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Abstract: Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-
high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber
(GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and
the effects of different fibers on the compressive, tensile and bending properties of UHPC were
investigated, experimentally and numerically. Then, the damage evolution of UHPC was further
studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between
the simulation values and experimental values was within 5.0%, verifying the reliability of the
numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical
properties. In addition, the glass fiber was more significant in strengthening the effect. Compared
with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%,
30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC
were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect
of the HPP fiber is better.

Keywords: ultra-high-performance concrete; glass fibers; HPP fibers; concrete damage plasticity

1. Introduction

Ultra-high-performance concrete (UHPC) has been widely used in engineering struc-
tures because of its high strength, high toughness and high durability [1]. The incorporation
of fibers can improve the ability to inhibit crack propagation, achieving the improved tough-
ness of UHPC [2–5]. The reinforcing effect of steel fibers is better than that of nonmetallic
fibers [6,7]. However, steel fibers exposed on the surface rust quickly and may hurt
pedestrians [8]. Demand for nonmetallic fibers is significant in structures like landscape
bridges and pedestrian bridges. Therefore, it is of great significance to further study the
strengthening and toughening effects and mechanism of nonmetallic fibers on UHPC.

The mechanical properties of UHPC can be improved by adding nonmetallic fibers.
Meng and Khayat [9] studied the fluidity, hydration reaction, autogenous shrinkage and
pore structures of UHPC with carbon nanofibers and reported that the incorporation of car-
bon nanofibers reduced the porosity of UHPC by about 35%. Mehboob et al. [10] indicated
that the polypropylene fiber could effectively improve the strength and ductility of UHPC.
Yu et al. [11] found that the strain-hardening cementitious composite gained better crack
control ability when mixing polyvinyl alcohol (PVA) fibers and polyethylene terephtha-
late (PET) fibers. Nonmetallic fibers can also improve the corrosion resistance of UHPC.
Ghasemzadeh et al. [12] studied the microstructure of the PVA-reinforced UHPC, observing
that PVA fibers reduced the diffusion and infiltration of chloride ions. Holubova et al. [13]
studied the chemical durability of glass fibers (GF) in UHPC and observed no serious corro-
sion defects in glass fibers and low quantities of corrosion products in UHPC. Some studies
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indicated that the mechanical properties of the hybrid fiber-reinforced concrete were better
than that of the single-doped fiber-reinforced concrete. Christ et al. [14] mixed steel fibers
and polypropylene fibers into UHPC and claimed that the hybridization of different kinds
of fibers increased the mixture’s toughness. Yoo et al. [15] applied four types of steel fibers
in UHPC and found that the tensile performance of UHPC can be improved by the hybrid
reinforcing system. Sorelli et al. [16] indicated that the performance of concrete mixed with
different sizes of fibers could be effectively improved. Park et al. [17] claimed that small
size fibers were beneficial to strain hardening, while large size fibers mainly determined
the overall shape of the tensile stress–strain curve. In addition, mixing different elastic
modulus fibers can also improve the integrity of concrete [18–20]. Thus, it is necessary
to further study the reinforcing effects of different elastic modulus and different sizes of
nonmetallic fibers on UHPC.

Among various nonmetallic fiber materials, glass fibers with small size and high
elastic modulus can enhance UHPC [21–23]; high-performance polypropylene (HPP) fibers
with large size and low elastic modulus can improve the toughness of concrete [24–26].
However, there is insufficient research on the effect of HPP fibers on UHPC. The research
on the strengthening mechanism and mixing effect of glass fibers and HPP fibers is also
insufficient. Thus, to improve the strengthening and toughening effects and mechanism
of glass fibers and HPP fibers, the two kinds of fibers were selected to prepare UHPC by
single doping or mixing in this research.

Although mechanical performance tests can intuitively reflect the effects of fiber
reinforcement, numerical analysis is still necessary, considering the time consumption
and material cost. Bahij et al. [27] studied the numerical simulation method of shear
performance of UHPC beams and got a highly accurate result. Zhang et al. [28] established
a discrete numerical simulation method to predict the fracture behavior of PVA-UHPC,
and the experimental results agreed with the model well. Chen et al. [29] established
the concrete damaged plasticity (CDP) model by ABAQUS to simulate the response of
UHPC pi-girders, and the results verified the rationality of the model. Some studies also
used the CDP model to simulate the three-dimensional failure of UHPC [30–32]. However,
the existing studies pay little attention to the degradation process of UHPC during the
loading process. By establishing the CDP model, this paper intends to analyze the damage
evolution of specimens under force loading and study the mechanical behavior of UHPC.

In this paper, the mechanical properties of UHPC were tested by the axial compression
test, the axial tension test and the 4-point bending test. With the experimental data, the
mixing effect of glass fibers and HPP fibers was also quantitatively analyzed. Based on the
analytical software ABAQUS, the CDP model of UHPC was established, and the simulation
results were compared with the test results, helping analyze the damage evolution of UHPC.
Moreover, this model could also provide a reference for the nonlinear finite element analysis
of UHPC.

2. Experimental Study
2.1. Materials

This study tested and analyzed the properties of 9 UHPC proportions with various
fiber contents. The properties of the fibers, including the glass fiber (GF) and the high-
performance polypropylene (HPP) fiber, are shown in Table 1. Samples of the fibers are
shown in Figure 1.
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Table 1. Properties of the fibers.

Types Length (mm) Diameter (mm) Tensile Strength (MPa) Elastic Modulus (MPa) Density (kg/m3)

GF 6 0.015 1500 71,000 2540
HPP 30 0.8–1.5 500 5000 910

GF—glass fiber, HPP—high-performance polypropylene.
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Figure 1. Samples of the fibers: (a) glass fibers (GF); and (b) high-performance polypropylene
(HPP) fibers.

The UHPC matrix recipe is listed in Table 2, adopting the improved Andreasen and
Andersen (A & A) particle packing model [33].

Table 2. UHPC (ultra-high-performance concrete) benchmark mix (kg/m3).

Cement Silica Fume Quartz Powder Superplasticizer Water Quartz Sand I Quartz Sand II

750 90 263 12 191 306 714

The water-to-cement ratio is 0.255.

The raw materials included cement, mineral powders, aggregates, polycarboxylate
superplasticizer and water. Portland cement P. II 52.5 was chosen. The mineral powders
included the ultrafine silica fume with the particle size of 0.1–0.15 µm and the quartz
powder with the particle size of 2.4 µm. The aggregates included the quartz sand I with the
size of 0.15–0.2 mm and the quartz sand II with the size of 0.3–0.6 mm. The composition of
the materials is shown in Table 3; the particle size distribution curves of the materials are
given in Figure 2 [34].

The liquid polycarboxylate superplasticizer with a water-reducing rate of 36% was
added. The denomination of the 9 groups of UHPC is given in Table 4.

During the preparation and casting process, the fibers dispersed uniformly in the
slurry, and no fiber agglomeration was observed. After pouring, the specimens were
placed in the room with a temperature of 20 ± 5 ◦C and relative humidity of more than
50% for 1 day. Then the specimens were removed and put into the curing room with the
temperature of 20 ± 2 ◦C and the relative humidity of more than 95% for curing. After
28 days of curing, the specimens were tested.

Table 3. Composition of the materials (mass fraction, %) [34].

Composition CaO SiO2 Fe2O3 Al2O3 SO3 K2O Na2O LOI

Cement 67.87 20.25 4.01 2.76 2.61 0.49 0.21 1.80
Silica fume 0.25 98.00 0.10 0.20 0.52 0.25 0.20 0.48

Quartz powder 0.31 97.40 0.30 0.31 0.65 0.37 0.26 0.40
Quartz sand 0.25 91.78 0.88 4.34 0.02 2.06 0.22 0.45

The cement is provided by Jiangnan Onoda Cement Co., Ltd. (Nanjing, China).
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Table 4. Volume contents of the fibers (%).

Types G1 G2 G3 H1 H2 H3 GH1 GH2 GH3

GF 1 1.5 2 0 0 0 0.25 0.5 0.75
HPP 0 0 0 1 1.5 2 0.75 0.5 0.25

G means the glass fiber, while H means the high-performance polypropylene (HPP) fiber.

2.2. Experimental Investigation

To obtain the compressive, tensile and bending properties of UHPC, the axial com-
pression test was performed according to British standard BS EN 12390-3: 2009 [35];
the axial tensile test and the 4-point bending test were performed according to Chi-
nese standard T/CBMF 37-2018 [36]. In the axial compression test, the cubic speci-
mens of 100 mm × 100 mm × 100 mm were compressed axially with the loading rate of
0.6 MPa/s as seen in Figure 3a, and 6 specimens were tested for each UHPC proportion
group. In the axial tensile test, the dog-bone specimens without stud were subjected to axial
tension loads with the loading rate of 0.1 MPa/s, as seen in Figure 3b. Six specimens were
tested for each UHPC proportion group. The middle part with the constant section (the
shaded area in Figure 3b) is defined as the middle tensile zone, where the fracture is sup-
posed to happen. Two strain gauges were pasted on two opposite sides in the middle tensile
zone. In the 4-point bending test, the beam specimens of 100 mm × 100 mm × 400 mm
(Figure 3c) were bent with the loading rate of 0.05–0.08 MPa/s before the initial crack and
with the loading rate of 0.1 mm/min after the initial crack. Three displacement meters
(Linear Variable Differential Transformer, abbreviated as LVDT) were arranged to measure
the deflection. The loading was stopped when the load was about 10% lower than the
peak value, and the specimens fractured in the pure bending zone were taken as effective
specimens. Three specimens were tested for each group.

The average value was taken as the performance index of each proportion, eliminating
the data with a difference of more than 15% from the average value. In the bending test, if
the difference between the extreme value and the intermediate value was more than 15%,
the intermediate value was taken as the performance index of the proportion. In the axial
tensile test and the bending test, the stress–strain curve corresponding to the intermediate
value of the measured strength was taken as the performance curve of each proportion.
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The results of the axial compression tests, the axial tensile tests and the 4-point bending
tests are shown in Table 5. The measuring uncertainty was ±1%. The bending toughness
indexes I5, I10 and I20 are calculated according to ASTM C1018-97 [37].

Table 5. Test results.

Name
Axial Compression Test Axial Tensile Test Four-Point Bending Test

fcu (MPa) ft (MPa) E (MPa) εcr (µε) fcr (MPa) ff (MPa) I5 I10 I20

G1 115.1 7.19 4.45 × 104 164.15 7.01 8.98 2.35 2.35 2.35
G2 114.1 7.41 4.42 × 104 166.81 6.69 8.68 2.32 2.32 2.32
G3 131.7 7.51 4.58 × 104 180.41 6.77 7.70 2.67 2.67 2.67
H1 101.2 5.19 3.74 × 104 132.79 5.77 6.14 2.84 4.45 8.53
H2 95.1 5.59 4.09 × 104 140.72 5.50 6.08 2.81 4.76 9.25
H3 108.2 5.81 4.43 × 104 138.52 5.63 6.16 3.41 5.30 10.35

GH1 101.8 5.69 4.22 × 104 140.50 6.06 6.73 2.76 4.0 6.41
GH2 100.6 5.78 4.09 × 104 149.35 6.24 7.06 2.50 3.49 4.98
GH3 102.3 7.03 4.37 × 104 165.30 6.95 8.29 4.19 4.30 4.92

fcu: cubic compressive strength, ft: tensile strength, E: tensile modulus of elasticity, εcr: peak tensile strain, fcr: initial crack strength,
ff: flexural strength.

3. Numerical Study

In this study, the UHPC damaged plastic model was established by the analytical
software ABAQUS (6.14, 2014, Dassault Systemes Simulia Corp., RI, USA), and the loading
process of the axial compression test, the axial tensile test and the 4-point bending test
were simulated. The linear reduced eight-node hexahedral integral C3D8R solid element
was adopted, and damage parameters were introduced to consider irreversible damage
degradation of the material and simulate the inelastic mechanical behavior. The cubic
models of 100 mm × 100 mm × 100 mm were established for the axial compression test,
and the mesh division size was 5 mm. The prismatic models of 50 mm × 50 mm × 100 mm
were established for the axial tensile test (corresponding to the shaded area in Figure 3b),
and the mesh division size was 2.5 mm. The beam models of 100 mm × 100 mm × 400 mm
were established for the 4-point bending test, and the mesh division size was 8 mm. To
make the models have good convergence, the viscosity coefficient µ was taken as 0.005,
and other concrete parameters were defined as follows [38,39].
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3.1. Yield Function and Flow Rule

The CDP model defines the yield function of concrete material according to Equation (1),

F(σ, ε̃pl) =
1

1− α
(q− 3αp + β(ε̃pl)〈σ̂max〉 − γ〈−σ̂max〉)− σc(ε̃

pl
c ) ≤ 0 (1)

where: σ is the effective stress; ε̃pl is the hardening variables; is defined as 〈X〉 = (|X|+ X)/2;
q is Mises equivalent effective stress; p is the effective hydrostatic stress; σ̂max is the
maximum eigenvalue of σ; σc and σt are the effective tensile and compressive cohesion
stresses, respectively. Dimensionless material constants α, γ and function β are defined as:

α =

(
fb0
fc0
− 1
)

(
2 fb0
fc0
− 1
) , β(ε̃pl) =

σc(ε̃
pl
c )

σt(ε̃
pl
t )

(1− α)− (1 + α), γ =
3(1− Kc)

2Kc − 1
(2)

where: fb0 is the initial equibiaxial compressive yield stress; fc0 is the initial uniaxial
compressive yield stress; Kc is the ratio of the second stress invariant on the tensile meridian
to that on the compressive meridian. Referring to the existing literature and after model
debugging, fb0/fc0 = 1.16 and Kc = 0.667 were defined [40–43].

The CDP model adopts non-associated flow rule, and the plastic potential follows
Drucker–Prager hyperbolic function:

.
ε

pl
=

.
λ

∂G(σ)

∂σ
(3)

G =

√
(∈ σt0 tan ϕ)2 + q2 − p tan ϕ (4)

where: ϕ is the dilation angle in the p-q plane, and ϕ = 30◦ is defined [40]; σt0 is the uniaxial
tensile stress at failure; ∈ is the eccentricity parameter, and ∈= 0.1 is defined.

3.2. The Equivalent Plastic Strain and the Effective Stress

In the CDP model, the compressive and tensile strain are calculated according to
Equations (5) and (6): 

εc = ε̃in
c + εel

0c = ε̃
pl
c + εel

c

εel
0c =

σc

E0
, εel

c =
σc

(1− dc)E0

(5)


εt = ε̃ck

t + εel
0t = ε̃

pl
t + εel

t

εel
0t =

σt

E0
, εel

t =
σt

(1− dt)E0

(6)

where: εc and εt are, respectively the compressive strain and the tensile strain; ε̃in
c and ε̃ck

t
are, respectively the inelastic compressive strain and the inelastic tensile strain; εel

0c and εel
0t

are, respectively the elastic compressive strain and the elastic tensile strain corresponding to
initial stiffness of material; εel

c and εel
t are, respectively, the elastic compressive strain and the

elastic tensile strain corresponding to actual stiffness of material after damage degradation;
dc and dt are, respectively, the compressive damage parameter and the tension damage
parameter, which reduce the material stiffness; E0 is the initial stiffness of the material.

The equivalent plastic strain ε̃
pl
c(t), stress σc(t) and effective stress σc(t) are calculated

according to Equations (7)–(9) by introducing the damage parameter dc(t),

ε̃
pl
c(t) = ε̃in

c (ε̃
ck
t )−

dc(t)

1− dc(t)
·

σc(t)

E0
(7)
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σc(t) =
(

1− dc(t)

)
E0(εc(t) − ε̃

pl
c(t)) (8)

σc(t) =
σc(t)

1− dc(t)
= E0(εc(t) − ε̃

pl
c(t)) (9)

3.3. Constitutive Relation and Damage Parameter

The stress–strain curve of UHPC under uniaxial compression adopted the constitutive
model defined by Wu [44], as shown in Equation (10):

y = Ax + (6− 5A)x5 + (4A− 5)x6 0 ≤ x ≤ 1

y =
x

α(x− 1)2 + x
1 < x


x =

εc

ε0

y =
σc

fc

(10)

where: x and y are the dimensionless coordinates; εco is the peak compressive strain; fc is
the prismatic compressive strength.

The parameters in Equation (10) were determined by the fitting formulas [45], and
fcu measured in axial compression test was used to define the constitutive relation. First,
fc was obtained by Equation (11). Then εc0, E and the dimensionless material constant
A were calculated from Equations (12)–(14). α = 4.00 was defined [44], and other model
parameters for each proportion are shown in Table 6. Moreover, the density ρ of UHPC
was 2.5 × 103 kg/m3; Poisson’s ratio ν was 0.2 in the model:

fc = 0.89 fcu (11)

εco = (6.7264 fc + 2460.9)× 10−6, 80 MPa ≤ fc ≤ 150 MPa (12)

E =
103

0.0172 +
0.8364

fc

, 60 MPa ≤ fc ≤ 220 MPa (13)

A =
6.7264 fc + 2460.9

17.2 fc + 836.4
, 80 MPa ≤ fc ≤ 150 MPa (14)

Table 6. Compression constitutive parameters of CDP (concrete damaged plasticity) model.

Group fcu (MPa) fc (MPa) εc0 E (MPa) A

G1 115.05 102.39 0.0031496 39,419.11 1.21
G2 114.14 101.58 0.0031442 39,318.17 1.22
G3 131.65 117.17 0.0032490 41,087.27 1.14
H1 101.15 90.02 0.0030664 37,748.80 1.29
H2 94.97 84.52 0.0030294 36,906.50 1.32
H3 108.24 96.33 0.0031089 38,636.40 1.25

GH1 101.78 90.58 0.0030702 37,830.93 1.28
GH2 100.60 89.53 0.0030631 37,676.56 1.29
GH3 102.34 91.08 0.0030736 37,903.38 1.28

The rising section of axial tensile stress–strain curve of UHPC was approximately
defined as a linear line, and the descending section adopted the exponential curve model
proposed by Jiang [46], as shown in Equation (15):

σ = fte−αt(ε−εcr) (15)

where: ft is the ultimate tensile strength of concrete; εcr is the strain at the peak value of
concrete tensile stress; αt is the softening coefficient, and the greater the αt value is, the
steeper the curve of descending section is. In this study, ft measured in the axial tensile
test was used to define the constitutive relation, and αt= 1000 was defined.
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According to the constitutive relation, the damage parameter d was calculated by area
method based on the principle of energy loss, as shown in Equation (16):

d = 1− Ad
A0

, Ad =
∫

σdε, A0 =
1
2

E0ε (16)

where: Ad is the strain energy of damaged material, which represents the area under the
stress–strain curve. A0 is the strain energy of non-damaged material, which represents the
triangle area under a straight line with the slope E0.

The analysis process of the CDP model is shown in Figure 4.
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4. Results and Discussions
4.1. Compressive Properties
4.1.1. Comparison of Test and Numerical Values

Figure 5 shows the axial compression test results and the simulated values, and the
difference is within 5%, indicating that the cubic numerical model is reasonable and reliable.
For GF-UHPC, the difference of fcu between G1 and G2 is only 0.8%, while that between
G2 and G3 is 15.4%, reaching 131.7 MPa. For HPP-UHPC, fcu of H3 is the highest, which is
6.9% and 13.8% higher than that of H1 and H2, respectively. For G/H-UHPC (UHPC mixed
with glass fibers and high-performance polypropylene fibers), fcu of GH1, GH2 and GH3
are about 100 MPa, and fcu increases slightly with the increase of glass fiber content. With
the same fiber content, fcu of G1, G2 and G3 are 13.6%, 20.0% and 21.7% higher than that of
H1, H2 and H3, respectively, showing that glass fibers have a more efficient reinforcement
effect because of the high-strength and high-elastic modulus. Moreover, the compressive
performance of G3 (the UHPC with 2.0% fiber content) is the best.
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Figure 6 shows the typical damage evolution and failure mode under UHPC cubes
under compression, taking G1 as an example. The numerical model is cut to facilitate ob-
servation of the internal damage by the damage cloud diagram (DAMAGEC) in Figure 6a.
When the displacement d of the model is loaded to 0.30 mm (ε = 0.003), the material
degradation first occurs in the area near the UHPC cube corners and the diagonal of
surface; when d = 0.45 mm, it develops into a double “X” distribution (the white dotted
line in Figure 6). As d continues to increase, the damaged area expands, and the stiffness
degradation degree of the diagonal and middle area becomes higher. Finally, it develops
into an “X” type, which is consistent with the pyramid-shaped or hourglass-shaped failure
bodies formed in the axial compression test (Figure 6b).

The experimental and the numerical results show that the binding effect of fibers
on the UHPC matrix is naturally limited when the fiber content is low. The negative
effect of uneven fiber dispersion would be more prominent at the low fiber content. As
shown in Figure 7, due to the uneven dispersion of fibers during stirring, there is “region I”
where fiber content is much lower than the total content in cement paste. As the number
of fibers in “region I” is very low, it is difficult to bridge cracks effectively, which forms
the weak part and affects the strength of UHPC specimens. On the contrary, in the case
of high fiber content, even if there are also regions with lower fiber numbers, the high
total fiber content makes fibers in those regions still bridge cracks effectively, forming
the “region II” in Figure 7. Moreover, in other regions with higher fiber number, densely
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and randomly distributed fibers form a three-dimensional network structure, which could
be closely linked to the UHPC matrix and prevent the development and penetration of
microcracks, thereby significantly improving the compressive strength, such as the “region
III” in Figure 7.
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Figure 7. Effects of fiber content on bridging cracks.

As shown in Figure 8, glass fibers and UHPC matrix are jointly subjected to friction
through contact surface before UHPC cracking; after UHPC cracking, glass fibers through
cracks continue to share external force and slow down the expansion of microcracks so as
to achieve reinforcement effect. Compared with glass fibers, the diameter of HPP fibers is
larger (0.8–1.5 mm), and the length is longer (30 mm). The number of fibers in a certain
area is less, resulting in the significantly weaker ability to inhibit microcracks. Once the
microcracks are further expanded and penetrated into macrocracks, HPP fibers could
reinforce and toughen the matrix (Figure 9).

Figure 10 shows the crushed cubic specimens with different proportions. It could be
observed that the broken blocks were connected as a whole by fibers, and the integrity of
specimens from high to low is G/H-UHPC > HPP-UHPC > GF-UHPC. Moreover, both
microcracks and macrocracks in G/H-UHPC could be restrained, which greatly reduces
the degree of disintegration and spalling of UHPC.
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4.1.2. Mixing Effect of Fibers

To quantitatively analyze the mixing effect of glass fibers and HPP fibers, and the
mixing effect coefficient was calculated according to Equation (17) [47],

R =
η − (η1λ1 + η2λ2)

η1λ1 + η2λ2

λ1 + λ2 = 1, λ1 =
V1

V
, λ2 =

V2

V

(17)

where: R is the mixing effect coefficient of fibers, comparing the experimental value of
G/H-UHPC with the linear superposition of that of GF-UHPC and HPP-UHPC; η is the
performance parameter of G/H-UHPC; η1 and η2 represent the performance parameters
of GF-UHPC and HPP-UHPC, respectively; λ1 and λ2 represent the volume proportion
of glass fibers and HPP fibers in G/H-UHPC, respectively; V1 and V2 are the volume of
glass fibers and HPP fibers in G/H-UHPC, respectively; V is the total volume of fibers
in G/H-UHPC.

Figure 11 shows the relationship between fcu and glass fibers contents (line chart),
as well as the relationship between the mixing effect coefficient and fcu (histogram). The
mixing effect of fcu is negative, as all the mixing effect coefficients are negative. The number
of glass fibers is low in G/H-UHPC, which leads to the formation of “region I” but not
“region III” in the UHPC matrix (Figure 7). As a result, fcu of G/H-UHPC is lower than
that of GF-UHPC and is closer to that of HPP-UHPC.
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4.2. Tensile Properties
4.2.1. Comparison of Test and Numerical Values

Figure 12 shows the test values and the simulation values of ft, and the data deviation
is within 5%. Figure 13 shows the stress–strain curves of the axial tensile test and the CDP
model, and the simulation curves are close to the test curves, indicating that the numerical
model is reasonable and reliable. The constitutive relation selected could be used for finite
element analysis of UHPC without tensile strain hardening behavior.

According to Figure 12 and Table 5, as for GF-UHPC, ft is above 7 MPa and E is about
45 GPa; ft increases by 3.1% and 1.4% when fiber content increases by 0.5% from 1.0% to
2.0%. As for HPP-UHPC, ft is 5–6 MPa and E is 37–44 GPa; ft increases by 7.7% and 3.9%
when fiber content increases by 0.5% from 1.0% to 2.0%, and the amplification is larger
than that of GF-UHPC. As for G/H-UHPC, ft is above 5 MPa and E is above 40 GPa; and
ft increases with the increase of glass fiber content. At the same fiber content, ft of G1,
G2 and G3 are 38.5%, 32.6% and 29.3% higher than that of H1, H2 and H3, respectively,
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indicating that glass fibers are more effective in strengthening tensile properties than HPP
fibers.

According to the stress–strain curves are shown in Figure 13, the tensile failure process
first goes through the elastic stage, in which the load increases linearly. Then, brittle failure
occurs after cracking, and there is no strain strengthening. E and εcr of GF-UHPC are
slightly higher than those of HPP-UHPC, while those of G/H-UHPC in between. The
length of the glass fiber is shorter, and the anchorage friction force is smaller. As a result,
fibers would be pulled out quickly when cracks widening, making the specimen brittle. As
for HPP fibers, the size is larger, and the number of fibers is less under a certain volume
content, leading to a weak constraint effect of cracks and brittleness.
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Taking G1 as an example, the typical von Mises stress cloud diagram of the axial
tensile model is shown in Figure 14. When the displacement d = 0.163 mm, the load reaches
the peak value, and it is difficult for glass fibers to continue bridging microcracks, then the
load decreases with microcracks expanding rapidly. When d = 0.168 mm, most of the fibers
have been pulled out, which could not prevent the extension of macrocracks, and the load
decreases to 13.3% of the peak value. When d = 0.020 mm, the load drops to 1.0 kN and the
model loses its bearing capacity.
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Figure 14. (a) Von Mises stress (MPa) cloud diagram of the axial tensile model and (b) fractured specimen (G1).

The presentative fracture sections are shown in Figure 15. The maximum pore diame-
ter of G3 is 3.8 mm, and the number and size of pores of G3 are significantly higher than
those of G1 and G2, while those of H3 are also slightly higher than those of H1 and H2.
With the increase of fiber content, more bubbles may be easily generated during the mixing
and pouring process of UHPC, which could have a negative impact on the mechanical
properties. In addition, it could also be observed in Figure 15 that the failure of glass
fibers is mainly due to interface sliding pull-out, while there are more fractured HPP fibers.
Thus, the matrix bonding and anchoring ability of large-size fibers are stronger, which is
conducive to give full play to the strength of HPP fibers.
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4.2.2. Mixing Effect of Fibers

The mixing effect coefficients were calculated according to Equation (17). The relation-
ship between ft, E, εcr and glass fibers contents (line chart) and the relationship between
the mixing coefficient and ft, E and εcr (histogram) are obtained, as shown in Figures 16–18.
The mixing effect of ft is close to zero effect, and the mixing effects of E and εcr are weak
positive effects, indicating that the tensile properties of UHPC could be strengthened by
mixing glass fibers and HPP fibers (like “1 + 1 > 2”). However, the positive effect is weak,
and the maximum enhancement range is 7.72% (GH1 in Figure 17).
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4.3. Bending Properties
4.3.1. Comparison of Test and Numerical Values

Figure 19 shows the test values and simulation values of ff, and the data deviation is
within 5%. Figure 20 shows the experimental and simulated bending load-deflection curves.
As the simulation of ff is consistent, the model could be considered valid in the elastic
stage and the descending stage. However, the simulated curves have no strain hardening
behavior because of the brittleness of tensile curves. Although the model cannot show the
toughening effect of HPP fibers, it is still beneficial to analyze the stress distribution and
the crack propagation process in the linear elastic stage.

According to Figure 19 and Table 5, ff of GF-UHPC and HPP-UHPC decrease slightly
when the fiber content increases from 1.0% to 2.0%. This may be caused by excessive
bubbles. With the same fiber content, G1, G2 and G3 are 21.5%, 21.6% and 20.1% higher
than H1, H2 and H3 in initial crack strength, and 46.3%, 35.7% and 25.0% higher in flexural
strength. Moreover, fcr and ff of G/H-UHPC increase with the increase of glass fibers
content, indicating that glass fibers have a better effect on strengthening flexural properties
of UHPC than HPP fibers.
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According to Figure 20, the loading process of GF-UHPC specimens could be divided
into two stages. Stage I is the elastic stage. The load before initial cracking increases linearly,
and glass fibers bear force cooperating with the UHPC matrix because of its high elastic
modulus. In stage II, the load declines to brittle failure rapidly after initial cracking, and
then it is difficult for small-size glass fibers to bridge macrocracks, making glass fibers
continuously and rapidly pulled out.

The loading process of HPP-UHPC specimens could be divided into four stages: the
linear elastic stage, the load declining stage, the strain hardening stage and the strain-
softening stage. In stage I, unlike glass fibers, the reinforcement effect of HPP fibers is low
because of the low elastic modulus, and it is the UHPC matrix that mainly bears external
force. In stage II, the load decreases rapidly after initial cracking; H1, H2 and H3 decline to
22.57%, 26.15% and 36.19% of the peak load, respectively. Moreover, the decrease range
decreases with the increase of HPP fiber content. In stage III: it could be observed that a
wide main crack occurs in the pure bending section of the specimen. Most of the UHPC
in the tensile zone is out of work, and HPP fibers continue to bear external force so that
the load increases nonlinearly. In stage IV: the specimen was obviously deformed, and the
UHPC withdrawing from work expends with the crack propagation. Near the main crack,
some HPP fibers are pulled out or broken, then the load declines slowly.

The loading process of G/H-UHPC could be divided into four stages like HPP-UHPC,
but GH2 and GH3 have no obvious strain hardening stage. In stage I, the higher the glass
fibers content is, the higher the elastic limit load is, as glass fibers bear force cooperating
with the UHPC matrix. After initial cracking, the load decreases rapidly like GF-UHPC
and HPP-UHPC in stage II, then the long HPP fibers bridge macrocracks, making the load
of GH1 with high HPP fibers content rise again while GH2 and GH3 with low HPP fibers
content enter the strain-softening stage directly in stage III. As for GH1, with the main crack
continuing to expand and widen, HPP fibers are pulled out or broken one after another so
that the load declines slowly in stage IV.

According to Figure 20 and Table 5, the bending toughness indexes increase with the
increase of the high HPP fibers content, and the flexural toughness of H3 is the highest. At
the same volume content, the bending toughness indexes I5 of H1, H2 and H3 are 1.21, 1.21
and 1.28 times of that of G1, G2 and G3; I10 of H1, H2 and H3 are 1.89, 2.05 and 1.99 times
of that of G1, G2 and G3; I20 of H1, H2 and H3 are 3.63, 3.99 and 3.88 times that of G1, G2
and G3, respectively, indicating that the toughening effect of HPP fibers is much higher
than that of glass fibers.
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Figure 21 shows the von Mises stress and tensile damage cloud diagram of the bending
model. As the cloud diagrams of other proportions are similar to G1, so no longer repeated
list. When the deflection d f = 0.21 mm, the load reaches the peak value, and the model is
about to crack as material at the bottom of the beam degenerates. When d f = 0.26 mm, there
is the strip-shaped irrecoverable tensile damage in the tensile zone, and the load declines
rapidly to 37.9% of the peak value with the model cracking. When d f = 0.39 mm, as the
degenerated area continues to expand, the compression zone of UHPC decreases, and the
load declines to 15.7% of the peak value. When d f = 1.44 mm, the degenerated area extends
to the whole height of the beam, and the load declines to less than 3 kN, showing that the
bearing capacity has been lost. The failure mode of the CDP model is basically consistent
with the experimental situation, reflecting the process of brittle failure. The cloud diagram
of UHPC tensile damage is also corresponding to cracks of the beam specimen.
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Figure 21. Von Mises stress (MPa) and tensile damage cloud diagram of the 4-point bending test.

When the load declined to 10% of the peak load, the maximum crack width Wcrmax was
measured, as shown in Figure 22. All the cracks are located in a pure bending area, and only
one main crack occurs when the specimen is fractured, with no other microcracks observed
near the main crack. Wcrmax of GF-UHPC, HPP-UHPC and G/F-UHPC are 0.8–3.5 mm,
9.0–18.6 mm and 7.6–13.6 mm, respectively (two values with significant deviation are
excluded), showing that short glass fibers cannot keep bridging cracks after initial cracking,
but long HPP fibers could further prevent the expansion of macrocracks.

4.3.2. Mixing Effect of Fibers

Calculate the mixing effect coefficients according to Equation (17). The relationship
between fcr, ff, I5, I10, I20 and glass fibers proportion (line chart) and R of fcr, ff, I5, I10 and
I20 (histogram) are shown in Figures 23–25. The mixing effects of fcr, ff, I5, I10 and I20 are
positive when glass fibers content is high and zero or negative when HPP fibers content is
high, indicating that only when there are more glass fibers can the flexural toughness of
UHPC be strengthened like “1 + 1 > 2”.
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5. Conclusions

In this paper, the mechanical properties of nine groups of UHPC proportions with
different fiber types and contents were tested, and the damage evolution of the specimens
was numerically analyzed by ABAQUS, revealing the strengthening and toughening effects
and mechanism of glass fibers and HPP fibers on UHPC. Based on the above results and
discussions, the following conclusions could be drawn:

1. The mechanical properties of GF-UHPC and HPP-UHPC with 2.0% fiber content
were better in the research. With the increase of fiber content, the amplification of
mechanical properties of HPP-UHPC was slightly higher than that of GF-UHPC.
Moreover, it should be pointed out that the mechanical properties of UHPC did not
necessarily increase with the growing fiber content in the research;

2. Glass fibers had a more efficient reinforcement effect than HPP fibers. With the same
fiber volume content, the cubic compressive strength, the tensile strength and the
flexural strength of GF-UHPC were about 20%, 30% and 20–50% higher than those
of HPP-UHPC, as glass fibers had higher elastic modulus and stronger inhibition
of microcracks;

3. The toughening effect of HPP fibers was better than that of glass fibers. With the same
fiber volume content, the bending toughness indexes I5, I10 and I20 of HPP-UHPC
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were about 1.2 times, 2.0 times, and 3.8 times of those of GF-UHPC, as long HPP
fibers could further play a role in the connection of macrocracks after initial cracking;

4. The strength indexes of G/H-UHPC increased with the increase of glass fiber content,
and the toughness indexes increased with an increase of HPP fiber content. The
mixing effects of the tensile strength, the flexural strength, the bending toughness
indexes I5, I10 and I20 at high glass fibers content were positive, as more “region I”
(Figure 7) exiting in G/H-UHPC with low glass fibers amount and it was difficult to
obtain a positive effect like “1 + 1 > 2”;

5. The material degradation area of the CDP model of UHPC axial compression was
approximately the “X” shape, which was consistent with the pyramid-shaped or
hourglass-shaped failure bodies formed in the test;

6. According to the fitting formulas summarized in reference [45], the peak compressive
strain, the elastic modulus and the dimensionless material constant A could be calcu-
lated from the cubic compressive strength of UHPC and used in numerical simulation.
The simulation results were in good agreement with the experimental results, which
proves that the exponential constitutive relation could be applied to finite element
analysis of UHPC without tensile strain hardening, and the model establishment
method was reliable.
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