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Viruses are obligate intracellular parasites that have small genomes with limited coding
capacity; therefore, they extensively use host intracellular machinery for their replication
and infection in host cells. In recent years, it was elucidated that plants have evolved
intricate defense mechanisms to prevent or limit damage from such pathogens. Plants
employ two major strategies to counteract virus infections: resistance (R) gene-mediated
and RNA silencing-based defenses. In this review, plant defenses and viral counter
defenses are described, as are recent studies examining the cross-talk between different
plant defense mechanisms.
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INTRODUCTION

Plant viruses comprise an important group of pathogens causing a range of plant diseases that are
often responsible for significant losses in crop production. Among the wide range of known plant
viruses, most viruses have a very limited host range and only a few viruses cause severe disease
symptoms (Dawson and Hilf, 1992). Even though viruses contain relatively simple genomes, the
molecular basis of the mechanisms by which plant viruses infect their hosts and the signaling
components involved in host resistance are not well defined.

The immune response against bacterial or fungal pathogens often relies on recognition of
the conserved molecules associated with a group of pathogens, designated pathogen-associated
molecular patterns (PAMPs), by pattern recognition receptors (PRRs) (Boller and He, 2009).
Upon PAMP recognition, activated PRRs induce PAMP-triggered immunity (PTI) (Monaghan
and Zipfel, 2012). PTI against viral pathogens has been primarily described in mammalian cells,
but not in plant cells (Calil and Fontes, 2016). However, several recent studies provided evidence
that PTI and related components are also involved in antiviral defense responses in plants (Korner
et al., 2013; Nicaise, 2014; Iriti and Varoni, 2015; Calil and Fontes, 2016; Nicaise and Candresse,
2016; Niehl et al., 2016). In general, plants defense responses triggered against viral pathogens
are based on RNA- or protein-mediated resistance. The RNA-mediated resistance response is a
basal defense response to viral invasion that mainly involves the RNA silencing pathway of the
host, which mediates the cleavage of viral RNA. Compared to this basal defense response, the host
resistance (R) protein-mediated defense response against viral pathogens is far more robust, in
most cases limiting viral replication and spread to inoculated leaves (Zhou and Chai, 2008; Verlaan
et al., 2013; Nakahara and Masuta, 2014). In this review, we summarize molecular mechanisms
underlying two major defense pathways employed during plant resistance to viral pathogens and
highlight a few studies addressing the cross-talk between these defense pathways.
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RNA SILENCING IN VIRAL DEFENSE

RNA gene silencing, also termed RNA interference (RNAi),
which acts as a basal defense mechanism against viruses, is one
of the main plant immune responses against viral pathogens
(Vaucheret, 2006; Ding and Voinnet, 2007). Most viruses that
cause disease in plants have RNA genomes containing imperfect
regulatory stem-loops, which are copied into complementary
double-stranded RNA (dsRNA) replication intermediates by
virus-encoded RNA-dependent RNA polymerases (RDRs) (Ruiz-
Ferrer and Voinnet, 2009). The dsRNAs are then recognized by
a host ribonuclease III-like protein, namely, Dicer-like (DCL),
and then processed into 21–24-nucleotide short interfering RNAs
(siRNAs). The siRNAs are recruited to a functional RNA-induced
silencing complex (RISC) and then act as guides to direct RISC
to their target viral RNA molecules, which have complementary
sequences (Ruiz-Ferrer and Voinnet, 2009). Consequently, viral
RNAs are degraded by the core components of RISC, which
are members of the Argonaut (AGO) protein family (Vaucheret,
2008). The antiviral RNAi response is effective in various species
(Katiyar-Agarwal and Jin, 2010), even though it is slow and thus
viral infections are often not completely cleared.

The concept of PTI against viral pathogens is currently
confined to animals because receptors that sense RNA or DNA
viruses as ligands have only been identified in animals (Takeuchi
and Akira, 2009). In plants, dsRNAs produced during virus
infection are also regarded as viral PAMPs (Ding, 2010; Jensen
and Thomsen, 2012). The RNA silencing pathway was assumed to
play a role in the immune responses that recognize such dsRNAs
in plants, unlike in animals (Ding and Voinnet, 2007). However, a
few recent publications indicate that the known PTI components
are involved in dsRNA recognition and that the reaction is an
immune response distinct from the RNA silencing pathway.
Therefore, these studies claim that PTI against viral pathogens
is preserved in plants and animals (Korner et al., 2013; Nicaise,
2014; Nicaise and Candresse, 2016; Niehl et al., 2016). However,
there is no direct evidence to explain how dsRNAs are recognized
in plants; therefore, further studies are needed to determine
whether an animal-like mechanism underlies dsRNA-mediated
PTI in plants.

To overcome RNAi-mediated host defense, plant viruses
frequently encode viral suppressors of RNAi (VSRs) that perturb
the plant RNA silencing pathway (Ding and Voinnet, 2007).
VSRs have been isolated from nearly all plant virus families. In
addition to suppressing RNAi silencing during viral pathogenesis,
most VSRs identified to date play important roles in replication,
assembly, or movement of viruses. Although the primary
sequences and structures of these VSR proteins vary considerably,
most VSR-mediated suppression is thought to occur via two
general mechanisms (Figure 1). Some VSRs, such as potyviral
HcPro, Beet Yellow Virus P21 protein, Peanut Clump Virus P15
protein, and TCV coat protein (CP or P38), sequester small
RNA duplexes by binding to short or long viral dsRNAs, which
then leads to impaired assembly of AGOs into RISCs (Lakatos
et al., 2006; Carbonell and Carrington, 2015). Alternatively, some
VSRs impede the activity of AGO proteins that have a central
role in the anti-viral RNA silencing pathway (Carbonell and

Carrington, 2015). For example, Cucumber Mosaic Virus 2b
protein suppresses RISC activity through a physical interaction
with the PAZ domain of AGO1 (Duan et al., 2012). Similarly, two
other viral VSR proteins, Sweet Potato Mild Mottle Virus (SMMV)
P1 and TCV CP, also directly interact with AGO proteins through
glycine/tryptophan (GW/WG) repeat motifs, which resemble the
AGO1-binding peptides on RISC (Azevedo et al., 2010; Giner
et al., 2010). These findings demonstrate that VSR suppression
of RNAi silencing might involve independently evolved VSR
proteins that show functional overlap (Carbonell and Carrington,
2015). Studies on VSRs will not only improve our understanding
of plant–virus interactions, but they will also help elucidate the
signaling mechanism underlying host RNA silencing pathways.

RESISTANCE GENE-MEDIATED
DEFENSE RESPONSES AGAINST VIRAL
PATHOGENS

To circumvent PTI, pathogens produce effectors that suppress
immune responses triggered by active PRRs (Deslandes and
Rivas, 2012). The bacterial pathogens usually encode ∼20–30
highly regulated effectors that are secreted directly into the host
cytoplasm. Although individual effectors from closely related
bacterial strains exhibit functional diversity, they possess highly
redundant activities and extensive interchangeability (Cunnac
et al., 2009; Deslandes and Rivas, 2012). This also applies to
viral proteins such as movement proteins (MPs), and replicase
proteins, which act as avirulent (Avr) factors (Kachroo et al.,
2006).

Resistance (R) genes have evolved in plants as a
countermeasure to the effect of pathogen effectors on PTI
(Jones and Dangl, 2006). R genes mediate effector-triggered
immunity (ETI), which is a highly amplified version of PTI
(Jones and Dangl, 2006). Many R genes have been identified,
which confer resistance to diverse pathogens including bacteria,
fungi, oomycetes, insects, and viruses (Jones and Dangl, 2006;
Kachroo et al., 2006). Notable examples of R genes conferring
resistance against viral pathogens include tobacco “N” against
TMV, “Rx1/2” in potato against Potato Virus X (PVX), and
“HRT” and “RCY1” against TCV and CMV in Arabidopsis,
respectively (Whitham et al., 1994; Bendahmane et al., 1999,
2000; Cooley et al., 2000; Takahashi et al., 2001). The R genes
are largely dominant, whereas some genes exhibit recessive,
tolerance, or partial resistance characteristics. Moreover,
dominant R genes HRT and RCY1 require recessive factors to
confer resistance (Cooley et al., 2000; Takahashi et al., 2001).
Since viruses require host factors for their infection (termed
susceptibility factors), loss of these can also confer resistance
to viral pathogens. Such resistance is often recessive (Truniger
and Aranda, 2009). Notably, most such recessive R genes have
been analyzed in potyviruses and encode translation initiation
factors of the 4E or 4G family (eIF4E/eIF4G) (Kang et al., 2005;
Truniger and Aranda, 2009). Interestingly, EF1A is required for
Soybean Mosaic virus (SMV)-induced endoplasmic reticulum
(ER) stress and, therefore, replication of SMV (Luan et al., 2016).
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FIGURE 1 | Schematic model of RNA silencing- and R-mediated responses in plant cells. Upon amplification of viruses in plant cells, viral double-stranded
RNAs (dsRNAs) activate RNA silencing mechanisms. Viral dsRNAs are processed into small RNA fragments (siRNAs) by DCL1 and its cofactor DRB4. The siRNAs
are recruited to RISC, which is associated with AGO protein. RISC/AGO/siRNA then targets and degrades complementary viral transcripts (left panel). Viruses
express genes encoding VSR proteins that inhibit the regulation and activation of gene silencing mechanisms (center panel). In response, several R proteins
recognize the VSRs and induce downstream ETI responses (right panel). DCL, Dicer-like; DRB, dsRNA-binding protein; siRNA, small interfering RNA; AGO,
Argonaute; RISC, RNA-induced silencing complex; VSR, viral suppressors of RNA silencing.

Consequently, silencing of EF1A inhibits SMV replication and
confers resistance against SMV.

The majority of dominant R proteins contain nucleotide-
binding site (NBS) and leucine rich repeat (LRR) domains
(Collier and Moffett, 2009), which is also the case for R genes
that confer resistance against viral pathogens (de Ronde et al.,
2014). The NBS-LRR R proteins can be further subcategorized
as putative coiled-coil- or toll-interleukin-1 receptor-like (TIR)-
type proteins based on the presence of these domains at their
N-termini (Collier and Moffett, 2009). TIR, NBS, and LRR
domains are also found in Drosophila and human receptor
proteins involved in innate immunity (Nürnberger et al., 2004),
suggesting that the animal and plant proteins evolutionarily
diverged from a common ancestor and that and that similar
modules were selected to regulate innate immune responses.

While only selected R proteins show direct interactions with
Avr factors (Dodds et al., 2006; Ueda et al., 2006; Cesari et al.,
2013), most R proteins are thought to act indirectly via other
intermediary host proteins. This is further explained by the

“guard/decoy” model, which describes how R proteins guard host
accessory proteins (guardees), and pathogen effector-mediated
alteration of the guardees results in the activation of R protein
(Jones and Dangl, 2006; Collier and Moffett, 2009; Dodds and
Rathjen, 2010). For example, N protein from tobacco indirectly
recognizes a p50 helicase fragment of the TMV replicase protein
via a chloroplast-localized N receptor-interacting protein 1
(NRIP1) (Caplan et al., 2008). Upon TMV infection, NRIP1
residing in the chloroplast translocates to the cytoplasm and
nucleus. Cytosolic NRIP1 associates with TMV replicase and then
recruits N protein through a direct interaction between NRIP1
and the TIR domain of N (Ueda et al., 2006).

Unlike viral pathogens, both fungal and bacterial genomes
encode multiple Avr factors, which are thought to play a role in
the suppression of PTI. However, viruses appear to compensate
for the presence of a single Avr effector by undergoing
frequent alterations in the critical amino acid sequences without
drastically changing the protein structure. Host R protein-
mediated recognition of the modified Avr factor then depends
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FIGURE 2 | Interactions between viral silencing suppression and host
factors involved in PTI and ETI. Model of molecular virus–host interactions
in RNA silencing and PRR/R-mediated resistance [modified from
(Katiyar-Agarwal and Jin, 2010)].

on the relative affinity between R protein and the modified Avr
factor. For instance, several hypervirulent strains of TCV isolated
from in planta-propagated TCV are able to escape HRT-mediated
recognition and cause disease in resistant plants (Wobbe et al.,
1998; Zhu et al., 2013).

CROSS-TALK BETWEEN RNAi- AND R
GENE-MEDIATED ANTI-VIRAL DEFENSE
RESPONSES

Since both RNAi and R gene-mediated pathways participate in
antiviral defense, it is plausible that these pathways undergo
cross-talk to maximize the efficiency of defense responses against
viral infections (Nakahara and Masuta, 2014). Indeed, viral
pathogens often encode a single protein that functions as a
suppressor of RNAi as well as an Avr effector (Figure 2)
(Palanichelvam et al., 2000; Eggenberger et al., 2008; Katiyar-
Agarwal and Jin, 2010; Wen et al., 2012; Zhu et al., 2013). For
example, TMV replicase and TCV CP function as VSRs and are
recognized by N and HRT, respectively, to induce the HR (Wang
et al., 2012; Zhu et al., 2013). However, it is currently unclear how
they communicate with each other and whether they assist each
other to increase disease resistance or have sequential defense
functions and thereby act individually.

Recently, a few studies provided molecular evidence that
these two defense mechanisms are associated with each other

(Li et al., 2012; Shivaprasad et al., 2012; Verlaan et al., 2013;
Zhu et al., 2013). Several components involved in host RNA
silencing mechanisms have recently been shown to be required
for R gene-mediated defense. For example, double-stranded
RNA binding protein (DRB) four interacts with HRT and is
required for HRT stability (Zhu et al., 2013). In addition, R genes
against Tomato yellow leaf curl virus were recently shown to
encode DFDGD-class RDR (Verlaan et al., 2013). Interestingly,
activation of HRT-mediated resistance is not dependent on the
RNA silencing suppressor activity of CP and is not associated
with the accumulation of TCV-specific small RNA. This finding
suggests that the HRT-mediated signaling pathway recruits
components of the RNA silencing pathway, but this resistance
response is not associated with the cleavage of viral RNA.

It is likely that alteration of small RNAs derived from
viral infections plays a role in regulating R gene expression
levels, thereby regulating resistance signaling (Li et al., 2012;
Shivaprasad et al., 2012), rather than direct regulation by VSR
activity. For instance, Li et al. (2012) observed that miR6019 and
miR6020 in tobacco cause specific cleavage of transcripts of N
and its homologs by binding to the complementary sequence of
a conserved region encoding the TIR domain of the N protein.
Furthermore, phasiRNA synthesis from the N coding sequence
via overexpression of miR6019 was accompanied by reductions
in N transcript levels and N-mediated resistance against TMV
(Li et al., 2012). In addition, a group of 22 nt miRNAs from
the miR482/2118 superfamily targets numerous NLRs within
Solanaceae species. These miRNAs target highly conserved
sequences in the genes encoding predicted NLR proteins (Zhai
et al., 2011; Shivaprasad et al., 2012). Activation of VSR induces
quantitative changes of whole small RNA species in host cells.
Interestingly, VSRs upregulate the transcript levels of the targeted
NLRs by attenuating the production or activity of miR482/2118
family members. The miR482/2118 family members are thought
to ordinarily down-regulate their target NLR genes but upregulate
these genes only when they are required for plant resistance via
the VSRs of viral pathogens (Padmanabhan and Dinesh-Kumar,
2014). Altogether, these studies suggest that the RNA silencing
response is integrated with R gene-mediated anti-viral resistance
responses; however, it is not yet clear whether degradation of
the viral genome via host RNA silencing-mediated defense is
necessary for R gene-mediated defense.

CONCLUDING REMARKS

Since the zig-zag model was first proposed by Jones and Dangl
(2006), many interactions between plant and bacterial pathogens
have been reported, in which a pathogen suppresses or alters
PTI by effectors, and plants have developed induced ETI, a
stronger type of defense against effectors, during evolution
(Boller and He, 2009). Long-term plant disease resistance
studies of viral pathogens have revealed RNA silencing and
R gene-mediated defense responses. In recent years, studies
of the relationship between these two resistance responses
have enhanced understanding of the interaction between plants
and viruses. As genome analysis techniques are developed,
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understanding of plant–virus interactions increases. Kontra et al.
(2016) recently reported that the tombusviral P19 suppressor
preferentially affects virus-derived small interfering RNAs rather
than endogenous host miRNAs in virus-infected plants. The
authors suggested that the relationship between VSRs and host
RNA silencing, as well as their contribution to the virulence
of viruses, should be reconsidered. In parallel, Li et al. (2013)
revealed a role for miRNAs in translational inhibition as well
as silencing in plants and demonstrated that this process occurs
in the ER. It would be interesting to integrate our knowledge
of the roles of the ER in viral pathogenesis and in R gene-
mediated defense responses (Jheng et al., 2014; Verchot, 2014;
Moon et al., 2016). Uncovering the subcellular localization of
small RNAs, VSR, and R protein will be critical for understanding
how the two antiviral pathways interact. Although the concept
of PTI and ETI is less clear in viral pathogenesis than in

bacterial pathogenesis at present, future in-depth studies of the
two anti-viral defenses and cross-talk between them will enhance
understanding of plant immune responses, as well as to bacteria
and fungi.
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