nuclear DNA [29]. This compensation system can be divided into three
main pathways: activation of (1) chaperones, which boost refolding of misfolded proteins
to restore them to their functional conformation and assist the folding of newly synthesized
proteins; (2) proteases that are able to degrade aberrant proteins or aggregates; and (3) an
antioxidant system that palliates ROS overproduction [30]. Although human UPRmt is
not fully understood, it is gaining relevance in a variety of physiological processes on
top of its canonical function, such as ageing, oxidative stress resistance, hematopoietic
stem cell maintenance, glycolysis, antibacterial immunity, coenzyme Q biosynthesis, and
mitochondrial fission [31,32]. Loss of mitochondrial proteostasis is the main UPRmt in-
ducer. Accumulation of damaged proteins exceeding the protein-processing capacity of
the chaperones and proteases in mitochondria would activate UPRmt, for instance [33].
Additionally, factors interfering with mitochondrial function promote UPRmt induction.
Examples of these are the inhibition of complex I by rotenone [34], bacterial toxins [35],
knockdown of quality control proteins [36], or generation of excess ROS by paraquat [37].
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Nonetheless, if the UPRmt is unable to repair the mitochondrial damage, elimination
of the entire mitochondria is promoted. Mitophagy is likely the last-resort response because
it requires the cell to replace the organelles. The challenge remains to delineate the exact
signaling components and the temporal characteristics of these two processes in the recov-
ery of the mitochondrial network [38]. Finally, if mitophagy is impaired or the damage
persists, cells undergo senescence and/or apoptosis [39] (Figure 1).
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Figure 1. Mitochondrial stress response. The most common mitochondrial stressors are ROS, un-
folded proteins, and protein aggregates. To deal with such insults and their consequences, mitochon-
dria possess several mechanisms: First, the UPRmt will promote the expression of antioxidant proteins,
chaperones, or proteases. If damage persists and/or increases, the cell will try to remove highly
damaged mitochondria with mitophagic processes. Mitophagy degrade dysfunctional mitochondria
by a combination of mitochondrial fission and autophagy; then mitochondrial biogenesis and fusion
are enhanced to restore energetic balance. All of these quality-control mechanisms are non-exclusives,
and cells can regulate them according to the situation. Finally, if the cell is unable to overcome the
energetic crisis, it will undergo apoptosis through mitochondrial release of pro-apoptotic factors.
Figure was created with BioRender (BioRender.com).

In this review, we focus on the growing interest of UPRmt induction as potential
therapy for several mitochondria-related diseases and its possible consequences.

2. What Is the UPRmt?

Although UPRmt was discovered in mammalian cells [40,41], it has been thoroughly
studied in C. elegans [42]. The stress-activated transcription factor 1 (ATFS-1) was identified
in C. elegans as a key regulator of the UPRmt. ATFS-1 is normally imported into mitochon-
dria, but during mitochondrial dysfunction, a percentage of ATFS-1 accumulates in the
cytosol and then traffics to the nucleus, where it induces transcription of mitochondrial
chaperones, proteases, and antioxidants [42,43]. Consistent with mediating a protective
transcriptional response, worms lacking ATFS-1 incur respiratory defects during mitochon-
drial stress and higher susceptibility to mitochondrial perturbations [35,43]. This process is
evolutionarily conserved [44], and there are three key protein regulators of human UPRmt:
Activation Transcription Factor 5 (ATF5), Activation Transcription Factor 4 (ATF4), and
C/EBP homologous protein (CHOP) [45,46]. There is still no consensus about how these
proteins interact with each other or of their exact role in UPRmt regulation. What is indeed
known is that all three are upregulated after mitochondrial damage, either by exposure
to rotenone, mtDNA depletion, or mitochondrial proteins over-aggregation [45,47,48]. All
three transcription factors are also involved in the integrated stress response (ISR), which is
a conserved adaptive response that is activated by a wide variety of stressors [33]. In fact,
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in mammals, the ISR acts as an essential precursor of UPRmt activation. Sensing, surviving,
and adapting to mitochondrial dysfunction depends on attenuated protein synthesis, privi-
leged translation of transcription factors, and the activity of the ISR eucaryotic initiation
factor 2 alpha (eIF2α) kinases [47].

Even though each of these transcription factors is implicated in promoting transcrip-
tion of genes required to overcome mitochondrial dysfunction, it is unclear whether they
function individually or in concert. Studies show that they regulate the expression of one
another [48]. There are many examples of their role in restoring mitochondrial function:
HeLa cells lacking a functional copy of ATF4 failed to upregulate several mitochondrial
enzymes and exhibited a reduction in ATP-dependent respiration [49]; gene expression
analysis of human and mouse tissues revealed a tight correlation between ATF4 induction
and UPRmt responsive genes [45]; worms lacking ATFS-1 failed to induce chaperones’
expression in response to mitochondrial dysfunction were rescued by ATF5 expression
but not ATF4 [44]; knockdown of ATF5 in HEK293 cells dampened induction of UPRmt

responsive genes [50]; and elevated transcript levels of ATF4 and ATF5 were detected in
mice harboring a mutation in the mitochondrial DNA helicase [51]. In addition, global
transcriptomic analyses have validated the presence of CHOP-binding elements in many
UPRmt gene promoters, while also revealing abundant ATF4-binding motifs [49].

In general, the most accepted pathway describes that ATF5 shuttles between the mito-
chondria and nuclei and induces the UPRmt to promote cell proliferation and mitochondrial
functional recovery under mitochondrial stress. In addition, mitochondrial dysfunction
upregulates CHOP, which can act as transcription factor that binds to the promoters of
UPRmt-related genes, thereby inducing the expression of mitochondrial chaperones, pro-
teases, and antioxidants [52]. Furthermore, ISR induction leads to the increased translation
of ATF4, which activates many genes, including CHOP [53]. Nonetheless, recent studies ex-
pose that there are many other proteins implicated in the UPRmt, such as the whole sirtuin
family [54]. For an in-depth description of the UPRmt molecular pathways, we recommend
the recent reviews from Yun et al. [55], Naresh et al. [47], and Anderson et al. [33].

From a clinical point of view, UPRmt induction could be linked to a novel concept
derived from an old statement: mitohormesis. Hormesis is defined as any adaptive mecha-
nism exhibiting a biphasic dose response. Mitohormesis is a broad and diverse cytosolic
and nuclear response that can be triggered by any of a variety of insults leading to mito-
chondrial stress. Interestingly, this response seems to induce a wide-ranging cytoprotective
state, resulting in long-lasting metabolic and biochemical changes. Remarkably, rather than
being harmful, these changes may reduce susceptibility to disease, as well as potentially
determine lifespan [55]. In the context of mitohormesis, the activation of the UPRmt might
provide biologically important short- and long-term adaptation against several pathologies.
In fact, there is a growing body of evidence suggesting that activation of the UPRmt might
be an important determinant of lifespan [56]. The clearest example of hormesis is physical
exercise. From an objective point of view, physical exercise is considered a form of stress
(ROS production, lactic fermentation, and muscle fibers’ damage), yet physical exercise
by itself increases the production of antioxidant proteins. In fact, this response was not
observed in individuals taking a combination of vitamin C and vitamin E. The salutary
benefits of exercise appeared to be inhibited in subjects given antioxidant supplements [57].
Therefore, the mild oxidative stress caused by exercise promotes cells to produce antiox-
idants which will protect the organism; however, antioxidants will block the oxidative
signal making the organism prone to oxidative damage in the long term. Ranging down to
mitochondria, mild and isolated stress could lead to the activation of several compensation
mechanisms, optimize mitochondrial function, and therefore improve cellular fitness. A
schematical representation is shown in Figure 2.
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Figure 2. The UPRmt is a conserved adaptive mechanism for improving cell survival under mitochon-
drial stress. The UPRmt may act as a first line of defense against mitochondrial stress and involves
communication between the stressed mitochondria and the nucleus. Activation of the UPRmt aims
to restore protein homeostasis and function within the mitochondria, therefore preserving cellular
functions. UPRmt is mainly regulated for a triad of proteins—ATF4, ATF5, and CHOP; however,
although their interactions are not well stablished yet. Different reports have described the pro-
tective effects of UPRmt activation in various disease conditions, such as mitochondrial diseases,
neurodegeneration, or heart diseases. However, after trespassing a certain stress threshold and to
prevent the toxic effects of dysfunctional cell processes, affected mitochondria are eliminated via
mitophagy, which ultimately will lead to apoptosis if the damage is irreversible. Figure was created
with BioRender (BioRender.com).

However, the contribution of particular genes in the UPRmt response pathway should
be carefully evaluated, taking into account that many of them are constitutive genes that
are required for the maintenance of basic cellular function, and their up- or downregulation
may produce numerous changes in the cells, including the mentioned UPRmt.

3. Mitochondrial Diseases

Mitochondrial diseases encompass a broad spectrum of muscular and neurodegenera-
tive disorders, both chronic and progressive, caused by mutations in nuclear (nDNA) or
mitochondrial (mtDNA) DNA [58]. The prevalence of these diseases has been established at
1:5000 [59]; however, this number is increasing due to the standardization of whole-exome
sequencing [18]. Most OXPHOS disorders in children are a consequence of the mutation of
nuclear DNA, and they are transmitted as autosomal recessive traits, usually with severe
phenotypes and a fatal outcome. Among the maternally inherited pathogenic mtDNA
mutations, more than 50% have been identified in genes encoded by mitochondrial transfer
RNAs (mt-tRNA) (MTT genes). At first sight, it might seem paradoxical to induce a mild
mitochondria stress in a general mitochondrial dysfunction context; however, recent studies
present this strategy as a new alternative treatment for mitochondrial diseases.

Perry et al. showed that the tetracycline antibiotics family increased cell survival and
fitness in MELAS cybrids and Rieske cells (Knockout Complex III mouse fibroblasts) under
glucose restriction [60]. Specifically, doxycycline improved survival in wild-type cells
treated with piericidin (complex I inhibitor) or antimycin (complex III inhibitor) during
glucose deprivation. In addition to tetracyclines, the anti-parasitic agent pentamidine and
the antibiotic retapamulin also scored positive on the screening in MELAS and mutant
ND1 cybrid cells. They propose a “mitohormetic effect” by the induction of ATF4 (UPRmt)
and p-eIF2α (ISR) as mechanism of action; however, in some cases, cell survival was
independent of ATF4, suggesting the high complexity of this pathway. Suarez-Rivero
et al. also demonstrated that tetracycline treatment boosts the production of UPRmt-related
proteins and promotes the activation of pathways involving cAMP and cGMP, which
might be implicated in mitochondrial compensatory mechanisms comprising sirtuins
and chaperones’ activity [61–63]. Tetracycline treatment and the subsequent activation of
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UPRmt, the increased number of chaperones, and mitochondrial auxiliary proteins may
promote the stability of a fraction of mutated mitochondrial proteins which would carry
out their function to some extent [64]. All of these antibiotics have one factor in common:
they are inhibitors of the mitochondrial translation at different degrees [65–67].

Given the bacterial origin of mammalian cells’ mitochondria and the fact that they
conserve prokaryotic features such as the 55S or 60S ribosomes, it is understandable that
mitochondria are exceptionally sensitive to antibiotics [68]. In this way, mitohormesis can
be triggered by a partial inhibition of mitochondrial translation promoting a beneficial
retrograde signaling response including the modulation of mitochondrial dynamics, the
expression of nuclear and mitochondrial-encoded genes, the antioxidant response, stim-
ulating mitochondrial function, and boosting cellular defense mechanisms that increase
stress resistance [69].

Although the research of Perry et al. and Suarez-Rivero et al. is promising, antibiotic
use in mitochondrial diseases is still in debate [70]. Several antibiotics can worsen the
conditions of individuals bearing mtDNA mutations. Aminoglycosides, for instance,
induce ototoxic hearing loss in subjects with mutations in the 12S rRNA gene [71]. Although
aminoglycosides typically display specificity toward prokaryotes over eukaryotes, human
mitochondrial ribosomes that have A1408 and G1491 at analogous positions exhibit higher
resemblance to their bacterial counterparts. This similarity is likely responsible for some of
the adverse effects shown by aminoglycosides [72].

It has recently been demonstrated that pterostilbene in combination with mitochon-
drial cofactors treatment activates SIRT3 and UPRmt as compensatory mechanisms, as well
as enhances sirtuins’ levels and mitochondrial activity in several cell models of mitochon-
drial diseases [73]. In contrast to long-term antibiotic treatment, pterostilbene is considered
safe for human consumption and presents numerous well-known features, such as a promi-
nent antioxidant activity and a high anti-inflammatory potential [74]. Furthermore, it has
been reported to prolong lifespan in several animal models [75] due to its neuroprotec-
tive [76] and cardioprotective [77] properties. At the molecular level, pterostilbene activates
sirtuins [75] and has been linked to AMP-activated protein kinase (AMPK) [78] and Nuclear
factor erythroid 2-related factor 2 (Nrf2) by recent studies [79], suggesting that it could be a
promising compound to maintain mitochondrial homeostasis.

4. Neurodegeneration

Neurodegenerative diseases are a widely heterogeneous group of disorders charac-
terized by the progressive degeneration of the structure and function of the central and
peripheral nervous system. Although they affect millions of patients worldwide and have a
profound impact on families and their community, the pathogenic mechanisms underlying
these conditions remain unclear. The therapeutic options for patients are scarce and merely
palliative. Nevertheless, there is currently great interest among the scientific community in
regard to the identification of biomarkers or concrete genetic mutations that might help
clinicians anticipate the onset of these diseases in a way to either treat them when still
reversible or slow down their development [80]. This is especially relevant given the fact
that the protein abnormalities that are characteristic of these diseases are present in patients
long before the clinical symptoms become noticeable [81,82].

Most neurodegenerative diseases share in common the accumulation of misfolded
proteins; however, they also possess traits associated with progressive neuronal dysfunc-
tion and death, such as proteotoxic stress, abnormalities in autophagy, neuroinflammation,
apoptosis, ROS production, and mitochondrial dysfunction [83]. Mitochondrial function
is of utmost importance for neurons because limited glycolysis causes them to rely exclu-
sively on OXPHOS for energy production. Given that the long neuronal axons require
energy transport over long distances, and because synaptic transmission is dependent on
calcium signaling, mitochondrial performance needs to be tightly regulated [84]. Taken
together, there is compelling evidence to suggest a relevant mitochondrial involvement
in the pathogenesis of several neurodegenerative diseases, with their role being partic-
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ularly significant in Parkinson’s disease (PD). According to several studies, patients of
this condition present a selective deficiency of respiratory chain complex I, which is most
remarkable in the substantia nigra [85,86]. In Alzheimer’s diseases (AD), it has been demon-
strated that patients present impaired oxygen consumption in the brain, further adding
to the notion that bioenergetic dysfunction and mitochondrial impairment are common
features [87]. In fact, impairment of several mitochondrial enzymes has been detected
in AD patients, where respiratory chain complex IV is most affected [88]. Complex IV
activity was found to be significantly reduced in the brain tissue of AD patients, which
presented a general decrease of electron transport chain function [89]. Apart from AD and
PD, mitochondrial perturbations have been reported in many other neurodegenerative
diseases, among which amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD)
deserve special mention [90]. Nevertheless, a critical question that remains unanswered is
whether mitochondrial dysfunction contributes to the initial stages of neurodegeneration,
being primarily responsible for the onset of pathogenesis or just a secondary feature arising
from alternative phenomena such as the accumulation of misfolded proteins or cellular
stress. Either way, it has been demonstrated that targeting mitochondrial dysfunction is a
promising therapeutic strategy for neurodegenerative conditions [91].

4.1. Parkinson’s Diseases

PD is an age-associated neurodegenerative movement disorder that is mainly caused
by the death of dopaminergic neurons in the brain substantia nigra [92]. UPRmt may
regulate the occurrence and development of PD. It has been shown that a PINK1 mutation
can activate ATFS-1-dependent UPRmt and promote dopaminergic neuron survival in a
PD worm model [93]. Ginseng protein protected against neurodegeneration by inducing
UPRmt in a PINK1 fly model of PD [94]. Dastidar SG et al. demonstrated that activation
of 4E-BP1 correlates with UPRmt induction, which reduces PD associated neurotoxicity in
mouse neurons [95]. In fact, mutant LRRK2G2019S, the most common PD-causing allele in
humans, results in reduced 4E-BP1 function and may contribute to PD pathogenesis by
UPRmt underactivation [96]. In addition, altered omi and HtrA2 protein, UPRmt-related
proteases, causes neuropathy with the same characteristics as PD [97].

4.2. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common form of dementia [98]. Clinically, AD
is defined by cognitive impairment that is pervasive enough to interfere with a person’s
ability to work or complete daily activities. The main histologic characteristics include
amyloid plaques that largely contain amyloid beta (Aβ) protein and neurofibrillary tangles
(NFTs) that consist of hyperphosphorylated tau protein, both of which cause premature
neuronal death. Current AD treatments confer a slight benefit but ultimately do not
prevent progression [99].

Mitochondria in AD show numerous changes [100]. First, complex-IV-reduced activity
has consistently been observed across numerous tissues. In brain tissue specifically, the
decrease in complex IV subunits has been linked with disease progression [101]. Mitochon-
drial surface area also decreases, cristae structures are altered, and an increased variability
in mitochondrial shape has been observed [102]. There are changes in fusion and fission
mitochondrial proteins that appear to affect mitochondrial localization in AD neurons [103].
Indeed, neuronal cultures with AD-relevant fission/fusion protein alterations recapitulate
AD-like changes in mitochondrial distribution [104].

Compared to cognitively intact controls, the expression of UPRmt-related genes is
increased by 40–60% in sporadic AD subjects and 70–90% in familial AD, respectively [105].
Sorrentino et al. showed that increasing mitochondrial proteostasis by targeting mito-
chondrial translation and mitophagy both pharmacologically and genetically increases
the fitness and lifespan of worms, cells, and mouse models of AD and reduces amyloid
aggregation [106]. In addition, UPRmt is strongly activated and exerts a protective role
against Aβ protein toxicity in PITRM1-knockout human cells. In line with this, pharmaco-
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logical inhibition of UPRmt exacerbates the Aβ proteotoxicity in PITRM1-knockout human
cells [107]. Consistent with this study, UPRmt is activated in the mouse brains and human
SHSY5Y cells after Aβ treatment, while the inhibition of UPRmt aggravates cytotoxic effects
of Aβ [108]. Treatments which increase the NAD+ pool, a sirtuin cofactor, alleviate protein
toxicity and improve the memory of AD mouse by activating the UPRmt. Taken together,
these studies provide the evidence of the protective role of UPRmt on AD. Furthermore, the
activation of UPRmt induced by Aβ may depend on the regulation of two signaling path-
ways: the mevalonic acid pathway and ceramide pathway [109]. Therefore, the activation
of UPRmt can relieve the symptoms of AD.

4.3. Huntington’s Disease

Huntington’s disease (HD) is a fatal and inherited neurodegenerative disorder that
progresses for 15–20 years after the initial onset [110]. The main cause of HD is the expanded
CAG repeats encoding polyglutamine (polyQ) in the N-terminus of the huntingtin (Htt)
protein [111]. The genetic cause of HD was identified more than 20 years ago. However,
the underlying mechanisms leading to the pathogenesis of HD remain elusive.

Accumulating evidence suggests that mitochondrial dysfunction plays an important
role in the pathogenesis of HD [112]. For instance, mutant Htt associates with the outer
mitochondrial membrane in different HD models, resulting in mitochondrial permeability
transition pore opening, calcium disturbance, reduced ATP production, mitochondrial
membrane potential loss, increased ROS production, and premature release of cytochrome
c [113]. How mutant Htt can affect selectively medium spiny striatal neurons despite
its ubiquitous expression is a key question that still remains unanswered. One of the
several theories that have been proposed points again to mitochondria, suggesting that
medium spiny neurons, characterized by particularly high-energy demands, are espe-
cially susceptible to mutant Huntingtin-induced mitochondrial dysfunction and inhibition
of respiration [114].

Fu et al. [115] found that mutant Htt suppressed the expression of ABCB10, a compo-
nent of the UPRmt [116], in various HD models by impairing its mRNA stability. Deletion
of ABCB10 induced ROS production and cell death in HD mouse striatal cells. Moreover,
ABCB10 was required for CHOP activation under mitochondrial stress. They also showed
that chaperone HSP60 and protease Clpp, two downstream genes of CHOP [41], were
decreased in HD cells.

4.4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of
motor neurons in the spinal cord, the brain stem, and the motor cortex. Motor neuron
death prompts muscle weakness and paralysis, causing death in 1–5 years from the time
of symptoms’ onset. The primary identified ALS-linked gene was superoxide dismutase
1 (SOD1), an antioxidant protein [117]. However, mutations in several other genes have
been reported, and various molecular pathways have been associated to neuronal death in
ALS [118]. The only two disease-modifying potential therapies currently approved for ALS
are riluzole and edaravone, but the exact neuroprotective action of these drugs is unknown,
and they present no obvious improvement in ALS patients’ health [119]. The absence of
alternative drugs for the treatment of ALS indicates the need for the implementation of
novel therapeutic strategies

ALS-associated mitochondrial dysfunction comes in many shapes, including defective
OXPHOS, ROS production, impaired calcium buffering capacity, and defective mitochon-
drial dynamics. In addition, mitochondrial dysfunction appears to be directly or indirectly
linked to all mechanisms of toxicity associated with ALS, including excitotoxicity, loss of
protein homeostasis, and defective axonal transport [120].

TDP-43 proteinopathy is characterized by the presence of TDP-43 immunoreactive
inclusion bodies in the affected tissues. This alteration is present in several neurode-
generative diseases with high predominance in ALS [121,122]. Peng et al. showed that
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LonP1, one of the key mitochondrial proteases constituting the UPRmt response, protects
against TDP-43-induced cytotoxicity and neurodegeneration. They suggest the activation of
LonP1 via UPRmt as a treatment for TDP-43 proteinopathy, protecting against or reversing
mitochondrial damage as a potential therapeutic approach to these neurodegenerative
disorders [123]. Qi et al. demonstrated that the mitochondrial function pathway was
disrupted in the brain of SOD1G93A mice, and the replenishment of intracellular NAD+, by
providing nicotinamide, could reduce neurotoxic protein aggregates of mitochondria in the
brain of SOD1G93A mice [124]. Moreover, they concluded that nicotinamide might modu-
late mitochondrial proteostasis and improve adult neurogenesis through activation of the
UPRmt signaling in the brain of SOD1G93A mice. Curiously, it has been reported that UPRmt

is transiently activated in the spinal cord of ALS mice models in the late symptomatic
phase. However, there is a significant sex difference in the activation of the UPRmt: it was
significantly activated in female SOD1G93A mice but not in males [125]. Finally, Gomez
et al. hypothesized that SOD1 may have multiple functions: antioxidant, UPRmt regulator,
and gene transcription enhancer [126]. Taken together, these functions place SOD1 as a key
regulator of the communication between the nucleus and mitochondria.

5. Heart Diseases

Maintaining mitochondrial quality in cardiomyocytes is essential, given that they
produce 8% of the total ATP consumed by the organism and power the constant contraction
and relaxation of the myocardium [127]. In fact, mitochondrial abnormalities are a common
feature to all types of cardiomyopathies [128]. Mitochondria with aberrant structures
are commonly observed in cardiac cells of all forms of heart disease [129]. Furthermore,
cardiomyopathy has been reported due to mitochondrial disease [130], and mitochondrial
dysfunction has been linked with hypertension. It is nowadays clear that the importance
of functional mitochondria for cardiac health is undeniable. One of the main mechanisms
ensuring mitochondrial fitness is proteostasis. It finetunes biogenesis, folding, and degrada-
tion of mitochondrial proteins, processes which are commonly altered during cardiac stress.
It has been demonstrated that stimulation of UPRmt improves mitochondrial function and
reduces cardiac damage in response to stress. In this regard, a recent study proved that
UPRmt enhancement with small-molecule agents ameliorates mitochondrial and contractile
dysfunction in the murine heart. This is the reason why its authors proposed UPRmt as a
potential therapeutic target in heart failure [131].

Wang et al. demonstrated the relevance of mitophagy and UPRmt in myocardial
injuries and stress [132]. They proposed UPRmt activation with oligomycin, a complex V in-
hibitor, as a mechanism to reduce sepsis-mediated mitochondrial injury and myocardial dys-
function; however, this cardioprotective effect was imperceptible in mitophagy-inhibited
mice. On the other hand, when UPRmt was inhibited, mitophagy-mediated protection of
mitochondria and cardiomyocytes was partly blunted. Taken together, their observations
suggest that both UPRmt and mitophagy are slightly activated by myocardial stress and
that they work together to sustain mitochondrial performance and cardiac function.

6. Lifespan

Upregulation of UPRmt has been proposed as the common pathway in lifespan ex-
tension induced by mitochondrial defects [133]. Studies in C. elegans revealed that the
induction of mitochondrial stress at an early age resulted in lifespan extension and UPRmt

upregulation which persisted even after the stress inductor was withdrawn [134]. This
observation suggests that UPRmt upregulation is directly responsible for lifespan extension
in worms. Supporting this idea, Yokoyama et al. demonstrated that transgenic worms
expressing the nematode UPRmt protein Hsp70F live over 40% more than wild-type ani-
mals [135]. To prove whether UPRmt upregulation also influenced lifespan extension in
mammals, a recent study assessed UPRmt activation in a long-lived mouse model, Snell
dwarf mice. These mice have a single point mutation in Pit1 and show more than 40%
increase in mean and maximal lifespan [136]. The results of the study show that UPRmt
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was upregulated in both living mice and cultured cells. Moreover, the authors reported
elevated basal and post-stress UPRmt levels in primary fibroblasts derived from Snell mice.
However, at the organismal level, UPRmt was upregulated only after doxycycline-induced
mitochondrial stress exposure [137].

The ability of UPRmt activation to prolong lifespan can be explained by several reasons:
its positive impact on mitochondrial function, its ability to reduce mitochondrial metabolic
by-products, its modulation of insulin/IGF and mTOR signaling, and its involvement in
hormetic cellular maintenance [138]. Following UPRmt activation, mitochondria undergo
structural and functional changes. The mitochondrial network becomes fragmented [133],
and cellular oxygen consumption is significantly reduced [139,140]. This particular pheno-
type may be a coordinated response to stress that favors mitophagy and lowers respiration
to enable mitochondrial repair. Taken together, these measures would ultimately lead to
enhanced homeostasis and cell survival, consequently increasing lifespan.

On top of this, UPRmt is responsible for changes in the production of a series of
metabolic by-products with relevant physiological functions. Amidst these, ROS is the
most widely studied. It elicits varied cellular stress responses, and by doing so, it influences
homeostasis and longevity [141]. Additionally, the UPRmt has an impact on the mevalonate
pathway, an important target of statins, and on NAD+, which is the substrate for poly
(ADP-ribose) polymerases (PARPs) and sirtuin deacetylases and acts as major longevity
regulator [56,142]. The link of UPRmt to longevity might also be explained by its effect
on insulin signaling. Reduced insulin/IGF-1 signaling has been directly linked to a series
of protective mechanisms such as regulation of endoplasmic reticulum unfolded protein
response (UPRER) or activation of heat shock factor 1 (HIF-1), which boosts the expression
of small heat shock proteins, leading to lifespan extension in worms [143]. In this line, it has
been proven that impairment of the insulin/IGF-1 signaling induces a transient ROS stress
signal that potentially activates UPRmt and results in prolonged lifespan in C. elegans [144].
Improving the level of cellular NAD+ in mice not only increases mitochondrial function but
also induces the expression of UPRmt-associated genes, preventing skeletal muscle stem
cells from aging and enhancing life span [145].

Although several different routes have been proposed to explain UPRmt implication in
longevity, there is the possibility that its lifespan-prolonging ability is the result of improved
cellular housekeeping. It is extensively known that loss of proteostasis and the consequent
accumulation of misfolded proteins are a fundamental cause of ageing. UPRmt activation
would palliate cellular damage in this context by restoring protein quality control. Not only
does it assist correct protein folding via enhancement of chaperones’ expression, but it also
promotes refolding of aberrant products and sequestration of protein aggregates in less
cytotoxic states [146].

7. Therapeutic Concerns

Although UPRmt activation seems to be a promising therapeutic approach for mitochondria-
related disorders, it does not come without a risk. Prolonged overactivation of UPRmt

can also have severe side effects, as proven by recent studies. Lin et al. demonstrated
that, in the context of mtDNA heteroplasmy, activation of the UPRmt and constant ATFS-1
signaling maintain and propagate deleterious mitochondrial genomes in C. elegans. This
observation led the authors to dispute the role of UPRmt activation in longevity, especially
in individuals with a heteroplasmic background, such as inherited mitochondrial mutations
or cancer cells. Nevertheless, they point out that it is still to be determined whether UPRmt

in mammals acts in a similar way to in C. elegans [147].
In this line, Martinez et al. reported a detrimental effect of constitutive UPRmt signal-

ing in C. elegans dopaminergic neurons after overexpression or overactivation of ATFS-1.
Interestingly, they could not find a clear link between the cell death phenotype observed in
dopaminergic neurons expressing ATFS-1 and mitophagy, which in C. elegans is primarily
regulated by PINK1. Knockdown PINK1 worms did not present signs of neuronal cell
death. This led the authors to point out that mitophagy impairment does not seem to be
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the mechanism responsible for neuronal death elicited by ATFS-1 overactivation. Rotenone
treatment, nevertheless, had a neuroprotective attenuation effect dependent on PINK1.
Overall, these results indicate that ATFS-1 overexpression might promote the accumulation
of defective mitochondria in dopaminergic neurons, leading to abnormal cellular home-
ostasis and cell death. The phenotype can be reversed by increasing aberrant mitochondria
clearance via mitophagy [148].

Regarding aging, most studies agree that UPRmt contributes to health and longevity [133],
including neurons where UPRmt can activate protective cell non-autonomous signals and
epigenetically rewire animal models to live longer [149]. However, in some circumstances,
UPRmt seems to promote aging, as pointed out by Angeli S et al. [150]. They discovered
in C. elegans that certain mitochondrial insults during development lead to the lasting
activation of the UPRmt and are associated with longevity; however, the same stimuli
during adulthood induce premature aging. In this case, suppression of the UPRmt via
genetic or pharmacological interventions is protective. These results, again, evidence the
complexity of UPRmt pathways.

Constitutive UPRmt activation can also be extremely detrimental for cancer patients.
It is widely known that cancer cells make use of numerous stress response pathways to
counteract and survive endogenous, exogenous, and environmental stresses. Among them,
UPRmt may help cancer cells clear excessive cellular damage that could eventually lead
to apoptosis. Similarly to cardiomyocytes, cancer cells use this stress response to ensure
their survival and proliferation [151]. In fact, HSP60, a key chaperone of UPRmt activation
process across different species, is overexpressed in several cancer types such as acute
myeloid leukemia, pancreatic ductal adenocarcinoma, ovarian carcinoma, breast ductal
invasive carcinoma, prostate adenocarcinoma, and others [48,152]. By folding and refolding
oncoproteins and denatured/misfolded proteins within mitochondria, UPRmt facilitates
cancer growth and increases the apoptotic threshold of cancer cells [153]. To better un-
derstand the implication of UPRmt and HSP60 in cancer, Tsai et al. proved that HSP60
overexpression significantly increases cellular migration and invasion in vitro, as well as
increased tumor volume and metastasis in vivo [154]. Moreover, it has been reported that
HSP60 plays a crucial role in the metastasis of pancreatic cancer cells [155] and increases
motility in breast cancer cells [156]. Thus, in cancer cells, the UPRmt is exploited for mito-
chondrial repair and tumor growth, invasion, and metastasis promotion. In fact, disrupting
proteostasis in cancer cells by targeting UPRmt constitutes a novel anticancer therapeutic
strategy [157]. In addition, cancer stem cells (CSCs) represent a highly tumorigenic group
of cells in primary tumors [158]. Mitochondrial changes in CSCs, including morphological
changes, abnormal activation of signaling pathways, mitochondrial dysfunctions, pro-
duction of ROS, enhanced mitophagy, and UPRmt modulation, are key regulators of CSC
proliferation and apoptosis and are also among the reasons for the failure of antitumor
treatments [159]. Therefore, targeting UPRmt in CSCs can be essential for the effective
treatment of cancer [160].

8. Conclusions

The potential of UPRmt activation therapies is undeniable. The UPRmt is a funda-
mental stress response that improves cellular fitness and proteostasis, both of which are
leading causes of very diverse conditions when impaired. From mitochondrial diseases
to neurodegeneration or cardiovascular disorders, mitochondrial dysfunction has been
identified as a pivotal factor for disease development (Table 1). Studies have demonstrated
the therapeutic efficacy of UPRmt, yet no specifical activators of UPRmt have been applied
for patient treatment so far. The side effects and deleterious repercussions of the sustained
activation of UPRmt in patients are important concerns for clinicians. Therefore, efforts have
been made to identify safe, well-studied drugs that succeed in activating this mitochondrial
response. Nevertheless, further studies tackling the safety profile of UPRmt activators and
their possible long-term side effects need to be conducted to ascertain that patients will not
undergo risks when adopting these novel therapeutic approaches.
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Table 1. Summary of UPRmt-related conditions and studies.

Condition Related Studies

Mitochondrial diseases [60,64,73]

Parkinson’s disease [93–96,148]

Alzheimer’s disease [105–109]

Huntington’s disease [115]

Amyotrophic lateral sclerosis [121–124]

Heart diseases [132]

Aging [139–142]

Cancer [157,160]
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Abbreviations

4E-BP1 Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1
ABCB10 ATP-binding cassette sub-family B member 10
AD Alzheimer’s disease
ALS amyotrophic lateral sclerosis
AMPK AMP-activated protein kinase
ATF4 Activating Transcription Factor 4
ATF5 Activating Transcription Factor 5
ATFS-1 Activated transcription factor 1
ATP adenosine triphosphate
Aβ amyloid beta protein
cAMP cyclic adenosine monophosphate
cGMP cyclic guanosine monophosphate
CHOP C/EBP homologous protein
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CSCs cancer stem cells
Eif2α eucaryotic initiation factor 2 alpha
HD Huntington’s disease
HSP heat shock protein
HtrA2 HtrA Serine Peptidase 2
Htt huntingtin
IGF-1 insulin growth factor 1
ISR integrated stress response
LC3 microtubule-associated protein-1 light chain-3
LIR LC3-interacting region
MELAS mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
mtDNA mitochondrial DNA
ND1 NADH–ubiquinone oxidoreductase chain 1
NFT neurofibrillary tangles
Nrf2 Nuclear factor erythroid 2–related factor 2
OXPHOS oxidation phosphorylation
P-Eif2α Phosphorylated Eukaryotic Initiation Factor 2 alpha
PD Parkinson’s disease
PINK1 PTEN-induced kinase 1
PITRM1 pitrilysin metallopeptidase 1
ROS reactive oxygen species
SIRT sirtuin
TDP-43 TAR DNA-binding protein 43
UPRmt mitochondrial unfolded protein response
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