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Abstract: Although observational studies have shown that abnormal systemic iron status is associated
with an increased risk of heart failure (HF), it remains unclear whether this relationship represents true
causality. We aimed to explore the causal relationship between iron status and HF risk. Two-sample
Mendelian randomisation (MR) was applied to obtain a causal estimate. Genetic summary statistical
data for the associations (p < 5 × 10−8) between single nucleotide polymorphisms (SNPs) and four
iron status parameters were obtained from the Genetics of Iron Status Consortium in genome-wide
association studies involving 48,972 subjects. Statistical data on the association of SNPs with HF
were extracted from the UK biobank consortium (including 1088 HF cases and 360,106 controls).
The results were further tested using MR based on the Bayesian model averaging (MR-BMA) and
multivariate MR (MVMR). Of the twelve SNPs considered to be valid instrumental variables, three
SNPs (rs1800562, rs855791, and rs1799945) were associated with all four iron biomarkers. Genetically
predicted iron status biomarkers were not causally associated with HF risk (all p > 0.05). Sensitivity
analysis did not show evidence of potential heterogeneity and horizontal pleiotropy. Convincing
evidence to support a causal relationship between iron status and HF risk was not found. The strong
relationship between abnormal iron status and HF risk may be explained by an indirect mechanism.

Keywords: heart failure; iron status; Mendelian randomisation; causal association

1. Introduction

Heart failure (HF), a clinical syndrome of cardiac dysfunction caused by multiple
factors and associated with high morbidity and poor prognosis, has become a major
public health issue [1,2]. Conditions such as coronary heart disease, cardiomyopathy, and
diabetes are common causes of HF. Currently, 1–2% of adults in developed countries have
been diagnosed with HF [3]. Considering an ageing population, the prevalence of HF is
expected to double by 2060 [4,5]. It is therefore imperative to determine the epidemiological
characteristics and risk factors for the occurrence and development of HF.

Iron is involved in numerous vital biological processes, such as erythropoiesis, cellular
metabolism, redox balance, and inflammation [6]. Several studies have reported that
abnormal iron status is associated with various cardiovascular diseases. Meanwhile, iron
deficiency (ID), as one of the most common malnutrition factors, affects approximately
one-third of the worldwide population [7]. Notably, nearly half of HF patients have
accompanying iron metabolism disorders (mainly ID) [8–10]. Further, ID is an independent
predictor of poor clinical symptoms and prognosis in patients with HF [11–13]. In several
cohort studies, both high and low serum ferritin levels were associated with increased
incidence of HF [14,15]. Similarly, in animal experiments, both ID and iron overload
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were observed to lead to ventricular hypertrophy and abnormal cardiac function [16,17].
However, observational studies have difficulty distinguishing causal associations from
spurious associations, and animal models cannot fully simulate actual clinical conditions.
Therefore, it remains to be determined whether abnormal iron status is an initiating factor
in HF or simply a consequence/biomarker/common comorbidity. Further studies are
required to clarify whether there is a causative relationship between iron status and HF risk.

Mendelian randomisation (MR) is an emerging method of epidemiological analysis
that employs genetic variants as an instrumental variable (IV) to obtain more robust causal
inferences from the observed data [18–20]. This approach can effectively avoid the effects
of reverse causality and residual confounding, thereby ensuring the robustness of the
results. To date, it has not been ascertained whether systemic iron status is involved in
the pathogenesis of HF in a causative manner. Consequently, this study was conducted to
explore the causal association between systemic iron status biomarkers and the HF risk by
employing a two-sample MR analysis.

2. Materials and Methods
2.1. Study Design and Data Source

We selected genetic instruments for four iron status biomarkers: ferritin, iron, transfer-
rin, and transferrin saturation (TS). A two-sample MR study was conducted to appraise the
causal association between iron status and the relevant outcomes. The single nucleotide
polymorphisms (SNPs) identified as IVs for iron status were obliged to fulfil three core
premises: (1) SNPs must be robustly related to iron status biomarkers, (2) SNPs should not
be related to confounders, and (3) SNPs must only be related to outcomes via iron status
biomarkers (Figure 1a).
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Figure 1. Schematic diagram of the Mendelian randomisation study design. (a) Two-sample
Mendelian randomisation (TSMR). (b) Multivariate Mendelian randomisation (MVMR).

Summary statistics of SNPs related to iron status biomarkers were extracted from
a previous meta-analysis of genome-wide studies conducted by the Iron Status Genet-
ics Consortium [21]. The characteristic statistics of the patients in this meta-analysis are
presented in Supplementary Table S1. Data from eleven discovery cohorts and eight repli-
cation cohorts were employed in the meta-analysis, comprising a total of 48,972 Europeans.
HF data was contributed by the Neale lab analysis of UK Biobank phenotypes (http:
//www.nealelab.is/uk-biobank (accessed on 15 January 2022)), with a sample size of
361,194 (1405 HF cases and 359,789 controls). Characteristics and summary data of the
relationship between SNPs and iron status parameters and HF are shown in Table 1 and
Supplementary Table S2, respectively.

http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
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Table 1. The characteristics of SNPs and their associations with exposures and HF *.

SNP Nearest Gene Chr Position EA EAF F
SNP-Exposures Association SNP-HF Association

Beta SE p Beta SE p

Ferritin
rs1800562 HFE (C282Y) 6 26,093,141 A 0.067 256 0.204 0.016 1.54 × 10−38 −1.74 × 10−04 0.00027 0.515
rs1799945 HFE (H63D) 6 26,091,179 C 0.85 53 −0.065 0.01 1.71 × 10−10 1.32 × 10−04 0.0002 0.511
rs855791 TMPRSS6 (V736A) 22 37,462,936 A 0.446 73 −0.055 0.007 1.38 × 10−14 −1.02 × 10−04 0.00015 0.486
rs744653 WDR75–SLC40A1 2 1.90 × 1008 T 0.854 97 −0.089 0.01 8.37 × 10−19 1.35 × 10−04 0.00021 0.516
rs651007 ABO 9 1.36 × 1008 T 0.202 40 −0.05 0.009 1.31 × 10−08 5.88 × 10−04 0.00018 0.001
rs411988 TEX14 17 56,709,034 A 0.564 47 −0.044 0.007 1.59 × 10−10 1.95 × 10−04 0.00015 0.178
Iron
rs1800562 HFE (C282Y) 6 26,093,141 A 0.067 668 0.328 0.016 2.72 × 10−97 −1.74 × 10−04 0.00027 0.515
rs1799945 HFE (H63D) 6 26,091,179 C 0.85 450 −0.189 0.01 1.10 × 10−81 1.32 × 10−04 0.0002 0.511
rs855791 TMPRSS6 (V736A) 22 37,462,936 A 0.446 806 −0.181 0.007 1.32 × 10−139 −1.02 × 10−04 0.00015 0.486
rs8177240 TF 3 1.33 × 1008 T 0.669 95 −0.066 0.007 6.65 × 10−20 −9.63 × 10−05 0.00015 0.526
rs7385804 TFR2 7 1 × 1008 A 0.621 95 0.064 0.007 1.36 × 10−18 −9.27 × 10−05 0.00015 0.533
Transferrin
rs1800562 HFE (C282Y) 6 26,093,141 A 0.067 1446 −0.479 0.016 8.90 × 10−196 −1.74 × 10−04 0.00027 0.515
rs1799945 HFE (H63D) 6 26,091,179 C 0.85 163 0.114 0.01 9.36 × 10−30 1.32 × 10−04 0.0002 0.511
rs855791 TMPRSS6 (V736A) 22 37,462,936 A 0.446 47 0.044 0.007 1.98 × 10−09 −1.02 × 10−04 0.00015 0.486
rs744653 WDR75–SLC40A1 2 1.9 × 1008 T 0.854 57 0.068 0.01 1.35 × 10−11 1.35 × 10−04 0.00021 0.516
rs8177240 TF 3 1.33 × 1008 T 0.669 3346 −0.38 0.007 8.43 × 10−610 −9.63 × 10−05 0.00015 0.526
rs9990333 TFRC 3 1.96 × 1008 T 0.46 63 −0.051 0.007 1.95 × 10−13 −6.56 × 10−05 0.00014 0.651
rs4921915 NAT2 8 18,272,466 A 0.782 104 0.079 0.009 7.05 × 10−19 −8.05 × 10−05 0.00017 0.643
rs6486121 ARNTL 11 13,355,770 T 0.631 48 −0.046 0.007 3.89 × 10−10 −2.03 × 10−04 0.00015 0.176
rs174577 FADS2 11 61,604,814 A 0.33 83 0.062 0.007 2.28 × 10−17 1.45 × 10−04 0.00015 0.338
TS
rs1800562 HFE (C282Y) 6 26,093,141 A 0.067 2127 0.577 0.016 2.19 × 10−270 −1.74 × 10−04 0.00027 0.515
rs1799945 HFE (H63D) 6 26,091,179 C 0.85 676 −0.231 0.01 5.13 × 10−109 1.32 × 10−04 0.0002 0.511
rs855791 TMPRSS6 (V736A) 22 37,462,936 A 0.446 889 −0.19 0.008 6.41 × 10−137 −1.02 × 10−04 0.00015 0.486
rs8177240 TF 3 1.33 × 1008 T 0.669 218 0.1 0.008 7.24 × 10−38 −9.63 × 10−05 0.00015 0.526
rs7385804 TFR2 7 1 × 1008 A 0.621 67 0.054 0.008 6.07 × 10−12 −9.27 × 10−05 0.00015 0.533

* HF data from Neale lab analysis of UK Biobank database. SNP—single nucleotide polymorphisms; HF—heart failure; TS—transferrin saturation; Chr—chromosome; EA—effect alleles;
EAF—effect alleles frequency; SE—standard error.
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2.2. SNP Selection and Validation

SNPs associated with iron status markers were extracted from the genome-wide
association studies (GWAS) dataset at genome-wide significance thresholds (p < 5 × 10−8)
to obtain powerful IVs. We then searched for the three selected SNPs on PhenoScanner
(http://www.phenoscanner.medschl.cam.ac.uk/ (accessed on 17 January 2022)) to identify
secondary phenotypes at genome-wide significance (p < 5 × 10−8) [22]. To minimise
the correlation between IVs and confounders, we performed linkage disequilibrium (LD)
filtering on SNPs with an appropriate threshold (r2 < 0.01) [23]. Palindromic SNPs were
removed to avoid accidental bias. Subsequently, we harmonised genetic summary data
between the remaining SNPs and HF by applying the GWAS HF dataset. When the selected
SNP could not be extracted from the HF dataset, we selected SNPs with strong correlations
(r2 > 0.8) as proxies [24]. Finally, the F-statistics for each SNP were calculated to assess
the effect of intensity of the IVs. To minimise potential weak instrument bias, SNPs with
F-statistics < 10 were excluded [25]. The screening flowsheet is shown in Figure 2.
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2.3. MR Estimates

In principal analysis, the fixed-effect inverse variance weighted (IVW) approach was
applied to appraise the causal effect of systemic iron status on the risk of HF. Specifically,
the Wald estimator and Delta method were employed to generate a causal estimate and
standard deviation, respectively, for each IV and, then, the IVW mean of these ratio
estimates was calculated as the effect estimate [26]. The results are presented as odds ratios
(ORs) for HF risk according to the iron status markers. The ORs were employed to assess
the causal effect of iron status parameters on HF if the MR hypotheses were fulfilled [26].

2.4. Sensitivity Analysis

The MR-Egger and weighted-median approaches were conducted to determine the
reliability of the effect estimate. In the MR-Egger method, the intercept test was performed
to estimate the potential horizontal pleiotropy of SNPs. Subsequently, funnel plots were
used to visually examine symmetry, which could roughly detect whether causal estimates
of weak IVs tended to skew in one direction, and where any bias could indicate potential
pleiotropic effects [27]. Cochran’s Q test was applied to evaluate the heterogeneity between
estimated Wald ratios for different SNPs. In addition, the weighted-median estimator
analysis could provide robust effect estimates if more than half of the IVs in the analysis
were valid. Finally, a leave-one-out analysis was performed to determine whether the
results were perturbed by a specific SNP [28].

2.5. MR-BMA Estimates

To abstain from the limitations of traditional logistic regression methods and to further
verify the reliability of the results, we applied a new-style analysis method founded on
the Bayesian model averaging (BMA) [29]. The posterior probability (PP) of a specific
model and the marginal inclusion probability (MIP) of each iron parameter was calculated,
where MIP was defined as the sum of the PPs of all models with risk factors. Moreover,
according to the MIP ranking, the model-average causal effect of each iron marker model
was generated, which could be used to compare risk factors or to explain the direction of
influence. Eventually, the best model was given priority based on the PP value (threshold
was 0.02) of the independent model [30]. Q-statistics were employed to check for invalid
instruments in the model. Cook’s distance was applied to quantify influential genetic
variants [31].

2.6. MVMR Analysis

To ascertain the true causal association of iron status biomarkers on HF risk, multi-
variate MR (MVMR) was conducted (Figure 1b). MVMR can simultaneously detect effects
between and with outcomes of multiple risk factors to obtain more accurate estimates of
causal effects [32]. The identification of risk factors for HF related to iron status parameters
relies mainly on the literature and PhenoScanner database searches. Of note, to ensure
the independence of the exposure and outcome samples and to further validate the reli-
ability of our results, another GWAS meta-analysis of data for HF with 47,309 cases and
930,014 controls was applied as an outcome [33]. Summary information on risk factors
and HF are presented in Supplementary Table S2. Collinearity of the MVMR model was
examined to avoid outcome distortion.

2.7. MR Analysis of Diseases with Abnormal Iron Status

We selected two diseases associated with abnormal iron metabolism, hereditary
hemochromatosis type 1 (iron overload) and iron deficiency anaemia (ID), to strengthen
the integrity of our argument. The GWAS summary statistics for both diseases were
obtained from FinnGen (https://www.finngen.fi (accessed on 18 July 2022)), involving
197,405 (including 146 cases and 197,259 controls) and 217,202 (including 6087 cases and
211,115 controls) Europeans, respectively. HF data was provided by the Neale lab analysis
from the UK Biobank. Two-sample MR and sensitivity analyses were conducted.

https://www.finngen.fi


Nutrients 2022, 14, 3258 6 of 13

All analyses were performed using the “TwoSampleMR” package (version 0.5.5) in
the software R (version 4.0.3; R Foundation for Statistical Computing, Vienna, Austria). A
p-value less than 0.05 was considered statistically significant.

3. Results
3.1. SNP Selection and Validation

Collectively, 12 SNPs of iron biomarkers were extracted at a genome-wide significant
threshold from the corresponding datasets. Among them, rs1800562 and rs1799945 of the
HFE gene and rs855791 of the TMPRSS6 gene were primarily analysed because they were
related to all four iron biomarkers. The F-statistic of all SNPs exceeded 10. No SNPs were
excluded due to palindromes or linkage disequilibrium (LD) (although both rs1800562
and rs1799945 were located in the HFE gene, their corresponding sites were different
(LD r2 < 0.01)). The characteristics of these SNPs and their relationships with iron status
and HF risk are shown in Table 1.

A search of the PhenoScanner database revealed that all three SNPs were associated
with HbA1c [34,35]. In addition, all three SNPs were also associated with erythrocyte traits
due to altered iron status. The elevated iron status allele of rs1800562 in the HFE gene was
associated with lower low-density lipoprotein levels [36], whereas the elevated iron status
alleles of rs1799945 and rs1800562 in the HFE gene were associated with higher diastolic
blood pressure [37,38].

3.2. Analysis Using the Two-Sample MR

Results of the MR analysis were expressed as ORs of HF per standard deviation (SD)
increase in each iron biomarker, as shown in Figure 3, indicating that there were no causal
associations between the four iron biomarker levels and HF (all p > 0.05). Consistently,
similar results were observed upon employing the fixed-IVW approach and various other
statistical methods (Supplementary Figure S3, Supplementary Tables S5 and S6). Results of
the scatter plot for each outcome of interest are listed in Supplementary Figure S2.
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Figure 3. Forest plot summarising the overall Mendelian randomisation estimates of SNP specificity
and the causal effect on heart failure. (a) Using three SNPs associated with all four iron biomarkers;
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Nutrients 2022, 14, 3258 7 of 13

3.3. Sensitivity Analysis

As listed in Supplementary Table S3, there was no heterogeneity in the biomarkers of
iron. Moreover, the MR-Egger regression and the appearance of the funnel plots showed
that there was a low likelihood of horizontal pleiotropy for our estimations (all p-values for
MR-Egger intercept > 0.05) (Supplementary Table S4, Supplementary Figure S1). Visually,
the leave-one-out analysis plot proved that the results were not altered by the removing of
any SNP and were quite robust (Figure 4).
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3.4. Analysis Using the MR-BMA

Considering pleiotropy, to further test the robustness of the results, we employed
MR- BMA analysis to evaluate the causal effect between iron status markers and HF. The
results of the MR-BMA are presented in Table 2. We initially included all 12 SNPs. Subse-
quently, we excluded rs651007 with a Q-statistic value > 10 and included the remaining
11 SNPs. Finally, we excluded rs1800562, whose Cook’s distance exceeded the threshold,
and included the remaining 10 SNPs for analysis. Notably, the best model-specific PPs
and MIPs for risk factors were compatible with the results from traditional MR methods
(all p > 0.05). The results of Q-statistic and Cook’s distance are shown in Supplementary
Figures S4 and S5, respectively (red boxes represent genes corresponding to invalid and
influential instruments).

3.5. Analysis Using the MVMR

As shown in Supplementary Table S2, four risk factors that had strong associations
with iron status biomarkers, and HF risk were included in the analysis. After adjusting
for the risk factors, we still found no causal link between iron status biomarkers and
HF (all p > 0.05) (Table 3). We also observed a causal association between coronary heart
disease and diastolic blood pressure and HF.
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Table 2. Evaluation of the causal link between iron status biomarkers and HF applying MR-BMA #.

Risk Factor for Model Ranking by MIP MIP ˆθMACE Ranking by PP PP ˆθλ p

Model averaging employing 12 SNPs

Ferritin 1 0.771 −0.001 1 0.769 −0.002 0.059
Iron 3 0.079 0 3 0.078 0 0.881
Transferrin 2 0.081 0 2 0.081 0 0.832
TS 4 0.071 0 4 0.07 0 0.941

Model averaging employing 11 SNPs (excluding invalid instrument rs651007 with Q-statistic exceed 10)

Ferritin 1 0.652 −0.001 1 0.651 −0.001 0.079
Iron 4 0.081 0 4 0.081 0 0.921
Transferrin 2 0.172 0 2 0.172 0 0.337
TS 3 0.096 0 3 0.095 0 0.941

Model averaging employing 10 SNPs (excluding influential instrument rs1800562 with Cook’s distance exceeding the threshold)

Ferritin 1 0.680 −0.001 1 0.679 −0.002 0.099
Iron 4 0.093 0 4 0.093 0 0.891
Transferrin 2 0.131 0 2 0.131 0 0.475
TS 3 0.097 0 3 0.097 0 0.921

MIP—marginal inclusion probability; MACE—model-average causal effect; MR—Mendelian randomisation;
MR-BMA—MR based on Bayesian model averaging; PP—posterior probability; #: all risk factors and the best
individual model with a PP value greater than 0.02 are given. A negative causal estimate (ˆθMACE or ˆθλ)
represents the protective effect recommended by a model, while a positive value represents a risk factor. ˆθλ is the
causal effect estimate of a specific model, ˆθMACE is the average causal effect of a risk factor model.

Table 3. Assessing the causal association between iron status and HF using IVW multivariate MR.

Exposures nSNP Beta SE p Value

Iron status biomarkers

Ferritin 3 0.050 0.134 0.709
Iron 3 2.320 1.429 0.104
Transferrin 8 −0.947 0.587 0.107
Transferrin saturation 3 −2.442 1.493 0.102

Iron status biomarkers and risk factors

Ferritin 2 −0.080 0.063 0.199
Iron 3 0.312 0.242 0.198
Transferrin 6 −0.134 0.102 0.190
Transferrin saturation 3 −0.310 0.255 0.224
Coronary heart disease 12 0.280 0.027 2.420 × 10−24

Diastolic pressure 199 0.022 0.005 1.310 × 10−05

Low density lipoprotein 45 0.104 0.064 0.106
HbA1c 6 0.021 0.121 0.864

IVW—inverse variance weighted.

3.6. MR Analysis of Diseases with Abnormal Iron Status

Characteristics and summary data of the relationship between SNPs and diseases and
HF are shown in Supplementary Table S7. There was still insufficient evidence for a direct
causal association between these two disturbances of iron metabolism and the risk of HF.
Sensitivity analysis showed that the results were robust. (Supplementary Tables S8 and S9
and Supplementary Figure S6).

4. Discussion

We examined the causal relationship between four biomarkers of systemic iron status
parameters and HF applying MR analysis. We further evaluated the robustness of the
results employing MR-BMA and MVMR analysis. Overall, we did not find evidence
that these iron state biomarkers were causally associated with HF risk, at least from a
genetic perspective.

Iron is essential for numerous biological processes [6]. Although iron status is associ-
ated with HF, the evidence for this is mixed. Previous studies have suggested that abnormal
iron status (iron overload or deficiency) is associated with a variety of cardiovascular dis-
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eases and their risk factors [14,39–42]. A two-sample MR study revealed that a higher iron
status was protective against coronary heart disease [39]. Several cross-sectional clinical
studies have demonstrated that serum ferritin and transferrin are positively associated
with the risk of hypertension [40,41]. Moreover, recent genetic evidence supported a causal
relationship between anomalous systemic iron status and an increased risk of type 2 dia-
betes [42]. Notably, several cohort studies suggested that iron imbalance is associated with
an increased risk of HF [14,15]. However, the findings of this study regarding the influence
of iron status biomarkers on HF differ from those of previous studies. One reason may
be that in observational studies, confounding factors are unavoidable, which may lead to
biased results. In addition, the small sample size of some traditional observational studies
may also affect the reliability of the results.

Observational studies are often at risk of confounders, which can mask the true
results [43]. Determining causality, through randomised controlled trials (RCTs), can
provide solid and effective evidence [44]. However, with regard to complex diseases such
as cardiovascular disease, qualified RCTs are expensive, require adequate sample sizes,
and require a large number of variables to be controlled [43,44]. Therefore, MR analysis
is an alternative method for use. Similar to RCT, the random separation of alleles helps
to independently divide the sample into exposure and control groups, with unmeasured
confounding factors evenly distributed in both groups [45]. Thus, this effectively eliminates
reverse causal or residual confounding effects, leading to the robustness of the results.
Furthermore, MR research selects appropriate IVs from publicly available GWAS databases,
saving time and reducing cost, and has gradually become a hot topic in epidemiological
research in recent years [46].

Hereditary hemochromatosis (HH) is a disorder of iron metabolism that leads to iron
overload and damage to multiple organs, including liver, skin, joints, and heart [47]. Among
them, type 1 is the most common (the prevalence was 0.4% in the European population)
and is associated with the HFE gene [48]. Clinically, the main cardiac manifestations of
HH are cardiomyopathy, arrhythmias, and HF. However, to date, robust evidence for the
relationship between HH and cardiovascular risk is still lacking and is based only on case
reports or small studies. A recent retrospective cohort study showed that HH was strongly
associated with the risk of cardiac arrhythmias, but not with HF risk [49]. Combined with
our findings, it is suggested that the clinically observed association between HH and HF
may be caused by an indirect mechanism.

Regarding HF risk in the general population, our results do not contradict those of
previous studies describing the influence of intravenous iron treatments. As a matter of
fact, clinical guidelines have recommended the application of intravenous iron treatment
to relieve symptoms in HF patients with ID [50]. Recent clinical RCT trials also confirmed
the reduction of symptoms and re-hospitalisation risk after intravenous iron therapy in
these patients [51–53]. However, intravenous iron therapy did not reduce the risk of
cardiovascular mortality in acute HF patients with ID [53]. Considering the potential
deleterious effects of iron overload [17,54], iron status intervention strategies may not be
beneficial when used in the general population or in HF patients without ID.

Moreover, recent studies revealed that systemic iron status is not equivalent to cardiac
iron status [55–57]. An endocardial biopsy specimen study of 80 HF patients demonstrated
that cardiac iron was not associated with systemic iron homeostasis [56]. Systemic iron
disorder does not directly alter cardiac iron levels. In one rat ID model, systemic ID did not
affect cardiac ID, regardless of whether the heart was normal or failing [55]. Contrarily, in
another rat model, iron repletion only led to a slight increase in cardiac iron [57]. These
findings indicated that cardiac iron levels may have some resistance to systemic iron
disorders, which provides a plausible explanation for why systemic ID does not affect the
pathogenesis of HF.

Ferroptosis, which differs from apoptosis, thanatosis, and other types of cell death,
is a form of iron-dependent cell death. It has recently been found to induce myocardial
injury and is of vital importance in a great number of cardiovascular diseases [58,59]. The
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interaction between dissociated intracellular iron overload and hydrogen peroxide via the
Fenton reaction causes lipid peroxidation of the polyunsaturated fatty acids constituting
biofilms, which in turn initiates iron death [60]. Interestingly, Fang et al., [61] showed
that when heart-specific FTH gene (ferritin heavy chain) knockout mice were given a
high-iron diet, they experienced severe cardiac injury and cardiac hypertrophy with typical
ferroptosis characteristics. However, as mentioned above, systemic iron status has weak
effects on myocardial iron homeostasis. Furthermore, the effects of gene-specific knockouts
in animals are distinct from SNPs in humans; the former artificially creates an extreme
situation. Therefore, for the general population, it may be difficult for systemic iron status
to cause myocardial injury through the ferroptosis pathway.

Our study has several limitations. First, since individual data were not available and
we only applied summary statistics, the HF data applied in this study were not stratified
by subtype or severity. In fact, iron status markers may be more strongly associated with a
specific subtype of HF. Hence, further studies are required to explore whether similar results
are found among patients with different ethnicities, HF subtypes, and disease severities.
Second, other biomarkers related to systemic iron status, such as hepcidin, hemosiderin,
and ceruloplasmin, were not included in the analysis owing to the lack of corresponding
data in the GWAS. This hindered our investigation of complete macro-regulators of iron
metabolism and HF risk in this study. Similarly, the interaction between human biology
and the environment on HF risk has been difficult to assess because of the lack of effective
exposure statistics related to iron intake. Third, MR also has its limitations. (1) Considering
the lifetime effect of SNPs, this study assumes that iron status biomarkers act on HF
over a long period of time, which is inconsistent with clinical practice. In addition, for
some exposures, the body may have compensatory mechanisms in response to chronically
elevated (or reduced) exposure levels. (2) MR cannot easily provide information on acute
changes in exposure levels. Perhaps changes to individual long-term average exposure
levels could not affect outcomes, but acute responses could. (3) Changes in exposure
levels caused by genetic variants are often very modest (most genetic variants explain
only 1% to 4% of exposure variation). Finally, in the final analysis, since abnormal iron
status disease was used as an exposure, which was dichotomous, we cannot exclude
bias due to competing risk factors. Nonetheless, this study provides some clues into the
pathophysiologic and therapeutic exploration of HF. We expect that our study will improve
awareness regarding the epidemiology and will impact clinical decision making in HF.

5. Conclusions

Using a genetic approach, we observed that the systemic iron status is not causally
associated with HF risk, indicating that abnormal iron status may not be directly involved
in the pathogenesis of HF. The observed strong relationship between abnormal iron status
and HF risk may be explained by an indirect mechanism by which abnormal iron status
mediates HF risk factors (e.g., coronary heart disease, diastolic pressure). However, further
studies based on HF subtype stratification analysis are needed to corroborate our results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14163258/s1. Table S1: characteristics and statistics of studies
included based on the GIS consortium study for iron status.; Table S2: characteristics of the SNP
summary statistics for exposures and outcome; Table S3: heterogeneity test for each trait; Table S4:
summary for directional horizontal pleiotropy tests; Table S5: comparison of the different statistical
methods for MR analysis evaluating the causal association between exposures and outcomes; Table
S6: MR analysis results of a single SNP; Table S7: the characteristics of SNPs and their associations
with abnormal iron status disease and HF; Table S8: comparison of the different statistical methods for
MR analysis evaluating the causal association between exposures and outcomes; Table S9: sensitivity
analysis for each trait. Figure S1: funnel plot visualizing the SNPs related to iron status; Figure S2:
scatter plot visualizing the SNPs related to iron status; Figure S3: MR-Egger and fixed-effect IVW
analysis of the causal association between iron status and HF risk; Figure S4: diagnostic plots for
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