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Abstract
With the increasing size and number of genome-wide association studies, individual single nucleotide polymorphisms are 
increasingly found to associate with multiple traits. Many different mechanisms could result in proposed genetic IVs for an 
exposure of interest being associated with multiple non-exposure traits, some of which could bias MR results. We describe 
and illustrate, through causal diagrams, a range of scenarios that could result in proposed IVs being related to non-exposure 
traits in MR studies. These associations could occur due to five scenarios: (i) confounding, (ii) vertical pleiotropy, (iii) 
horizontal pleiotropy, (iv) reverse causation and (v) selection bias. For each of these scenarios we outline steps that could 
be taken to explore the underlying mechanism and mitigate any resulting bias in the MR estimation. We recommend MR 
studies explore possible IV—non-exposure associations across a wider range of traits than is usually the case. We highlight 
the pros and cons of relying on sensitivity analyses without considering particular pleiotropic paths versus systematically 
exploring and controlling for potential pleiotropic or other biasing paths via known traits. We apply our recommendations 
to an illustrative example of the effect of maternal insomnia on offspring birthweight in UK Biobank.
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Introduction

Mendelian randomization (MR) is a special case of instru-
mental variable (IV) analysis where single nucleotide poly-
morphisms (SNPs) randomly allocated at conception are 
proposed as IVs [1]. MR requires three core assumptions 
to provide a valid test of the causal null hypothesis: first, 
IVs are strongly associated with an exposure of interest (rel-
evance); second, there are no common causes between IVs 

and the outcome of interest (independence); and third, IVs 
influence the outcome only through the exposure (exclusion 
restriction) [1, 2]. While the relevance assumption can be 
tested, the independence and exclusion restriction assump-
tions are impossible to verify and only their plausibility 
can be explored [3]. Additionally, a fourth assumption is 
required to quantify the magnitude of the average causal 
effect of exposure on outcome using MR [2, 4, 5]. The 
fourth assumption has two versions that are frequently used: 
homogeneity (exposure-outcome effect does not depend on 
the proposed IV) and monotonicity (proposed IVs cannot 
increase exposure level in some participants while decrease 
it in others) [2, 4, 5].

With increasing sample sizes and more extensive cov-
erage of the phenome in genome-wide association studies 
(GWAS), SNPs are increasingly found to associate with mul-
tiple traits [6–8]. Many different mechanisms could result in 
genetic IVs for an exposure of interest being associated with 
multiple non-exposure traits, some of which could bias MR 
results. Understanding whether the association of genetic 
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IVs with non-exposure traits indicates a violation of core 
MR assumptions (i.e. independence and exclusion restric-
tion) is challenging given the underlying causal structure 
for these associations is unknown. A large and increasing 
body of literature has focused on methods for exploring and 
dealing with unbalanced horizontal pleiotropy [9, 10], with 
these methods widely used in MR studies. Few MR studies 
have formally investigated potential mechanisms underlying 
the associations of proposed genetic IVs with non-exposure 
traits and explored whether such associations reflect media-
tion of the exposure-outcome effect, even though appropri-
ate methods for MR mediation analysis are available [11, 
12]. We aim to provide recommendations on how to lever-
age knowledge of existing associations between proposed 
genetic IVs and non-exposure traits to systematically evalu-
ate the impact of various potential causal structures on bias 
in MR analysis, and to use this to inform appropriate sensi-
tivity analyses to mitigate bias.

This paper is laid out as follows. In “Scenarios that could 
explain associations of genetic IVs with multiple traits”, 
we use directed acyclic graphs (DAGs) to illustrate five 
scenarios that could result in an association of a proposed 
genetic IV with a non-exposure trait and highlight when this 
could bias MR analysis. In “Recommendations for explor-
ing scenarios that result in IV-non-exposure trait associa-
tions and obtaining unbiased MR estimates”, we describe 
different methods for discriminating between scenarios and 
methods for mitigating against potential bias for both one- 
and two-sample MR. In “Real data example”, we apply our 
recommendations to an MR analysis exploring the potential 
causal relationship between maternal insomnia and offspring 
birthweight in the UK Biobank (UKB). In “Discussion”, we 
end with a discussion.

Scenarios that could explain associations 
of genetic IVs with multiple traits

We describe five scenarios consistent with proposed genetic 
IVs being associated with non-exposure traits: (i) confound-
ing (Fig. 1 (DAGs 1.1–1.4); (ii) vertical pleiotropy (DAGs 
2.1 and 2.2), (iii) horizontal pleiotropy (DAGs 3.1–3.4), 
(iv) reverse causality (DAGs 4.1–4.4) and selection (DAGs 
5.1–5.4). We discuss below how each of these scenarios 
could result in proposed genetic IVs (Z) being associated 
with non-exposure traits (W) and when this might bias MR 
estimates of the effect of the exposure of interest (X) on the 
outcome of interest (Y). In this study, we assume that X, W 
and the effects of Z on them do not vary with time, given 
MR examines genetic predisposition to X across a large part 
of the life course and might be unable to distinguish critical 
or sensitive-period exposure effects [13, 14]. If the effects 
of Z on X or W do vary over the lifecourse, MR results 

would be interpreted as the estimate of the causal effect of 
changing liability to X across the lifecourse (rather than the 
causal effect of X at the timepoint it is measured) on Y. The 
interpretation of those MR results is not the focus of this 
paper and has been explored elsewhere [15–17].

Phenotypic confounders cannot influence an individual’s 
germline genotype since genotypes are determined at con-
ception and do not change throughout life. However, there 
are several phenomena that might confound genotype – phe-
notype associations at the population level by influencing the 
distribution of genotypes and phenotypes in a population. 
These would include as population structure, assortative 
mating, dynastic effects, and linkage disequilibrium (LD) 
[18–21]. Confounding could result in Z – W associations in 
the presence of a common factor that influences the distri-
butions of Z and W (DAGs 1.1 to 1.4). Population structure 
can confound Z–W associations if there are systematic dif-
ferences in the distributions of Z and W between subgroups 
of individuals in the same sample due to different ancestry 
backgrounds, geographical location, or cryptic relatedness 
(inclusion of relatives in the same sample) [18]. Assortative 
(non-random) mating can occur when people choose their 
partners based on particular characteristics (e.g. height or 
educational attainment) and can be based on a single phe-
notype (i.e. single-trait assortative mating) or two different 
phenotypes (i.e. cross-trait assortative mating) [19]. Despite 
offspring genotype inheritance being random in relation to 
parent’s genotype, assortative mating leads to systematic 
differences in allele frequencies and potentially introduces 
confounding in genotype-phenotype (e.g. Z–W) associations 
at the population level [18]. Dynastic effects occur when 
parental genotype influences offspring phenotype beyond 
genetic inheritance (i.e. indirectly through parental phe-
notype) and can introduce confounding of offspring geno-
type–phenotype associations [18]. Linkage disequilibrium 
(LD) can confound Z–W association if Z is correlated with 
other genetic variants within the same locus, which influ-
ence W via an independent biological pathway [22]. If any 
of these sources of Z–W confounding is present, we would 
expect bias in MR estimates where W causes Y via a path 
that does not contain X (DAGs 1.1 and 1.2), but not other-
wise (DAGs 1.3 and 1.4).

Pleiotropy refers to the association of a SNP with multi-
ple traits, and has two types: vertical (also known as spuri-
ous or false) and horizontal (also known as genuine or true) 
[23]. In the scenario of vertical pleiotropy (DAGs 2.1 and 
2.2), despite pleiotropic associations of Z with X and W, the 
effect of Z on Y is fully mediated by X. Therefore, the exclu-
sion restriction assumption is not violated and we would not 
expect the MR result to be biased [24]. In the scenario of 
horizontal pleiotropy (DAGs 3.1–3.4), Z is a cause of X and 
W via independent biological pathways. When both X and 
W affect Y independently (DAGs 3.1–3.3), the MR estimate 
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is expected to be biased. Horizontal pleiotropy is typically 
considered one of the main threats to the validity of MR 
studies since pleiotropy is a ubiquitous biological phenom-
enon [7, 8]. However, there is no bias in the MR estimate 
when W does not affect Y independently of X (DAG 3.4).

In the scenario of reverse causality (DAGs 4.1–4.4), Z 
primarily causes the hypothesised outcome Y, which in turn 
affects the hypothesised exposure X. As such, selection of Z 
as an IV for X would give a biased MR result for the effect 
of X on Y [25]. With respect to the focus of this paper, 
this would only result in an association of Z with W if Z 

directly or indirectly influences W (DAGs 4.1–4.4). We have 
included this scenario for completeness. However, we do 
not consider exploration of Z–W associations to be a good 
way of identifying causal directions between X and Y. Bidi-
rectional MR and the Steiger directionality test should be 
more suitable MR methods for exploring causal directions 
between any two traits [25]; these are described briefly in 
recommendation 4 of the next section.

Selection could result in Z–W associations if the selection 
mechanism leads to conditioning on a common effect of Z 
(or its descendant) and W. Selection into a study is likely 

Fig. 1  Directed acyclic graphs 
illustrating scenarios when an 
unexpected genetic instrumen-
tal variable-non-exposure trait 
association could be observed. 
Z: genetic instrumental vari-
able; X: exposure of interest; 
Y: outcome of interest; U: 
unmeasured confounders; W: 
non-exposure traits; C: con-
founding factors, e.g. population 
stratification, cryptic related-
ness and assortative mating; S, 
selection. For simplicity, we use 
single nodes even when there 
may be multiple variables, and 
these scenarios do not consider 
time-varying exposures and 
critical/sensitive-period expo-
sure effects [2, 17]. Scenarios 
illustrated by 1.1, 1.2, 3.1–3.3, 
5.1–5.4 would be expected to 
bias the MR estimate of X–Y 
effect; 1.3, 1.4, 2.1, 2.2 and 3.4 
would not; 5.2 and 5.4 would be 
unbiased under the null

Confounding

V

Horizontal pleiotropy

Reverse causality
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to be directly influenced by certain phenotypic characteris-
tics and, as a consequence, indirectly affected by genotypes 
influencing these characteristics [26]. Therefore, we consider 
four illustrative mechanisms where selection could induce an 
association between Z-W, all of which could introduce bias 
in MR of X on Y: selection on (1) X and W (DAG 5.1), (2) 
Y and W (DAG 5.2), (3) X alone (DAG 5.3) and (4) Y alone 
(DAG 5.4). To reduce the number of DAGs, we have focused 
on DAGs (5.1–5.4) where Z–W associations can only be 
generated due to selection, and the MR estimates of X on Y 
would be expected to be biased because of the alternative 
pathways from Z via W to Y independent of X. The selection 
of participants could occur due to several different reasons, 
such as a selected response to joining a study, loss to follow-
up, missing data, survival bias, conditioning on heritable 
characteristics either in the MR analyses or in the GWAS 
where summary data are selected for two-sample MR [27], 
or in studies of disease progression if both Z and W affect 
disease incidence [28]. Such selection is not specific to Z–W 
associations. For example, previous gene-by-environment 
MR studies of smoking heaviness identified selection bias 
due to stratifying on smoking status [29, 30]. Those studies 
calculated associations of proposed genetic IV with smoking 
status and with observed confounders (of smoking status-
outcome effect), or explored the magnitude of selection bias 
via simulation [29, 30]. Methods to mitigate selection bias 
in previous MR included inverse probability weighting [31], 
multivariable Mendelian randomization (MVMR) adjusting 
for major causes of survival [32], residual-adjusted model 
[33] and Bayesian cluster-based model [34] to distinguish 
effects on disease prognosis from conditioning on its inci-
dence. Selection bias in MR has been comprehensively 
explored in other papers [27, 28, 31, 35, 36] and will not be 
the focus of our paper.

Recommendations for exploring scenarios 
that result in IV‑non‑exposure trait 
associations and obtaining unbiased MR 
estimates

Having described some different scenarios that could result 
in proposed genetic IVs (Z) for exposure relating to non-
exposure traits (W) we now provide a list of recommenda-
tions for identifying W, and exploring the mechanism under-
lying the Z–W association. We then investigate whether the 
Z–W association is expected to bias the MR estimates and, 
if bias is expected, how it might be mitigated (Table 1 sum-
marises the methods we recommend for mitigating bias).

We focus most of our discussion on methods that are appli-
cable to MR analyses where multiple independent SNPs from 
different genomic regions are proposed as IVs. The rationale for 
focusing on MR analyses using multiple IVs is the increasing 

number of independent SNPs strongly associated with putative 
exposures given large-scale GWAS [6], the increasing availabil-
ity of robust MR methods and sensitivity analyses that require 
multiple IVs [9] and the potential that some proposed IVs will 
relate to several non-exposure traits [7, 8].

Recommendation 1: Searching more thoroughly 
for Z–W associations

To date many MR studies have explored associations of Z with 
potential confounders of exposure (X)–outcome (Y) associa-
tions [40–42]. For example, in a recent MR study of the effect 
of maternal adiposity on infant birthweight the extent to which 
the proposed genetic IVs related to maternal education and 
smoking (plausible confounders of maternal adiposity and 
infant birthweight) was explored [41]. Bias component plots 
can be used to compare the IV-confounder associations versus 
exposure-confounder associations [43, 44]. Exploring associa-
tions of Z with any risk factors for Y is more appropriate than 
focusing solely on potential X–Y confounders since factors 
that influence the distribution of Z and Y can bias MR analyses 
regardless of whether they are a direct cause of X.

There are two broad approaches that could be used to 
identify W associated with Z in either one- or two-sample 
MR. One is to use prior/existing knowledge about the key 
causes of Y to select which traits to explore in further sen-
sitivity analyses. It would be important to use expert knowl-
edge to focus on those causes of Y that are not part of the 
hypothesized causal path from X to Y, and then examine 
whether Z relates to any of those non-exposure causes of Y. 
The second is to undertake a hypothesis-free comprehensive 
genotype-to-phenotype (also known as phenome-wide) scan 
approach [45] using automated tools (e.g. PhenoScanner 
[46], GWAS Catalog [47], MR-Base [48] and PHESANT 
[49]). Such an approach helps gain insight about all possi-
ble measured non-exposure traits associated with Z. In the 
situation where we are using MR PheWAS to test potential 
genetic instrument specificity to explore potential violation 
of MR assumptions, as here, we would suggest less strin-
gent multiple testing p-value threshold than used in studies 
where the primary aim is to explore the potential effect of 
an exposure on multiple outcomes (e.g. [50, 51]). The aim 
in this situation would be to minimise bias by identifying as 
many possible horizontal pleiotropic paths as possible and 
hence we would recommend using a p-value threshold of 
0.05 (the conventionally used threshold with no correction 
for multiple testing) when undertaking PheWAS to identify. 
The first (knowledge-based) approach has the advantage 
that it is focused, potentially selects the risk factors for Y 
that have the strongest effects, and is likely to require fewer 
variables to be taken forward for subsequent analyses (as 
described in recommendations below). However, subject 
matter knowledge may be incomplete or fallible and so some 
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Z–W associations may be missed. The second (phenome-
wide) approach has the advantage that it is less limited by 
expert knowledge. However, this approach is still dependent 
on the completeness and quality of the data available, and 
typically relies on an arbitrary choice of a p-value threshold, 
which is not straightforward given the need to account for 
the high multiple testing burden, whilst still aiming to iden-
tify all potential pleiotropic pathways.

Whether the knowledge-based or the phenome-wide 
approach is preferable will depend on the specific research 
question, available data, and extent of subject matter knowl-
edge. A combination of both could be done by a priori selec-
tion of hypothesised causes of Y (that are not part of the 
X–Y causal path) and exploring Z–W associations with 
those without taking account of multiple testing, but rather 
focusing on point estimate magnitudes and precision to 
decide which need to be explored further to decide where the 

associations might bias the MR results. That could be sup-
plemented by a phenome-wide association study in which 
multiple testing adjustment was applied.

Recommendation 2: Assessing the impact 
of confounding

Family-based MR designs can be used to test and mitigate 
bias due to confounding from multiple sources (i.e. relat-
edness, population stratification, assortative mating and 
dynastic effects) as previously described in detail [18–21]. 
However, this requires large-scale data on siblings or trios 
(mother, father and child) that may not be available.

In the absence of large-scale family data, we recommend 
exploring associations of Z with as many indicators of 
population structure as possible, such as geographical (e.g. 
region, longitude/latitude of birth and residence, and study 
centre) and ancestry (e.g. self-reported ethnicity and genetic 

Table 1  Approaches to explore the plausibility of the scenario and methods that can produce unbiased test of the causal effect under the corre-
sponding scenario

GWAS genome-wide association studies, MR Mendelian randomization, W non-exposure traits, X exposure of interest, Y outcome of interest, Z 
genetic instrumental variables
a Negative control outcome is assumed to share the same underlying confounding structure as the outcome of interest, but not be influenced by 
the exposure of interest[37]
b HEIDI assumes that there is a single causal SNP within the locus, and each other SNP shows an effect due to LD with the causal SNP[22, 23]
c We assume that multiple genetic IVs are unrelated, and an observed heterogeneity is due to different mechanisms of multiple IV-exposure asso-
ciations[38]
d IV inequalities test would be limited by low sensitivity with a small number of proposed IVs but low computational burden, or by high compu-
tational burden with a large number of proposed IVs but high sensitivity[39]

Scenarios One-sample MR with individual data Two-sample MR with summary data

Population stratification Check Z—population structure (e.g. principal compo-
nents, birthplace, home location or study centre)

Check how the GWAS of X and Y dealt with population 
structure

Adjust for population structure in Z–W and compare the 
adjusted estimates with crude estimates

Use negative control  outcomesa

Cryptic relatedness Estimate genetic similarity Check how GWAS of X and Y dealt with cryptic related-
nessRemove one individual from each genetically related pair 

from analyses
Assortative mating Check associations of individuals’ Z (for X) with their 

partner’s W and Z (for W)
Rely on previous evidence

Adjust for parental Z for X in two-stage least squares
Linkage disequilibrium Use ‘robust methods’ when multiple SNPs from different 

regions are proposed as IVs
Use ‘robust methods’ when multiple SNPs from different 

regions are proposed as IVs
Apply colocalization methods (e.g. HEIDI [22]) if few 

SNPs located in a single gene are proposed as  IVsb
Apply colocalization methods (e.g. HEIDI [22]) if few 

SNPs located in a single gene are proposed as  IVsb

Vertical pleiotropy Univariable MR for W–Y, bidirectional MR between X 
and W, tests for heterogeneity between multiple  Zc, IV 
inequalities test (for categorical exposure only)d

Univariable MR for W–Y, bidirectional MR between X and 
W and Steiger directionality test, tests for heterogeneity 
between  Zc, MR-Egger intercept

Method: Two-stage least squares (for continuous out-
comes)

Method: Inverse variance weighted

Horizontal pleiotropy Univariable MR for W–Y, bidirectional MR between X 
and W, tests for heterogeneity between multiple  Zc, IV 
inequalities test (for categorical exposure only)d

Univariable MR for W–Y, bidirectional MR between X and 
W and Steiger directionality test, tests for heterogeneity 
between  Zc, MR-Egger intercept

Methods: Multivariable MR, sisVIVE, MR-GENIUS, 
MR-MiSTERI

Methods: Multivariable MR, MR-Egger, weighted median, 
weighted mode, MR-PRESSO, MR-TRYX
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principal components of ancestral background) character-
istics. If a Z–W association attenuates substantially after 
adjustment for geographical/ancestral characteristics, that 
would suggest that the Z–W association is primarily driven 
by confounding due to population structure. The possibility 
of bias due to cryptic relatedness should be minimized by 
the use of established methods for identifying relatedness 
[52] and including genetically unrelated individuals in the 
analysis.

In two-sample MR, there is widespread use of pre-gener-
ated summary association results from GWAS, which limits 
the assessment of potential bias due to population structure. 
Newly developed ‘robust’ MR methods are unlikely to over-
come bias due to population structure if no attempts have 
been made to control for this in the original GWAS [53]. 
Therefore, MR analysts should check and report whether 
the original GWAS used appropriate methods to account 
for population structure and cryptic relatedness. The use of 
negative control outcomes in MR studies has been recently 
proposed to detect potential population stratification and 
could add to the sensitivity analyses exploring this type of 
bias [37].

In both one- and two-sample MR where family approaches 
are not possible to explore the presence of confounding due 
to assortative mating or dynastic effects, we would recom-
mend that researchers try to identify external evidence of 
the magnitudes of spousal correlations for any observed W 
(and for X) even with non ‘visible’ traits such as biomark-
ers. These could provide some evidence of the likely magni-
tude and direction of bias. Evidence suggests that assortative 
mating is stronger for ‘visible’ traits, with reported spousal 
correlations within the first year of marriage that were low 
(0.03– 0.1) for physical measures (body mass index [BMI], 
blood pressure and heart rate) and higher (0.3–0.4) for educa-
tion and health behaviours (smoking, alcohol consumption 
and exercise) [54]. Bias that could occur with familial related 
confounding (assortative mating or dynastic effects) is also 
illustrated in a recent MR study, which found that the standard 
population based MR analyses showing lower BMI and taller 
stature causing higher educational attainment were attenuated 
to the null in family MR, whereas the positive effects of BMI 
on type 2 diabetes and blood pressure were consistent in both 
population and family based MR designs [21].

Genetic colocalization methods have been developed to 
distinguish confounding by LD (distinct SNPs in the same 
genomic region, one affecting X and the other affecting 
W) from pleiotropy (a SNP shared between X and W) [10, 
22, 55, 56]. Confounding by LD is more likely to be an 
important source of bias in MR analyses using a single or 
a few SNPs (as is commonly the case for molecular pheno-
types—i.e. gene expression, epigenetic markers, protein, and 
metabolite concentrations) [57]—compared to MR analyses 
proposing multiple SNPs from different genomic regions 

as IVs. This is because confounding by LD is expected to 
affect specific variants in a sporadic way rather than all 
variants systematically [9] and, therefore, unbiased results 
could be obtained using the so-called robust MR methods 
as described in “Recommendation 6: Sensitivity analyses 
exploring and controlling for bias due to horizontal pleiot-
ropy” below.

Recommendation 3: Assessing bias due 
to horizontal pleiotropy by exploring the W–Y 
association

By definition, bias in MR analysis of X on Y due to hori-
zontal pleiotropy via W requires that W influences Y and 
we recommend that MR (or suitable methods [13]) are 
used to explore this. MR can provide reliable evidence of 
the effect of W on Y if there are strong and valid genetic 
IVs for W  (ZW), which may not be the case. In MR of W 
on Y (as in any MR), weak instrument bias would tend to 
bias the estimates towards the observational associations 
in one-sample MR and to the null in two-sample MR with 
non-overlapping samples and reduce statistical power and, 
consequently, the precision of the estimates [58]. If there is 
credible evidence from MR analysis that W does not affect 
Y, then one would be more confident that there should not be 
bias in MR estimates of the effect of X on Y due to horizon-
tal pleiotropic pathways mediated by W. If there is evidence 
for W–Y effect, or it is not possible to determine this, then 
bidirectional MR of an effect of X–W versus W–X could be 
valuable (see next recommendation).

Recommendation 4: Orienting causal directions 
of effect between X and W

Bidirectional MR can be conducted to explore causal direc-
tions between X and W (i.e. whether X causes W, or vice 
versa) in either one- or two-sample MR [59, 60]. If bidirec-
tional MR provides no evidence for a causal effect of X on W 
or vice versa, this suggests that Z affects X and W via inde-
pendent pathways and bias MR analyses when the effect of 
W on Y is independent of X (DAG 3.1). If bidirectional MR 
suggests that X causes W, W is likely to be a consequence of 
X and should not bias MR estimates of X on Y (DAGs 2.1 and 
2.2). However, it is possible that W mediates the effect from Z 
to Y partly independently of X (DAG 3.3). By contrast, if bidi-
rectional MR suggests that W causes X, the presence of bias 
in the MR analyses would depend on whether X completely 
mediates any effect of W on Y (DAG 3.4) or not (DAG 3.2).

Bidirectional MR is still a valid test of causal directions 
in the presence of bidirectional effects between X and W 
with additional assumptions that accommodate time-varying 
relationships between X and W [17, 61]. However, whilst 
we recommend this to orient the causal directions of effect 
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between X and W, it can be misleading when there are 
marked difference in the magnitudes and statistical power 
between MR of X on W and MR of W on X. For example, if 
the magnitude or power for MR of W on X is low (relative 
to the magnitude or power for MR of X on W) it may appear 
that there is no causal effect of W on X even in the presence 
of such an effect. Those magnitudes may vary during life-
course, and thus bidirectional MR may identify X causes W 
at some points and W causes X at others, but could not dis-
tinguish which comes first. Additionally, overlapping SNPs 
in the GWAS of X and W can make it unclear which SNPs 
to select as valid IVs for X and W in bidirectional MR [60]. 
In two-sample MR, Steiger directionality test might help to 
identify (independent) valid IVs for X or W by comparing 
the variance explained by each SNP in X to that in W—
under the assumption that each trait is measured with the 
same error a valid IV for X should explain more variance in 
X than W (and vice versa) [62].

Recommendation 5: Adjusting for potential 
horizontal pleiotropic effects via W

Where there is evidence (from recommendations 3 and 4 
above) that there may be bias in the MR estimate of the 
effect of X on Y due to horizontal pleiotropy mediated by 
W (DAGs 3.1–3.3), MVMR can be used to test the presence 
of effect X on Y adjusting for W in one- and two-sample 
MR [63]. MVMR requires information on not only Z–X 
and  ZW–W associations but also Z–W and  ZW–X associa-
tions, which means two-sample MR studies using summary 
statistics require access to full summary statistics of the 
original GWAS. If W mediates the X–Y association (DAG 
3.3), controlling for W in MVMR obtains the direct effect 
rather than the total effect of X on Y, while its total effect 
could be estimated by using a subset of SNPs only related 
to X [63]. If W interacts with X, MVMR can be extended 
to model such interaction in one-sample but not two-sam-
ple MR [64]. MVMR can be used to estimate direct effects 
of correlated traits on an outcome as long as the proposed 
genetic IVs independently strongly predict each trait. Limita-
tions of MVMR, such as problems with weak instruments, 
have been extensively discussed in the literature (e.g. [16, 
61, 63]). Although MVMR has been extended to apply to a 
time-varying X, the model to minimise potential horizontal 
pleiotropy by further including time-varying W is still under 
development [16].

Recommendation 6: Sensitivity analyses exploring 
and controlling for bias due to horizontal pleiotropy

The methods described in this section can also be applied 
in tandem with MVMR, or when additional assumptions 

of MVMR may not hold. These sensitivity analyses have 
been discussed extensively in the literature (e.g. [2, 3, 
9, 10]). We recommend initially assessing between SNP 
heterogeneity [10] even if SNPs are being combined into 
a single polygenic risk score (PRS). In one-sample MR 
heterogeneity is commonly explored by ‘overidentifying’ 
tests [38], while in two-sample MR (including MVMR) 
the Cochran’s Q statistic is an equivalent test [10, 65]. If 
X causes Y, and Z are valid IVs, we expect the Z–Y effect 
to be proportional to the Z–X effect across multiple SNPs. 
Therefore, heterogeneous individual SNP causal estimates 
are indicative of invalid IVs (even though they could also 
result from model misspecification). IV inequalities test 
can be used specially for categorical exposures and out-
comes in one-sample MR, to falsify both the independence 
and exclusion restriction assumptions [2, 66]. However, 
this test cannot distinguish horizontal pleiotropy from con-
founding. There are an increasing number of MR methods 
developed for correcting for horizontal pleiotropy and a 
full description of all of these is beyond the scope of this 
paper. Table 2 summarises some commonly used methods 
(i.e. sisVIVE [67], MR-GENIUS [68] and MR-MiSTERI 
[69] for one-sample MR and MR-Egger [70], weighted 
median [71], weighted mode [72], MR-PRESSO [73], 
MR-TRYX [74] for two-sample MR). It is important to 
recognise that (i) heterogeneity tests and most of the sen-
sitivity tests in Table 2 can only be used where there are 
multiple SNPs, (ii) some methods are statistically ineffi-
cient and (iii) most methods have been initially developed 
for two-sample MR and can be applied to large one-sample 
data (e.g. UKB), with fewer specific to one-sample MR. 
We would also recommend checking for outlier SNPs 
(i.e. SNPs that contribute disproportionately more than 
expected to the heterogeneity across individual SNP causal 
estimates) since these can bias estimates from some MR 
methods, particularly regression-based methods such as 
inverse variance weighted (IVW) and MR-Egger. Some 
MR methods have been developed to deal with outlying 
SNPs, which might be done by removing identified outli-
ers (e.g. sisVIVE [67], MR-PRESSO [73]), downweigh-
ing their contribution (e.g. weighted-median [71] and 
weighted mode [72]) or adjusting for detected pleiotropic 
pathways from outlying SNPs (MR-TRYX [74]). Whilst 
these methods are useful, we would recommend using 
them in tandem with other main and sensitivity analyses 
(e.g. MVMR) and with attempts to understand as much 
about the biology of the outlying SNPs as possible. With-
out this understanding it is challenging to understand 
whether the outlying SNP is introducing horizontal plei-
otropy (and might be best removed or down weighted) or 
is the most biologically reliable SNP and, therefore, the 
most credible instrument in the analysis [10].
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Real data example

We used MR to explore the effect of maternal insomnia 
on offspring birthweight as a motivating example (DAG 
shown in Supplementary Fig. 1). It has been suggested 
that having insomnia and other forms of sleep disturbance 
may be associated with lower offspring birthweight though 
results are inconsistent [76, 77]. We explored this ques-
tion using data from women who participated in the UKB 
study [78]. UKB is a cohort of 503 325 men and women 
who were on the National Health Service registry, aged 
between 40 and 69 years and living within 25 miles from 
one of 22 assessment centres [78]. Supplementary Table 1 
summarises how each variable used here was measured in 
UKB and coded in our example.

Using (one‑ and two‑sample) MR to explore 
the effect of maternal insomnia on offspring 
birthweight

For both one- and two-sample MR, we proposed 80 
genome-wide significant SNPs (listed in Supplementary 
Data 1) from the largest GWAS of insomnia in women 
[79] as our genetic IVs. In one-sample MR, SNPs were 
combined into a PRS to explore the effect of maternal 
insomnia on offspring birthweight among genetically unre-
lated UKB women of European descent who reported fre-
quency of insomnia, had experienced at least one live birth 
and reported the birthweight of their first live born child 
(N = 165 184). In two-sample MR, we randomly split those 
genetically unrelated women of European descent into two 
groups (Supplementary Fig. 2) to obtain SNP-specific 
summary statistics. We obtained both SNP–insomnia and 
SNP–birthweight results from both of the random sub-
samples and then pooled results from analyses in which 
sample 1 was used for SNP–insomnia and sample 2 for 
SNP–birthweight with those in which sample 1 was used 
for SNP–birthweight and sample 2 for SNP–insomnia to 
avoid sample overlap [59]. Full details are available in 
Supplementary Methods.

In one-sample MR using two-stage least squares, hav-
ing insomnia causes 87 g lower birthweight in offspring, 
but its confidence interval (CI: − 182, 7) slightly overlaps 
with the null. In two-sample MR, IVW suggested having 
insomnia is related to lower offspring birthweight ( − 124 g 
when comparing having versus not having insomnia, 95% 
CI: − 230, − 19). Our unweighted PRS for insomnia was 
very weakly associated with a higher odds of having live 
born babies (OR 1.0029 per one more allele, 95% CI: 
1.0008, 1.0051, P-value = 0.007), having insomnia was 
also weakly associated with a higher probability of having 

live born babies (8.6 ×  10–2, 95% CI: 2.3 ×  10–2, 1.5 ×  10–1, 
P-value = 0.007).

Searching more thoroughly for Z–W associations 
(Recommendation 1)

In this motivating example we only explored the six traits 
(i.e. maternal height, BMI, age at first live birth, education, 
frequency of alcohol intake and ever smoking) that we had 
a priori selected for checking, based on prior knowledge that 
these were key risk factors for variation in birthweight. We 
tested whether our PRS for maternal insomnia was associ-
ated with any of these traits and found that it was associated 
with all of them (Fig. 2). However, as noted in recommen-
dation 1 above, there may be value in exploring a wider 
range of potential pleiotropic paths. Therefore, we undertook 
a comprehensive search for previously identified associa-
tions of the 80 SNPs in the insomnia PRS using Phenos-
canner [46]. Supplementary Data 2 shows the results for 
17,503 associations with 2844 traits meeting this threshold 
(P-value < 0.05). Associations of one or more of the insom-
nia SNPs were seen for insomnia, birthweight and all of 
our six a priori selected W (height, BMI, age at first live 
birth, education, frequency of alcohol intake, ever smok-
ing). Other associations included traits related to our expo-
sure or one of the a priori selected W. For example, several 
SNPs were associated with other sleep traits in addition to 
insomnia, and many were associated with a large number of 
different measures of adiposity that are available in Phenos-
canner (e.g. total fat mass and fat mass of each body com-
ponent, impedance, waist circumference). Additional non-
exposure traits identified included mental health outcomes 
(e.g. depression, anxiety, mood swings, schizophrenia), 
musculoskeletal outcomes (bone mineral density, report of 
osteo or rheumatoid arthritis), respiratory/allergic outcomes 
(wheeze, asthma, eczema, lung function), reproductive 
outcomes (age at menarche) and general health (reported 
health rating, number of non-cancer diseases and number 
of prescribed medications). Some evidence of a statistical 
association was found for several related phenotypes show-
ing they were unlikely to be due to chance. In the interest of 
space and clarity for this illustrative example we undertook 
further analyses on the risk factors for birthweight that we a 
prior listed above and that we see the proposed genetic IVs 
for insomnia are related to. In a focused applied paper these 
additional analyses would be done on all of the variables 
identified by the Phenoscanner.

Exploring the role of confounding 
(Recommendation 2)

Each additional allele in the unweighted insomnia 
PRS was associated with a difference of −  0.004 (95% 
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confidence interval [CI]: − 0.007, − 0.001) year in age at 
recruitment, − 3.7 ×  10–7 (95% CI:  − 6.7 ×  10–7, − 6.4 ×  1
0–8) metre in longitude of birthplace and 2.1 ×  10–7 (95% 
CI: 5.7 ×  10–8, 3.5 ×  10–7) metre in latitude of birthplace. 
There was evidence of some variation in the mean PRS 
across 22 UKB assessment centres (Supplementary Fig. 3; 
P-value = 9.2 ×  10–8). After adjusting for genetic array, top 
40 genetic principal components, participants’ age, birth-
place and assessment centre, associations of the PRS with 
height, BMI, education, frequency of alcohol consumption 
and ever smoking were not attenuated, and its association 
with age at first live birth was slightly attenuated to the null 
(Fig. 2). In further MR analyses of age at first live birth, we 
obtained similar estimates before and after adjustment for 
participants’ age, birthplace and assessment centre (Sup-
plementary Table 2). In the absence of spousal data, we were 
not able to directly assess assortative mating. From previ-
ous literature [19, 54] we would anticipate that assortative 
mating could occur for traits such as education, height, and 

lifestyle factors (e.g. smoking and alcohol), which might bias 
estimates for the effect of maternal insomnia on offspring 
birthweight if the assorted trait is genetically correlated with 
both the exposure and outcome of interest. Confounding by 
LD is unlikely to be a major source of bias in this exam-
ple as our PRS consists of 80 SNPs from different genomic 
regions.

Association of non‑exposure traits with birthweight, 
testing causal direction between exposure 
and non‑exposure traits and accounting 
for horizontal pleiotropy (Recommendations 3 to 5)

We use MR analysis to test the causal effect of each non-
exposure trait on offspring birthweight. For these analyses, 
we identified proposed genetic IVs from published GWAS 
of height [80], BMI [81], age at first live birth [82] and 
education [83] in women independent of UKB and from 
previous GWAS of frequency of alcohol intake and ever 

Fig. 2  Associations of unweighted polygenetic risk score (PRS) for insomnia with six non-exposure traits before and after adjustment for popu-
lation stratification. Supplementary Table 1 summarizes how education, frequency of alcohol intake and ever smoking are coded in this study
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smoking in UKB men and women [84]. Full details of 
the selected SNPs are provided in Supplementary Data 
1. Under the MR assumptions, we found suggestive evi-
dence of causal effects of five out of six non-exposure 
traits on birthweight despite some wide CIs (Fig. 3a). 
Height and BMI did not appear to cause insomnia, but for 
the other four traits MR showed evidence of causality in 
both directions, i.e. the traits caused, and were caused by 
insomnia (Fig. 3b and c). Because age at first live birth, 
education and ever smoking showed evidence of affect-
ing both insomnia and birthweight, they were included in 
MVMR to estimate the direct effect of insomnia on birth-
weight adjusting for these three variables. After adjusting 
for them, the effect estimates of insomnia on birthweight 
attenuated towards the null compared to univariable MR 
(Fig. 4), though results are imprecise.

Sensitivity analyses to explore unbalance horizontal 
pleiotropy (Recommendation 6)

In one-sample MR, Sargan test suggests invalidity among the 
80 SNPs (Supplementary Table 3). Our sisVIVE (full results 
in Supplementary Data 3) showed that the association of 
insomnia with birthweight was greater than seen with uni-
variable two-stage least squares, but MR-GENIUS provided 
a smaller estimate ( − 28 [95% CI: − 155, 100] g). In the two-
sample MR results from all sensitivity analyses were direction-
ally consistent with the main IVW estimate, though for several 
the CIs were very wide; IVW, MR-PRESSO and MR-TRYX 
supported an inverse association of maternal insomnia with 
offspring birthweight with CIs that did not include the null 
(Fig. 5). The MR-Egger intercept suggested little evidence of 
unbalanced horizontal pleiotropy (p-value = 0.732 for dataset 

Fig. 3  Mendelian randomization estimates for a non-exposure traits-
birthweight (W–Y) effects, b non-exposure traits-insomnia (W–X) 
effects, and c insomnia-non-exposure traits (X–W) effects. “Usually” 

having insomnia is coded as 1, while “sometimes/rarely/never” hav-
ing insomnia is coded as 0 (Supplementary Table 1)
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A on B and 0.763 for B on A; full results in Supplementary 
Fig. 4). Whilst between SNP heterogeneity was less when MR-
TRYX was used (in comparison to the IVW analyses) the point 
estimates were very similar between it and IVW (Fig. 5 and 
Supplementary Fig. 5). However, offspring genotypes (which 
were missing from UKB) could be a potential source of hori-
zontal pleiotropy as we conducted MR between generations. 
Such bias cannot be mitigated by these pleiotropy robust meth-
ods but could be corrected by adjusting for paternal and off-
spring genotypes, where trios’ data are available [14].

Discussion

As GWAS explore a larger range of phenotypes with larger 
sample sizes, the possibility that proposed genetic IVs for a 
specific exposure will be found to associate with many other 

traits at genome-wide significant threshold levels increases 
[6, 7]. This may make the selection of valid IVs for MR 
challenging. In this paper we have identified and described 
five scenarios that could result in associations of proposed 
genetic IVs with non-exposure traits. These are confound-
ing, vertical pleiotropy, horizontal pleiotropy, reverse cau-
sality and selection. We provide a set of recommendations 
for exploring associations of the proposed genetic IV with 
non-exposure traits, identifying which scenario is most plau-
sible, whether the MR result is likely to be biased and how 
any bias might be minimised. These recommendations are 
not fully covered in existing published MR guidelines, and 
supplement those [2, 3, 9]. We demonstrate the use of these 
recommendations in an applied example exploring the effect 
of maternal insomnia on birthweight.

In our example we found that our proposed IV for insom-
nia (a PRS of 80 SNPs) was associated with all six of our 

Fig. 3  (continued)
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a priori selected risk factors for birthweight (height, BMI, 
age at first live birth, education, frequency of alcohol intake, 
ever smoking). Our results suggest that some of the associa-
tion of the PRS with age at first live birth might be due to 
confounding by population structure. Consistent with previ-
ous MR studies [42, 45, 85, 86], our results suggested that 
associations of the PRS with height and BMI were less likely 
to reflect horizontal pleiotropy. Therefore, we concluded in 
this example associations of the insomnia PRS with height 
and BMI were unlikely to bias the main MR result. Age 
at first live birth, education and ever smoking were plausi-
ble sources of horizontal pleiotropy, and after adjusting for 
these in MVMR there was little evidence for a causal effect 
of maternal insomnia on offspring birthweight. Additional 
analyses in which we used a phenome-wide approach to 
identify associations of the 80 SNPs in the PRS with non-
exposure traits, suggests we might have missed some key 

specific pleiotropic paths (e.g. related to mental, musculo-
skeletal, respiratory and general health). For these we relied 
on sensitivity analyses (see Table 2) to explore and control 
for any potential bias due to unbalanced horizontal pleiot-
ropy, which largely suggested the little evidence of such bias. 
Depending on the particular research focus the reassurance 
from sensitivity analyses may be sufficient, and no further 
exploration of the specific role of non-exposure traits that 
the genetic IV is related to is required. However, we would 
suggest that any researchers exploring the effect of insomnia 
using MR might want to undertake multivariable regres-
sion analyses for some of the non-exposure traits influenced 
by insomnia SNPs that we have identified, particularly if 
sensitivity analyses for their outcomes suggest unbalanced 
horizontal pleiotropy.

Limitations in MR studies of prenatal exposures have 
been summarized in a recent review [87]. Our real data 

Fig. 3  (continued)
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example was used for illustrative purposes rather than to 
make a statement about the effect of insomnia on birth-
weight, but we feel it is relevant to briefly acknowledge 
limitations specific to this example. We are assuming that 
the proposed genetic IVs for insomnia outside of pregnancy 
are valid for insomnia during pregnancy, which may not be 
the case if our SNPs–insomnia effects are influenced by the 
physiological change of pregnancy. MR estimates might be 
biased if the IVs we have proposed do not relation to insom-
nia in pregnancy as they do outside of pregnancy [17]. When 
exploring pregnancy exposures it is important, where pos-
sible to compare the proposed genetic IV—exposure asso-
ciation from the GWAS in non-pregnant participants with 
the equivalent association in pregnant women [14]. This 
has consistently been shown to be the case for blood pres-
sure, lipids and glucose [42], but we cannot assume that it 

is the case for insomnia. Furthermore, studies of pregnancy 
exposures on offspring outcomes are often concerned with 
intrauterine exposure being a critical or sensitive period, 
and not influenced by preconceptual or postnatal exposure 
[14]. In this example if maternal insomnia (or genetic vari-
ants related to it) influenced oocytes, but not to the extent 
that they would make them inviable for fertilisation, and that 
effect on oocytes influence fetal growth our MR estimate 
would potentially reflect preconceptual as well as intrau-
terine effects. We are not aware of any evidence of mater-
nal sleep quality influencing oocytes and as our outcome 
is birthweight, which could not be influenced by maternal 
postnatal insomnia. Our MR estimates might also be biased 
by overfitting data given the overlap participants between the 
GWAS used to select genetic IVs for insomnia and our MR 
analyses [58], and by the selective response in UKB [88], or 

Fig. 4  Multivariable Mendelian randomization (MVMR) estimates 
for the effect of maternal insomnia on offspring birthweight. Esti-
mates are differences in mean birthweight when comparing reporting 

usually experiencing insomnia to never, rarely or sometimes experi-
encing it with and without adjustment for potential horizontal pleiot-
ropy via maternal age at first birth, education and ever smoking
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self-report by women many years later of weight of their first 
live-born child. By definition our study only includes women 
who have delivered at least one live born baby. However, we 
are not aware of strong evidence of insomnia or our proposed 
genetic IVs for insomnia influencing infertility or number of 
live births [82, 89], and they were only weakly associated 
with a higher odds of having live born babies, indicating any 
bias due to only selecting pregnant women would be small 
[34, 36]. Additionally, we could not rule out the possibility 
that any of the additional non-exposure traits found in our 
phenome-wide scans resulted from confounding, horizon-
tal pleiotropy or selection. Our MR estimates could also be 
influenced by violation of the fourth IV assumption [2]. In 
short, the real data example is an illustration of how to work 
through our recommendations and we are not suggesting 
that the effect estimate for this example is necessarily a valid 
causal effect of insomnia on birthweight.

To conclude we have highlighted an issue in MR that 
is likely to become increasingly common—that of finding 
multiple associations of proposed genetic IVs with non-
exposure traits—and provide descriptions of the scenarios 
that could result in this, together with recommendations 
for how to explore whether such associations exist and 
what to do when they are found. These recommendations 
complement current MR guidelines [2, 3, 9]. Though 
not explored here, it is always helpful to triangulate MR 
results with other methods that have different key sources 
of bias to estimate causal effects [13]. Consistency of 
results across different methods increases confidence in 
the results, even in the presence of remaining concerns 
about genetic IV validity.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10654- 022- 00874-5.

Fig. 5  Sensitivity analyses for the effect of maternal insomnia on offspring birthweight using two-sample Mendelian randomization (MR)

https://doi.org/10.1007/s10654-022-00874-5
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