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Relational Network for Knowledge 
Discovery through Heterogeneous 
Biomedical and Clinical Features
Huaidong Chen1,*, Wei Chen2,*, Chenglin Liu2, Le Zhang1, Jing Su2 & Xiaobo Zhou2

Biomedical big data, as a whole, covers numerous features, while each dataset specifically delineates 
part of them. “Full feature spectrum” knowledge discovery across heterogeneous data sources remains 
a major challenge. We developed a method called bootstrapping for unified feature association 
measurement (BUFAM) for pairwise association analysis, and relational dependency network (RDN) 
modeling for global module detection on features across breast cancer cohorts. Discovered knowledge 
was cross-validated using data from Wake Forest Baptist Medical Center’s electronic medical records 
and annotated with BioCarta signaling signatures. The clinical potential of the discovered modules 
was exhibited by stratifying patients for drug responses. A series of discovered associations provided 
new insights into breast cancer, such as the effects of patient’s cultural background on preferences for 
surgical procedure. We also discovered two groups of highly associated features, the HER2 and the 
ER modules, each of which described how phenotypes were associated with molecular signatures, 
diagnostic features, and clinical decisions. The discovered “ER module”, which was dominated by 
cancer immunity, was used as an example for patient stratification and prediction of drug responses to 
tamoxifen and chemotherapy. BUFAM-derived RDN modeling demonstrated unique ability to discover 
clinically meaningful and actionable knowledge across highly heterogeneous biomedical big data sets.

The explosive expansion of biomedical big data1–3 provides enormous opportunities for translational research 
such as precision medicine4 if the new challenges of data mining and knowledge discovery can be addressed. 
Public data reservoirs such as the Gene Expression Omnibus (GEO), the database of Genotypes and Phenotypes 
(dbGaP), etc., have hosted various datasets generated from diverse sources, from publication-associated data 
deposition to collective efforts of systematic data generation such as The Cancer Genome Atlas (TCGA). Such 
modern biomedical big data5–8 demonstrate a pair of controversial characteristics: the “global abundance” versus 
the “local deficiency” of features across datasets, which raise unique challenges in data mining that have not yet 
been well studied.

Global abundance of biomedical features is one of the most appealing characteristics of biomedical big data. 
As a whole, biomedical big data provide multi-scale and diverse descriptions of biological or pathological events 
at different “throughput levels” across a range of experimental platforms and clinical systems. For example, in 
the TCGA dataset, breast cancer has been profiled at molecular, cellular, tissue, patient, and population levels in 
terms of biological traits as well as drug and treatment responses in short-term (pathological complete response) 
and long-term (distant metastasis-free survival) contexts. Types of data range from high-throughput omics assays 
to conventional demographic and diagnostic features. Besides the research and trial data collected from specific 
cohorts9–12, electronic medical records (EMRs), which are free of study-specific biases, provide valuable and inde-
pendent information on patients, diseases, treatments, and outcomes13–15. Thus, biomedical big data as a whole 
has extremely rich features enabling researchers, for the first time, to investigate a disease across the full spectrum 
of features in a way that any individual dataset cannot.

However, individual biomedical big datasets demonstrate “local deficiency” of features that, if not addressed, 
will cause a “drinking seawater” paradox and limit full-spectrum analysis of rich features. For features available 
in a pan-dataset analysis, each dataset only covers a small portion of them. Such intrinsic “local deficiency” of 
features in each dataset and heterogeneity of feature availability across biomedical big datasets raises unique 
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challenges and demands novel approaches for data mining. This limitation causes a “drinking seawater” paradox: 
the more the seawater is consumed to ease thirst, the more water in the body will be lost, and the worse the thirst 
will be; similarly, the more that biomedical big datasets with heterogeneous features are incorporated, the fewer 
features and samples are qualified for analysis, and the less knowledge can be discovered. This paradox stems 
from the heterogeneous coverage of features across datasets. Imagine that a virtual “data table” for knowledge 
discovery was established by incorporating multiple biomedical big datasets for breast cancer (Figure S1, features 
in rows and datasets in columns). This virtual table could have millions of features (rows), but each dataset (col-
umn) would only cover a small portion of them (grids labeled in orange), leaving most part of the table empty 
(grids labeled in grey). For example, the correlations among features A, B, and E can be analyzed with dataset 1; 
however, after data integration, the values of these three features are missing for most samples, making any global 
association analyses of these features challenging. Generally speaking, as more datasets are combined, the cover-
age ratio of a feature over all samples tends to decrease.

Missing value imputation approaches such as k-nearest-neighbor16,17 and random forest18 algorithms, which 
are widely used in biomedical data preprocessing, are not suitable to address such a paradox. Such approaches 
assume “nearly complete” (only a modest amount of missing values) data tables randomly distributed across 
features. Complete data harvest is designed, and missing data are due to random causes such as poor data quality 
(for example, stains and poor signals in raw microarray data) or human errors (e.g., occasionally missed or con-
flicting records in EMRs). However, for “structurally missed features”, as demonstrated in Figure S1, data for some 
features are totally missing in some datasets. In this situation, imputation approaches will significantly deteriorate 
the quality of the data19.

Another strategy is to combine local knowledge discovery in individual datasets and global summaries of the 
results crossing datasets20, such as meta-analysis approaches21–23. However, when the samples that support the 
evaluation of an association between two features are distributed into multiple datasets, statistical power may be 
significantly impaired beyond the compensation strategies used in the summary algorithms. Intrinsic variations 
among datasets are also a challenge, because statistical measures are often not comparable across datasets, even 
for the same type of data23.

Pairwise association analysis24,25, which utilizes all available data shared by a pair of features, also provides 
solutions to address local feature deficiency. However, currently, most pairwise approaches are focused on homo-
geneous associations within the same dataset. A statistical measure to fairly compare heterogeneous associations 
across datasets would increase the utility of pairwise association analyses. Meanwhile, global summarization 
approaches are particularly important for understanding and further extending the results of pairwise association 
analysis, but these are largely underdeveloped.

To address this “drinking seawater paradox”, we developed the relational dependency network (RDN) of bio-
medical features based on bootstrapping for unified feature association measurement (BUFAM). BUFAM pro-
vided a uniform metric to enable unbiased analysis of pairwise feature associations across datasets, whereas RDN 
allowed global analysis and summarization of the knowledge discovered by BUFAM. Thus, the BUFAM-derived 
RDN model provides a general solution for the feature deficiency problem during the integration of biomedical 
big data sets of heterogeneous features. Such strategy enables efficient and effective use of heterogeneous biomed-
ical big data for understanding diseases and optimizing clinical decisions.

The design of the BUFAM-derived RDN approach is illustrated in Figure S1. Multiple datasets are used to infer 
the relations among features A, B, C, D, and E of different data types, whose true relations are demonstrated as a 
relational network (Figure S1, lower left corner). The association between each pair of features is examined using 
samples from all datasets that share these two features. Once all associations that are directly testable are profiled, 
an RDN of discovered associations can be established. Network-based analysis tools can be applied to this RDN 
to generate a global understanding of the pairwise discovered knowledge, and to further identify associated fea-
tures that do not share enough data to test direct associations. Feature heterogeneity2,26,27 is the dominating chal-
lenge to be addressed in this work.

As illustrated in Figure S3 (Supplement), biomedical big data sets used in this study showed disparate features 
in terms of: 1) feature types, which included demographic features, diagnostic results, and molecular profiling; 2) 
data types, which covered numeric, binary, and categorical (nominal and ordinal) types; and 3) local deficiency 
among datasets (the gray areas in Figure S3). Measuring the associations among different variable types and 
accurately ranking them to highlight significant ones were the major challenges during this study. Formalized 
definitions of the question, the goal, and the challenges are provided in Supplement Section 1 (Formalization of 
the heterogeneous association problem).

Results and Discussions
Knowledge discovery by BUFAM. The unified relationships among heterogeneous biomedical features, 
evaluated by BUFAM p-values (Fig. 1A BUFAM approach, and Fig. 1B BUFAM associations, Data and Methods 
section), are summarized as a heat map in Fig. 2(A) and Figure S1. Strong associations among variables, indi-
cated by smaller p-values (the red regions), were sparse and locally condensed, comparing the green regions 
(large p-values) with the rest. For example, features in upper left corner with significant p-values were highly 
related to each other. Among all 27 testable associations discovered by BUFAM, 22 were validated using elec-
tronic medical records from Wake Forest Baptist Health (WFU EMR) (Fig. 2B). The Jaccard similarity coeffi-
cient (defined by Equation 1in Section 1, Supplement Document) for the shared features of discovery (TCGA/
MDACC/WFUCCC) and the validation datasets (WFU EMR) was 0.81.

Our association results were consistent with current knowledge about breast cancer. For example, estrogen 
receptor (ER) status, an important breast phenotype widely used for patient subtyping and treatment design, 
was associated with patients’ ethnicity (Fig. 2A). The ER-negative phenotype was more prevalent among African 
American patients than others in the WFU EMR (Figure S4), consistent with other population studies28,29.
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We also observed an ethnicity-specific preference regarding choices for surgery (Figure S5, 
p-value <  =  0.00023, χ 2 test), which was not reported before. Asian patients were less likely to choose lumpec-
tomy (7.7%) compared with White (27.4%) and African (32.5%) American patients. However, about 50% of 
Hispanic patients chose lumpectomy. Hispanic and Asian patients were also less likely to choose either simple or 
modified radical mastectomy (25% and 28%, respectively), compared to African American (52.5%) and White 
(55.8%) patients.

The WFU EMR data provided an independent cross-validation for knowledge discovery using public datasets. 
The patient cohort was local and free from any recruitment bias, since data collection was not research-oriented. 
The high ratio of validated knowledge suggested that the discovered knowledge from heterogeneous public 
sources was reliable and remained valid compared to clinical cases.

A major concern in comparing data is the merging of patient data from various sources without specialized 
data harmonization. On one hand, this strategy would neutralize the population difference among cohorts due 
to different patient recruitment standards and original research purpose of each project. Thus, as more cohorts 
are incorporated, fewer cohort-specific patient features would affect the results, and the more representative the 
discovered associations would be. On the other hand, cohort-specific data collection and processing bias might 
be introduced and thus cause false-positive findings. However, our EMR validation implied that such a merging 
strategy would not introduce significant population-related false discovery.

Oncotype DX Score was used as a pivotal feature for evaluating: 1) if batch effects overwhelmed true asso-
ciations and 2) if the discovered associations were consistent with literature. Originally identified30,31 using 
microarray-based gene expression data for 21 genes and later proven reliable compared to microarray data 
of other cohorts9, the Oncotype DX Score had been commercialized and standardized as a real-time RT-PCR 
(reverse transcriptase-polymerase chain reaction) based clinical assay32 and been approved for use in patient 
diagnoses and treatments. As one of the first FDA-approved molecular signatures for personalized treatments, 
Oncotype DX Score had been studied by many research groups in various clinical trials. This literature provides 
relatively reliable information for the purposes of validation, despite inconsistent reports of the performance of 
Oncotype DX Score.

The 21-gene signature9 of the research datasets (TCGA, WFUCCC, and MDACC) were calculated from 
microarray data, while the Oncotype DX Score data in the WFU EMR were acquired using a PCR-based com-
mercial toolkit. Strong batch effects were expected due to differences in sample preparation, expression assays, 
data normalization, and score calculation between the microarray-based data and the PCR-based Oncotype DX 

Figure 1. Bootstrapping for unified feature association measurement (BUFAM). (A) Flowchart of the 
BUFAM algorithm. (B) Statistical measurements for specific combinations of feature data types. Mathematical 
details are in the Supplement.
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Score. We theorized that if associations from Oncotype DX Score data were consistent with those from the EMR 
data, we could demonstrate whether the BUFAM approach was robust to batch effects.

The discovered and validated associations were not only fully consistent, but also consistent with published 
results. For example, the strong positive association between the Oncotype DX Score with higher histologic 
grades (Fig. 2B) is consistent with the multiple linear regression analysis by Flanagan and colleagues33. We also 
discovered and validated the finding that patients with progesterone receptor (PR)-positive breast cancer often 
had lower Oncotype DX Scores (Fig. 2B), consistent with the design of this tool30. Therefore, the validated associ-
ations related to Oncotype DX suggested that it the BUFAM algorithm was robust to batch effects and produced 
reliable discoveries.

BUFAM provides a flexible metric platform for customized and scalable data mining. The default statis-
tical tests (Fig. 1B), bootstrapping algorithm, and the Z-test can be replaced to incorporate prior knowledge 

Figure 2. BUFAM feature association discovery. (A) Overview of the measures of pairwise feature 
associations presented in − –BUFAM p valuelog ( )10 . Gray regions represent non-testable associations.  
(B) Validation of discovered associations using the EMR of Wake Forest Baptist Medical Center (WakeOne) 
presented in − –BUFAM p valuelog ( )10 . Associations between Oncotype DX score and histologic grade, and 
between Oncotype DX score and progesterone status, are shown as examples.
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and improve sensitivity. The pairwise nature of the algorithm makes it suitable for large-scale parallelism using 
high-performance computation clusters or cloud computation, which is important for mining big data.

Comparison with KNN imputation. After performing data imputation for numeric features using the 
KNN algorithm, most pairs of features that demonstrated associations of various strengths before imputation 
were no longer distinguishable. Among 10 numeric-to-numeric associations, 9 showed apparent strong associa-
tions (Fig. 3A). Figure 3B illustrated the impact of KNN imputation on features. Before imputation, the features 
“Metagene: B/P” and “Tumor Size” exhibited no noticeable relations (black points), consistent with the weak sta-
tistical significance (BUFAM p-value) in Fig. 3A (association of BP vs Tumor Size). The imputed data (red points) 
brought in strong artificial patterns in both BP metagene and tumor size, which explained the strong and false 
post-imputation association we observed.

Using the KNN algorithm for imputation of numeric data has been one of the most reliable approaches for 
processing missing data. It has shown robustness against distribution, percentage34,35, and sources17 of missing 
values. However, the current comparison showed that for structurally missed features resulting from differences 
of feature coverage among datasets, in 80% of cases, current data imputation approaches introduced artifacts that 
overwhelmed the original data patterns.

Features are not always imputable. An essential assumption for KNN imputation is that features have a strong 
enough association that the similarity defined by any feature is likely to be consistent. Under this assumption, if 
a sample is missing a feature, a set of samples with similarity to this sample in all other features (i.e., the “nearest 
neighbors”) can be used to estimate the missed feature of the first sample. Although this assumption works well 
for microarray data17,34,35, it has limitations for other applications. Our results showed that strong feature associ-
ations (Fig. 2A) were not as prevalent, and therefore some features may not be imputable at all. BUFAM, which 

Figure 3. Comparison with KNN algorithm. (A) Missing values of 6 numeric features were imputed by the 
KNN algorithm. These were compared with p-values generated by BUFAM for the corresponding 15 pairwise 
associations before (black circles) and after (red stars) imputation. Associations were sorted according to 
p-values generated by BUFAM before imputation. (B) Comparisons of normalized original (black) and imputed 
(red) values of the BP metagene (stars) and tumor size (circles). Patients were sorted according to normalized 
BP metagene values.
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does not rely on complete data and imputation, is a more general approach and thus suitable for a wider range of 
applications.

Comparison with meta-analysis. We compared the results of our pan-dataset association analyses with 
meta-analyses in terms of feature coverage, patient coverage, and association results (Fig. 4). The unified coverage 
of possible associations using BUFAM was significantly higher than the meta-analysis (Fig. 4A). For each associa-
tion, the number of the supporting patients (Fig. 4B) was equal to meta-analysis (white region) if only one cohort 
was available, or significantly higher (gray region) if patients from multiple cohorts share the required feature 
pairs. In terms of p-values, BUFAM and meta-analyses demonstrated consistent findings (Fig. 4C).

Compared with meta-analyses, the greatest strength of the BUFAM approach was the unified and robust 
measurement of feature associations across cohorts. Since all associations were assessed using the same strategy, 
the measurements were less sensitive to the cohorts used. Meanwhile, since more patients could be used for 
knowledge discovery (Fig. 4B), BUFAM fully utilized the available data and benefited from the increased statisti-
cal power. For example, three associations (“Patient Age vs. Metagene: T/NK”, “Patient Age vs. Metagene: 
Proliferation”, and “MammaPrint vs. Metagene: M/D”, marked by black arrows in Fig. 4C) showed strong associ-
ations (black circles, ≤ −–p value 10 16) in BUFAM analysis using the WFCCC and MADCC cohorts (2,462 
patients; for availability of the corresponding features, see Figure S3). In meta-analyses, these associations were 
only detectable in the larger WFCCC cohort (blue stars in Fig. 4C; n =  1,954 patients) with much less statistical 
significance ( ≤ ≤− −– –~p value 10 p value 102 4) but not in the smaller MDACC cohort (green stars; n =  508 
patients). Another specific case, the association between Metagene:Proliferation and patient age, was thoroughly 
analyzed and externally verified using the TCGA RNA-seq dataset (Supplement Section 7).

Cohort-specific biases, especially the sampling bias of patients, often challenge meta-analysis. BUFAM pro-
vides a fair incorporation to minimize such biases. Cohort-specific bias with respect to some features, however, 
may introduce artifacts and reduce statistical sensitivity of the BUFAM approach. Careful data cleaning and 
normalization are thus crucial for the sensitivity of BUFAM.

RDN-based biomedical feature analysis. Strong associations among features were visualized as a rela-
tional dependency network (Fig. 5A). The ER module (module A) and the HER2 module (module B) were dis-
covered using the Girvan-Newman’s modularity algorithm (p-value <  =  0.0001, Supplement Section 6). The ER 
module was dominated by ER status, molecular signatures, histologic grading, age and age-related features, and 
tumor size, with ER status as the “pivot” feature at the center of the module. The HER2 module (module B) was 

Figure 4. Comparison with meta-analysis. (A) Comparison of feature pairs for BUFAM and cohort-based 
analyses. (B) Numbers of supporting patients for each pairwise association found with BUFAM compared to 
meta-analysis. (C) Comparison of association results of BUFAM and meta-analysis were compared. The two 
horizontal dashed lines marked the p-values of 0.01 and 0.05, respectively. Black: BUFAM; Blue: WFCCC; 
Green: MDACC; Red: TCGA.
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composed of HER2 status, centromere 17 copy number variation, pathologic grading, and lymph node involve-
ment, with HER2 status as the pivot feature.

The signaling pathway annotation enrichment analysis showed that the ER module was associated with a wide 
range of immune pathways (Fig. 5B), including: tumor surveillance mechanisms (e.g. cytotoxic T cells, natural 
killer cells, and dendritic cells); responses of tumor tissues (e.g. apoptosis, cell cycle arrest, and inflammation); 
regulatory mechanisms of tumor-specific immune responses (e.g. T helper cell types 1 and 2, associated T cell 
apoptosis); complex communications among immune cells through interleukin (IL)17, IL12, IL2, IL7, and IL22; 
and the involvement of other types of immune cells, including B cells, monocytes, and granulocytes. In contrast, 
the HER2 module was associated with typical oncogenic phenotypes, such as cell growth (EIF2, IGF1-MTOR, 
and proteasome pathways); proliferation (Rb pathway), angiogenesis (VEGF pathway); and invasion (myosin and 
metastasis pathways) (Fig. 5B). Therefore, the two modules described the same patient from two different per-
spectives – one from the in situ immunity patterns, and the other from the tumor growth and invasion patterns.

Decisions regarding surgical procedures were strongly associated with pathologic staging, HER2 status, and 
histologic types. These features included pathologic stage using the TNM system36 and the corresponding patho-
logic features, including tumor size, lymph node involvement, and metastasis status. In contrast, ER and PR status 

Figure 5. RDN module detection and annotation. (A) Visualization of the RDN topology of biomedical 
concepts of different data types (numeric, ordinal, nominal, and binary, represented in node shapes); association 
polarity (positive, negative, or not applicable); and the HER2 module (A) and ER module (B). (B) Characters of 
the HER2 and ER modules: pivot concepts, phenotypic features, molecular underpinnings, and most common 
treatments.
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(as well as histologic grades and molecular signatures, where reported), although critical to patient prognosis, did 
not significantly affect the decisions of patients and physicians in clinical practice.

These “clinically omitted” features reflect a gap between clinical practice and the current molecular profiling 
achievement. The explosive growth of omics data and rapid progress in bioinformatics approaches have gener-
ated numerous molecular signatures for subtyping patients through molecular-level evidence. Many of these 
signatures provide important information about mechanistic differences in disease among individuals and have 
demonstrated strong clinical potential. However, none of these breast cancer molecular signatures and molec-
ular subtyping actually significantly affects clinical decisions regarding surgeries. A major reason could be that 
most molecular signatures were developed for identifying suitable drugs, not types of surgeries. For example, 
the Oncotype DX score was established to predict responses to chemotherapy and the risk of distant metastasis.

Our results suggested that even for such a relatively small RDN (44 nodes), the challenges of data sparseness 
and heterogeneity could be addressed, and biologically and clinically meaningful knowledge could be extracted 
for further research and validation.

RDN-based patient subtyping for better therapeutic design. Using the ER module as an example, 
we further illustrated how modules of heterogeneous features from disparate resources integrative contribute to 
better therapeutic designs. We first demonstrated that the RDN module detection allowed cross-cohort integra-
tion of features whose associations could not be directly measured. Then we showed that such integration was 
biologically meaningful by gene set enrichment analysis using BioCarta signaling pathway signatures. Finally, 
we demonstrated the clinical relevance of the detected ER module by using the associated signatures to stratify 
responses to tamoxifen-related therapies. We chose these therapies as the use case for the ER module because 
tamoxifen, an ER antagonist, is the typical therapy for patients with ER-positive breast cancer.

We showed that the BUFAM approach could reliably and sensitively discover associations among features by 
integrating data from diverse and structurally heterogeneous datasets. However, in many cases, due to the lack 
of data, we could not directly measure associations between two intrinsically related features. This challenge 
was addressed by projecting these BUFAM-discovered pairwise associations onto a unified RDN, allowing indi-
rect associations among features based on their connections. We used network-related approaches37,38 such as 
the Girvan-Newman network community discovering algorithm. As an example, the availability map of the ER 
module’s features (Fig. 6A) showed that three clinical features (ICD O3 code in the EMR, histologic type, and 
menopause status) were unique to the TCGA dataset. All molecular signatures (e.g. PAM50 subtypes, metagene 
signatures, Oncotype DX score, etc.) and some clinical features (e.g. histologic grade and tumor size) were missed 
in the TCGA dataset. Thus, associations between the TCGA-unique and the TCGA-absent features in the ER 
module were not measurable by BUFAM (gray region in Fig. 6B).

The RDN module detection allowed indirectly associating such features. The TCGA cohort shares three 
clinical features with the other two cohorts: patient age, ER status, and PR status (Fig. 6A). These “pivot” fea-
tures (the 5 ×  5 feature region highlighted by the yellow box in Fig. 6B) demonstrated strong associations with 
both TCGA-unique features (the small red region of 5 ×  5 features, at the bottom right corner, assessed using 
TCGA dataset) and TCGA-absent features (the large red region of 14 ×  14 features, according to the WFCCC and 
MDACC (MD Anderson Cancer Center) datasets). Thus, associations between the TCGA-unique features and 
the TCGA-absent features were indirectly assessed by the RDN network module detection approach according 
to the association strength between these features and the shared “pivot” features. Signaling pathway enrichment 
analysis showed that such indirect associations of the same RDN modules of features were actually driven by 
common biological mechanisms (i.e., tumor immunity for the ER module) instead of the arbitrary assembling 
of features.

The clinical relevance of the ER module could not be directly assessed using the associated features because 
none of the three cohorts we used includes all these features (Fig. 6A). Thus, we used the ER-module-enriched 
BioCarta signaling pathway signatures (Fig. 5B) to test whether the ER module could help to distinguish differ-
ential responses to different treatment strategies. Four subtypes were discovered: the Immune Inert, Neutral, 
Active, and Responsive subtypes, based on the patient’s immune response (suppressed, neutral, strongly active, 
and modestly active, respectively; Fig. 6C). Each subtype demonstrated different drug responses to the four types 
of adjuvant treatments: chemotherapies, tamoxifen, chemotherapies plus tamoxifen), and none (no adjuvant 
treatment) (Kaplan-Meier plots in Supplement: Figures S7–10). For example, patients with the Immune Neutral 
subtype showed very diverse responses to different treatment plans. They significantly benefited from tamoxifen 
treatment (blue curve) but not as much from chemotherapies (red curve for chemotherapy alone, and green curve 
for tamoxifen +  chemotherapy combination) (Fig. 6D). In contrast, patients with the Immune Active subtype did 
not from tamoxifen treatment (black curve for no treatment, blue curve for tamoxifen) (Supplement Figure S8). 
Furthermore, chemotherapies (red curves) actually increased the risk of tumor relapse in this subtype (analyzed 
using Cox’s proportional hazards test) (Supplement Figure S11).

The ER module exhibited strong associations with patient immunity patterns and responses to tamoxifen 
and chemotherapy, consistent with the literature. Adams and colleagues39 reported that ER status had a com-
plex impact on cell functions such as immunity and proliferation. Bates et al. reported more regulatory (FOXP3 
positive) T cells in ER-negative than ER-positive patients; once the latter group showed high levels of regulatory 
T cells, they were at higher risk for tumor relapse40. Teschendorff and colleagues reported a good prognostic 
subtype of breast cancer was characterized by ER-negative tumor status and overexpression of genes that confer 
immunity41. Nagalla et al.9 and Schmidt et al.42, among others, confirmed the important roles of immunity in 
cancer relapse, metastasis, and patient survival. Furthermore, ER signaling was found to directly regulate immu-
nity43, meaning that ER-targeted hormone therapies might alter the immune pattern in breast cancer patients. For 
example, tamoxifen has complex effects on immune function, including potentially shifting the immunity pattern 
from cellular to humoral44.
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Chemotherapies also modulate the immune system45. On one hand, intensive chemotherapy tends to suppress 
the immune system due to bone marrow toxicity caused by lymphocyte depletion46. On the other hand, chemo-
therapies also directly or indirectly stimulate some immune functions which might contribute to their anti-cancer 
capacity. For example, Chan et al.47 and Tsavaris et al.48 reported that the taxanes paclitaxel and docetaxel boost 

Figure 6. ER module discovery and patient subtyping for drug responses. (A) Feature availability among the 
TCGA (orange), WFCCC (purple), and MDACC (blue) cohorts. Feature names are shown at the right. 
Unavailable features are labeled in gray. (B) Pairwise associations among features in the ER module presented in 
− –BUFAM p valuelog ( )10 . The yellow box highlights common associations shared by two groups of 
associations. (C) Patient subtyping using the BioCarta signatures (top region) associated with the ER module. 
These signatures revealed four subtypes: Immune Inert, Neutral, Active, and Responsive. (D) Differential 
treatment responses assessed by Kaplan-Meier survival analysis of the WFCCC cohort, using distant-
metastasis-free survival time as the index. Survival curves of the Immune Neutral (top) and Active (bottom) 
Subtypes under different treatments are presented and labeled with patient numbers and log-rank test p-values. 
More details are given in the Supplement.
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mixed lymphocyte reactions and effects of natural killer and lymphokine-activated killer cells, while suppressing 
levels of IL-1 and tumor necrosis factor-α  (TNF-α ). Therefore, it appears that the ER module is strongly related 
with immune signatures and these signatures could predict patient drug responses.

Our results also suggest that the conflicting reports regarding ER and immunity- related drug responses might 
due to heterogeneity in patients. The immune active subtype patients might benefit most from natural immune 
surveillance, and were very sensitive to the immune suppression effects of chemotherapies. How combination 
therapy (tamoxifen with chemotherapies) affects patient survival is also not clear. For example, Osborne and 
colleagues reported antagonism between tamoxifen and melphalan or fluorouracil49, and other trials using this 
combination of treatments found inconsistent results50. In contrast, Fisher et al.51 found that the combinations of 
tamoxifen and L-phenylalanine mustard or fluorouracil benefited elderly patients with ER-positive or PR-positive 
tumors. Our results identified for the first time the specific patient sub-population (the Immune Neutral subtype) 
who responded best to tamoxifen but had a much worse prognosis once chemotherapies were combined with 
tamoxifen. Thus, patient stratification according to the ER-model related immune signatures demonstrated the 
high potential of the data discovered from the RDN analysis.

Comprehensive evaluation of the discovered associations. Reliably evaluating associations among 
biomedical features in big datasets is challenging, largely due to the lack of reliable ground truth and often incon-
sistent literature reports. For this exploratory work, we developed a comprehensive strategy to check the discov-
ery from three aspects: 1) Cross-domain validation. We used data from the WFU EMR data, an independent 
dataset used for clinical purposes, to examine discovered associations. Different from traditional strategies of 
using similar datasets in the research domain for cross-validation, the EMR dataset was more independent and 
thus stricter; 2) Translation-oriented validation. We examined the clinical relevance and the translational poten-
tials of the discovered knowledge using inter-cohort cross-validation. In details, we identified patient subgroups 
on one cohort (TCGA) according to the discovered associations, and then applied the subtyping model to another 
cohort (WFCCC) to examine whether stratified patients showed different drug responses. This evaluation of 
effectiveness examined whether the obtained knowledge was clinically actionable. 3) Literature-based validation. 
We limited validation to those features that had been well studied in the literature. We used literature-based vali-
dation for Oncotype DX Score-related associations. However, we did not heavily rely on evidence from literature, 
since the widely existing inconsistent (and often controversial) reports undermine confidence in such “dry valida-
tion”. Our comprehensive validation strategy provided more reliable and practical evaluation of the biologic and 
clinical values of the BUFAM-based RDN approach as well as the discoveries described herein.

Conclusions
We developed a bootstrapping-based unified feature association approach and used it to analyze three major 
breast cancer data repositories. We incorporated demographic, diagnostic, treatment and molecular features 
of patients, analyzed the associations of these features across heterogeneous datasets, visualized the discovered 
knowledge as a pan-BRCA (Breast Cancer) relational network, and validated these discoveries with electronic 
medical record data. Two sets of strongly associated features, the ER and the HER 2 modules, were discovered 
and annotated with the underpinning molecular signaling signatures. Four novel immunity-related breast cancer 
subtypes were discovered based on the ER module and demonstrated clinical potential for designing precision 
therapy schemes. The BUFAM-derived RDN modeling approach demonstrated the ability to detect clinically 
actionable associations across highly heterogeneous biomedical big data. Our approach for the first time over-
comes the obstacle of big-data-associated feature heterogeneity, and allows efficient utilization of diverse datasets 
for unified knowledge discovery.

Data and Methods
Breast cancer data. Research datasets. Breast cancer patient data from four repositories were used in this 
study: TCGA: The Cancer Genome Atlas10, RNA microarray dataset, n =  530 patients; RNA-seq data, n =  1,094 
patients (see Supplement Section 7); MDACC: MD Anderson Cancer Center11,12, n =  508 patients; WFCCC: 
Wake Forest Comprehensive Cancer Center9, n =  1954 patients; and WFU EMR of Wake Forest Baptist Medical 
Center. The EMR-related study was approved by the institutional Ethical Committee (IRB00025669). Written 
informed consent from all the participants in the study was acquired prior to the collection of samples and med-
ical history, or was waived. Overall, 266 features were selected, merged, mapped, and harmonized into to 46 
pan-BRCA key features and stored in the DrugSig Translational Data Warehouse.

Electronic medical records. The WakeOne EMR data of breast cancer patients were obtained with appropriate 
approval from the Institutional Review Board of Wake Forest University.

BUFAM-derived RDN modeling for feature association discovery. Overall pipeline. The overall 
pipeline of the BUFAM-derived RDN knowledge discovery is illustrated in Figure S2. Briefly, 266 heterogeneous 
features of breast cancer patients across three biomedical big data repositories were used. Pairwise relations were 
uniformly assessed using the BUFAM algorithm, validated using the WakeOne EMR data, and used to establish 
an RDN for module detection and indirect association discovery. The underlying mechanisms of the discov-
ered modules were revealed by gene set enrichment analysis using BioCarta signaling pathway signatures52. The 
enriched pathway signatures of a discovered module (the ER module) were used to stratify patients for drug 
treatment prediction.

BUFAM association algorithm. We developed BUFAM (Fig. 1A and BUFAM p-value, Supplement), an approach 
for unified pairwise learning of feature relations with bootstrapping. The relationships among features were 
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evaluated in a pairwise fashion using the portion of the data where both features were available. To reflect dispar-
ities in data types, we used data-type-specific statistical models to measure specific associations among features. 
As listed in Fig. 1B, five different correlation measures were used for the 10 distinct combinations of the four data 
types – the Spearman test, one-way test, Chi-square test, Wilcoxon-Mann-Whitney rank sum test, and linear by 
linear association test. To allow unified association measurement across these statistical tests, we used a boot-
strapping approach (Fig. 1A) to normalize the biases introduced by the uneven sample sizes and the difference 
among correlation tests. For each feature pair, original data were randomly resampled to generate a negative 
control distribution. The original correlation test value was represented as the Z-test p-value by comparing with 
the control distribution. All correlations among features were able to be fairly screened using the corresponding 
post-bootstrapping p-values. Thus, the BUFAM approach, which uses the data-type-specific statistical tests to 
address the challenge of data type disparity, and the bootstrapping control to normalize the statistical test dispar-
ity, allowed global screening and ranking feature-wise relations.

Formalized mathematical details are provided in Supplement Section 2 (BUFAM p-value).

RDN modeling approach. Significant feature-to-feature relations, evaluated by BUFAM p-values, were extracted 
to establish a relational dependency network (RDN). After adjusting for multiple testing, associations of false dis-
covery rates (FDRs) less than 0.01 were used to build the RDN model. Features were associated as modules using 
Girvan-Newman’s modularity clustering algorithm38. Major statistical features and details of analysis are available 
in Supplement Section 3 (Statistics of the signed RDN).

Validation using EMR dataset. Data were validated using the WakeOne EMR data. A total of 28 associations 
were validated using corresponding association methods.

Comparison with KNN imputation. Numeric features were used to compare the performance of the BUFAM 
association before and after KNN imputation17 using the R impute package (R version 1.42.0, Bioconductor ver-
sion: Release 3.1)53.

Comparison with meta-analysis. BUFAM was performed on each separately and all cohorts together. Results 
were compared based on three aspects of feature associations: coverage, sample size used for each, and statistical 
significance.

Biological and clinical relevance. Module annotation. Discovered feature modules were annotated using 
a customized gene set enrichment analysis (GSEA) analysis, with the underlying signaling pathways using 217 
BioCarta52 signaling pathways collected by MSigDB54,55. Randomized samples were used as controls for false 
discoveries. For details, see Supplement Section 4 (Modified gene set enrichment analysis for network module 
annotation).

Survival analysis for drug response. Patients were subtyped according to the discovered ER module using the 
TCGA cohort, and the drug responses of each subtype were compared using the WFUCCC dataset. Patients 
from the TCGA cohort were clustered against the ER module using the module-specific BioCarta signaling sig-
natures and a sparse k-means approach. Four patient subtypes were discovered: Immune Inert, Neutral, Active, 
and Responsive subtypes. WFUCCC patients were classified into these subtypes accordingly, and their responses 
to four types of adjuvant treatment strategies (chemotherapies, tamoxifen, both, and none) were evaluated by 
Kaplan-Meier survival analysis with log-rank test and the Cox proportional hazards model, using the distant 
metastasis-free survival time as the index. More details are provided in Supplement Section 5 (Statistical analysis 
of Kaplan–Meier survival curves).

Availability of resources. All data except the WakeOne EMR were available using SQL through the DrugSig 
Translational Data Warehouse (PostgreSQL) hosted by Center for Bioinformatics & Systems Biology, Wake Forest 
School of Medicine. For more details, see our website (http://ctsb.is.wfubmc.edu/express/db/drugsig.htm).
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