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In the last years, a series of methods for genomic prediction (GP) have been established,

and the advantages of GP over pedigree best linear unbiased prediction (BLUP) have

been reported. However, themajority of previously proposed GPmodels are purely based

on mathematical considerations while seldom take the abundant biological knowledge

into account. Prediction ability of those models largely depends on the consistency

between the statistical assumptions and the underlying genetic architectures of traits of

interest. In this study, gene annotation information was incorporated into GP models by

constructing haplotypes with SNPs mapped to genic regions. Haplotype allele similarity

between pairs of individuals was measured through different approaches at single gene

level and then converted into whole genome level, which was then treated as a special

kernel and used in kernel based GP models. Results shown that the gene annotation

guided methods gave higher or at least comparable predictive ability in some traits,

especially in the Arabidopsis dataset and the rice breeding population. Compared to

SNP models and haplotype models without gene annotation, the gene annotation

based models improved the predictive ability by 0.56∼26.67% in the Arabidopsis and

1.62∼16.53% in the rice breeding population, respectively. However, incorporating gene

annotation slightly improved the predictive ability for several traits but did not show any

extra gain for the rest traits in a chicken population. In conclusion, integrating gene

annotation into GP models could be beneficial for some traits, species, and populations

compared to SNP models and haplotype models without gene annotation. However,

more studies are yet to be conducted to implicitly investigate the characteristics of these

gene annotation guided models.

Keywords: genomic prediction, genomic selection, gene annotation, haplotype models, complex phenotypes

INTRODUCTION

Genomic prediction (GP) (Meuwissen et al., 2001) is a powerful tool in the fields of plant and
animal breeding and human complex traits and disease risk prediction. In the past decade, a series
of GP approaches have been proposed, including the maker effect methods (Meuwissen et al.,
2001; Habier et al., 2011; Gianola, 2013) and genomic best linear unbiased prediction (GBLUP)
(VanRaden, 2008).
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Currently, standard GP models estimate marker effects and
calculate individual genetic values via statistical models, but
most of them pay less attention to the underlying connection
between the complex genetic architecture and the often simplistic
mathematical formulas. Reviewing the literatures and the
biological databases, abundant of biological knowledge about
trait genetic architecture, gene function, regulation patterns, and
gene interaction networks have been quickly accumulated. The
potential usefulness of biological knowledge to accelerate GP
models has been illustrated by several studies (Zhang et al.,
2014; Edwards et al., 2016; Gao et al., 2017). However, the
questions about what kind of biological knowledge can be
used, how to integrate the prior knowledge into GP models,
and how much extra predictive ability can be obtained from
the assisted information still need more investigations. Under
GBLUP framework, Zhang et al. (2014) incorporated the
previously reported quantitative trait loci (QTLs) collected in
the animal QTLdb (http://www.animalgenome.org/QTLdb) (Hu
et al., 2016) into genomic prediction model, where markers
were weighted according to the frequency of corresponding
genomic regions being reported likely containing QTL when
constructing genomic relatedness matrix. Through this way,
different variances were assumed among genomic regions and
predictive ability was improved, especially for traits controlled
by large effect genes (Zhang et al., 2014). Similarly, − log10(p) ,
where p was the p-value for a marker on the outcomes of
interest, was utilized into genomic prediction by weighting SNPs
according to − log10(p) when constructing relatedness matrices
and through which predictive ability was enhanced (de Los
Campos et al., 2013; Ramstein et al., 2016). In a Bayesian model,
instead of using an uniform π (the proportion of markers with
zero effects) for all markers, Gao et al. (2015) transferred the
GWAS p-values into a locus-specific π and used this genetic
architecture derived π into the genomic prediction model.
The predictive ability of BayesB was improved by the locus-
specific π . In some of the latest publications, more types of
biological knowledge were incorporated into genomic prediction
by partitioning markers into classes based on their functional
annotation (Morota et al., 2014; Do et al., 2015; Abdollahi-
Arpanahi et al., 2016; MacLeod et al., 2016) or gene ontology
categories (Edwards et al., 2016; Abdollahi-Arpanahi et al., 2017).

Compared to the pedigree BLUP (Henderson, 1975), SNP
based GP models (Meuwissen et al., 2001; VanRaden, 2008)
show higher predictive ability undermany circumstances. In both
breeding value models and marker effect models, the underlying
mechanism of GP was tracing QTL effects through dense genetic
markers (usually SNPs) that were in linkage disequilibrium with
the potential neighbor QTLs. However, on one hand, for genes or
QTLs harboring more than two alleles, the bi-allelic SNP might
not be adequate for tracing the multi-allelic gene effects. On the
other hand, in the breeding value GP model, the SNP derived
relatedness to some extent reflect the IBS (Identity by state) rather
than IBD (Identity by decent). Even though the haplotypes can
neither reflect the IBD perfectly, alleles from the same haplotype
are more likely to be IBD. Thus, an alternative way to the existing
models is using the multi-allelic genotypes in GP by constructing
haplobocks with consecutive SNPs. The benefit GP gained from

haplotype models has been shown in several studies (Calus et al.,
2008; Meuwissen et al., 2014; Cuyabano et al., 2015; Da, 2015;
Gao et al., 2017).

In several previously proposed haplotype based GP models,
“artificial markers” were constructed for each haplotype allele,
and relatedness matrix was constructed by matrix product of the
artificial marker matrix (Calus et al., 2008;Meuwissen et al., 2014;
Cuyabano et al., 2015; Da, 2015; Gao et al., 2017), or categorical
models were introduced for modeling the haplotype effects
(Gao et al., 2017). Alternatively, haplotype based relatedness
matrix could be built by firstly calculating a haplotype allele
similarity matrix for each haploblock and then converting the
allele similarity matrix into individual similarity matrix (Hickey
et al., 2013). From the aspect of kernel regression (Gianola et al.,
2006; Gianola and van Kaam, 2008), the similarity matrix could
be treated as a specific kernel and used in GP in the framework of
kernel regression.

In the haplotype models, haploblocks can be defined
by considering the linkage disequilibrium among a set of
consecutive SNPs (Calus et al., 2008; Cuyabano et al., 2015; Da,
2015) or the number of haplotype alleles in certain haploblock
(Meuwissen et al., 2014). Recently, with the aim of defining
predictors according to known functioning units, Gao et al.
(2017) proposed a strategy to incorporate gene annotation into
GP by restricting the haploblock to the protein coding regions.
Though the predictive ability of GP models were improved by
defining haplotypes according to the structural genes in many
complex traits (Gao et al., 2017), more alternative approaches for
building genic relatedness matrices need to be examined in order
to provide more choices and gain much extra predictive ability.
In this study, we (1) constructed haplotypes in the protein coding
gene regions, (2) calculated genomic relatedness matrix by firstly
constructing haplotype similarity matrices and then converting
them into individual similarity matrices, and (3) performed GP
utilizing the genic haplotype relatedness matrix. Technically, a
haplotype allele similarity matrix was calculated within each
haplotype block and converted into individual similarity matrix.
GP was performed under the kernel regression framework by
treating the individual similarity matrix as a certain kernel.

MATERIALS AND METHODS

In order to build haploblocks in genic regions, SNPs
were mapped to protein coding genes according to their
corresponding physical positions. For each gene, haplotypes
were constructed throughout the gene under consideration.
Within each haplotype block, allele similarity matrix was
constructed by considering the SNP matching pattern between
haplotype alleles. Furthermore, the allele similarity matrix was
converted into individual similarity matrix. The final relatedness
matrix was calculated by averaging the similarity matrices for
all haploblocks. Finally, the genic haplotype similarity based
relatedness matrix was used for GP. Three populations of
rice, Arabidopsis, and yellow chicken were utilized for model
validation (Table 2). We would explain these procedures in the
following sections.
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Mapping SNPs to Pathways
The latest version of the gene annotation of each considered

species was downloaded from Ensemble (http://www.ensembl.
org) using the biomaRt package (Durinck et al., 2005, 2009) of

the R statistical platform (R Development Core Team, 2016)
(Table 2). Only genes indicated as “protein_coding” by the
“gene_biotype” attribute were considered. Gene boundaries were
extended by 5 kb in both upstream and downstream flanking
regions to include possible regulatory elements. SNPs that were
available for GP were mapped to these genic regions based on
their corresponding physical positions. After the SNP mapping
step, SNP sets were formed for genes with at least one mapped
marker. For genes with only one mapped SNP, the corresponding
haplotype block existed of only this marker. For genes with more
than onemapped SNPs, phased alleles of the corresponding SNPs
were combined into haplotypes with the approach described by
Meuwissen et al. (2014). Briefly, haplotypes were built via the
following steps.

Initialization: For each gene, start with the first SNP j = 1.
Step 1: Include SNP j+ 1 into the haploblock.
Step 2: Determine the number of alleles of the haploblock
defined by these j+ 1 markers across the whole population.
Step 3: Repeat step 1 and step 2 if the number of alleles
remained below a previously chosen threshold restricting the
number of alleles of a haploblock (we used 10 as proposed
by Meuwissen et al., 2014). Otherwise, if the number of
alleles exceeded this threshold, the lastly added SNP was
excluded from the current haploblock and used as the starting
position of the next haploblock. Return the alleles of the
current haploblock and go to the initialization step with the
lastly added SNP to define the next haploblock. Repeat this
procedure until all SNPs on the currently considered gene
were processed.

This approach produced one or more haploblocks with at least
two haplotype alleles per block for each gene. Subsequently,
the genic similarity matrix could be constructed using these
haplotypes.

Genic Similarity Based Relatedness
Matrices
Hickey et al. (2013) introduced three approaches for constructing
haplotype allele similarity matrices. In the first strategy, similarity
between pairs of haplotype alleles were measured as the
proportion of matched loci in current haploblock. The second
strategy took not only the proportion ofmatched loci, but also the
length of matched segments into consideration. For more details
about those two approaches, please refer to the next sections.
Moreover, the allele frequencies were further considered in a
third strategy. The former two strategies were used in this study
to construct allele similarity matrices and further convert into
individual similarity matrices. The third approach was not used
in the present study. Because its performance was not better than
others, and it needs to use the allele frequency, which could not
be estimated accurately from small populations. In the following,
we illustrated the procedures for calculating allele similarity
and individual similarity matrices with a small example. Table 1
showed the genotypes of five individuals and 10 consecutive SNPs
from a certain gene. The SNP genotypes were phased and four
different haplotype alleles were defined by these markers.

The first strategy calculated haplotype similarity by counting
the number of matched SNPs between haplotypes and dividing
by the total number of markers contained in the haplotype. In
a formula form, the haplotype similarity score was calculated as
h1 =

ns
N , where h1 was the similarity score, ns was the number of

matched SNPs between two haplotypes, and N was the number
of SNPs in current haplotype block. For example, hap1 and hap2
in Table 1 shared the same SNP alleles for markers M2, M4, and
M10. The similarity between hap1 and hap2 was calculated as
3/10 = 0.3. The similarity score between a haplotype and itself
equaled to 1. Therefore, similarity matrix of the four haplotypes
shown in Table 1 was calculated asH1.

H1 =









1 0.3
0.3 1

0.4 0.3
0.3 0.8

0.4 0.3
0.3 0.8

1 0.5
0.5 1









TABLE 1 | Genotype matrix of five individuals and 10 consecutive markers from a certain protein coding gene.

Individuals Gamete Haplotypes SNPs mapped to gene

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

id1 Paternal hap 1 1 0 1 1 1 1 0 1 0 0

Maternal hap 4 0 1 1 1 0 0 1 0 1 0

id2 Paternal hap 2 0 0 0 1 0 0 1 0 1 0

Maternal hap 1 1 0 1 1 1 1 0 1 0 0

id3 Paternal hap 3 1 1 1 0 0 0 1 1 0 1

Maternal hap 4 0 1 1 1 0 0 1 0 1 0

id4 Paternal hap 2 0 0 0 1 0 0 1 0 1 0

Maternal hap 2 0 0 0 1 0 0 1 0 1 0

id5 Paternal hap 2 0 0 0 1 0 0 1 0 1 0

Maternal hap 3 1 1 1 0 0 0 1 1 0 1

A haplotype block contains four haplotype alleles is defined by these 10 consecutive markers from a protein coding gene.
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In the second strategy, the measurement of haplotype similarity
took the length of matching segments into account, where
the similarity score increased as the number of consecutive
matching SNPs increased. For certain pairs of haplotypes, the
final similarity was the sum of all matched segments. Within
each segment, the similarity score was calculated as the squared
numbers of matching SNPs. Segments containing only one
matching SNP was scored one. The overall similarity scores were
further standardized by dividing the scores by the maximum of
the similarity scores and taking the square root to ensure values
with the scale of [0,1]. In a formula form, the haplotype similarity

score was calculated as h2 =

√

∑L
l=1 n

2
sl

N2 , where L was the number

of matched segments between pairs of haplotypes, nsl was the
number of matched SNPs in the lth segment, and N was the
number of SNPs in current haplotype block. For example, hap2
and hap4 in Table 1 shared two matching segments, the first
segment contained one marker (M1) and the second segment
contained sevenmarkers (M4∼M10). The similarity scores of the
two segments were 12 = 1 and 72 = 49, respectively. Therefore,
the final similarity between hap2 and hap4 was

√

(1+ 49)/100 =

0.71. The similarity matrix of the four haplotypes in Table 1 was
represented inH2.

H2 =









1 0.17
0.17 1

0.24 0.22
0.30 0.71

0.24 0.30
0.22 0.71

1 0.36
0.36 1









For comparison, a third similarity matrix, where diagonal of the
similar ity matrix were 1 (the similarity between two exactly same
haplotypes) but the off-diagonals were zeros, was constructed.
Similarity matrix for the four haplotypes in Table 1 was shown
in HI.

HI =









1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1









The next step was transferring the haplotype similarity matrix
into individual relatedness matrix. For each pair of individuals,
the similarity scores of the four haplotypes harbored by the
two individuals were extracted from the haplotype similarity
matrices (one of HI, H1, and H2) and the relatedness between
the two individuals was calculated by summing up the pair-
wise haplotype alleles similarity scores among the four haplotype

alleles and divided by two. Let W =

[

hid1Pid2P hid1Pid2M
hid1M id2P hid1M id2M

]

denoted the similarity matrix of the four haplotypes carried by
a pair of individuals (id1 and id2), where subindexes P and M
denoted paternal and maternal haplotype alleles, respectively.
The similarity score between id1 and id2 was calculated as

S =
hid1Pid2P+ hid1Pid2M+hid1Mid2P

+hid1Mid2M
2 . For example, id1 in

Table 1 carried hap1 and hap4 while id2 carried hap2 and hap1.
The similarity scores of these four haplotypes according to

H2 were W =

[

0.17 1
0.71 0.22

]

thus the relatedness between id1

and id2 was calculated as GHAPid1.id2 = (0.17+1+0.71+0.22)
2 =

1.05. Subsequently, according to H2, the relatedness matrix of
individuals shown in Table 1 could be constructed as GHAP.
Relatedness matrices based on other types of haplotype similarity
matrices could be calculated in a similar way.

GHAP =













1.22 1.05
1.05 1.17

0.91 0.88 0.74
0.74 1.17 0.86

0.91 0.74
0.88 1.17
0.74 0.86

1.36 1.01 1.18
1.01 2.00 1.30
1.18 1.30 1.30













The procedures described above constructed the relatedness
matrix for one genic haploblock. In practice, relatedness matrices
based on the other haploblocks could be built through these
procedures and the final genic relatedness matrix was obtained
by averaging over the haploblock relatedness matrices. For
variance components estimation and genomic prediction, the
final relatedness matrix could be easily standardized by dividing
the matrix by the maximum of the elements.

Genomic Prediction Models
The statistical model for GP used in this study was

y = 1nµ + Zg+ e, (1)

where y was a vector of the observations; 1n was a n × 1
vector with all elements equal to one; µ was the overall mean;
Z was the design matrix allocates observations to genetic values;
g ∼ N(0,Kσ 2

g ) was the genetic values; K was the relatedness

matrices; σ 2
g was the variance of genetic values; e ∼ N(0, Iσ 2

e )

was the residuals; Iwas the identity matrix and σ 2
e was the residua

variance.
We compared the newly proposed approaches to the standard

GBLUP (VanRaden, 2008). In GBLUP, the genomic relatedness

matrix was calculated as G = MM′

2
∑m

k=1 pk(1−pk)
, where M was

the minor allele frequency (MAF) adjusted genotype matrix
with elements (0− 2pj), (1 − 2pj), and (2− 2pj) representing

genotypes AA, AB, and BB, respectively; pj was the MAF of the
jth SNP.

For the genic similarity based models, relatedness matrices
were constructed through the procedures described above. These
three genic similarity based haplotype models for genomic
prediction given gene annotation were denoted as GHAPI|GA,
GHAP1|GA, and GHAP2|GA. For comparison, haplotype similarity
based relatedness matrices without gene annotation were
also calculated. Different from the gene annotation guided
approaches, the naïve haplotype models constructed haploblocks
for each chromosome starting from the first SNP and the rest
steps were the same as genic haplotypes (Meuwissen et al.,
2014). The corresponding models without gene annotation were
denoted as GHAPI , GHAP1, and GHAP2, respectively.

For all models, variance components were estimated with the
regress package (Clifford and McCullagh, 2014) in the R platform
and genetic values were obtained by solving the mixed model
equations.
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Assess of Genomic Predictive Ability
Performance of all models were assessed through a 20 times of
five-fold cross validation. Variance components were estimated
in the training population and genetic values of the test
population were predicted via the fitted models. Predictive ability
was calculated as the Pearson’s correlation between the predicted
genetic values and the phenotypic values that pre-adjusted for
fixed effects.

Datasets
Rice

Genotypes and phenotypes of the rice breeding population were
available from the rice diversity panel (https://ricediversity.org)
(Begum et al., 2015; Spindel et al., 2015). Briefly, 315 elite rice
breeding lines from the International Rice Research Institute
(IRRI) irrigated rice breeding program was presented in this rice
dataset. Several important traits such as plant height (PH), flower
time (FLW), and grain yield (YLD) were tested and recorded
in years 2009–2012, including wet and dry seasons each year.
Totally, 58,227 SNPs passed the quality control step and were
remained for further analysis. The annotations of the latest
version of rice genome (Oryza sativa Japonica Group, Build 4.0)
were downloaded from Ensemble via biomaRt (Durinck et al.,
2005, 2009) R package (Table 2).

Arabidopsis

The Arabidopsis population consisted of 349 natural accessions
collected worldwide (Li et al., 2010; Horton et al., 2012; Kooke
et al., 2016). Seeds of all accessions were genotyped with 215K
single nucleotide polymorphisms (SNPs; Li et al., 2010; Horton
et al., 2012). Three replicates of each accession were cultured and
transplanted under the same environmental conditions (Kooke
et al., 2016). Lots of developmental traits were measured on
all individual plants. Traits used for model comparisons in this
study include: leaf area before vernalization (LAbv), leaf area
after vernalization (LAav), flowering time (FT), petiole to leaf
length ratio (PL/LL), petiole length (PL), leaf length (LL), rosette
branching (RB), main stem branching (MSB), plant height at
1st silique (PH1S), total plant height (TPH), relative growth
rate before vernalization (RGRbv), and relative growth rate after
vernalization (RGRav).

Yellow Chicken

The yellow chicken population used in this study was derived
from a Chinese indigenous breed and maintained by Wens
Nanfang Poultry Breeding Co. Ltd. (Xinxing, P.R. China) (Zhang
et al., 2017; Ye et al., 2018). The population consisted of 435

males, which were the 3rd batch of the 25th generation of the
population. These birds came from a mixture of full sib and half
sib families with the mating of 30 males and 360 females from
the 24th generation. After hatching, all birds were maintained
in a closed building under controlled environmental conditions
and provided with a standard diet till the end of 4 weeks of age.
These birds were randomly allocated to three pens for growth
performance test from 5 to 13 weeks of age, providing food and
water ad libitum. After the growth test, all birds were slaughtered
at the age of 91 days. Seventeen traits including average daily gain
(ADG), average daily feed intake (ADFI), residual feed intake
(RFI), and intestine length (IL) were used for model validation in
this study. All individuals were genotyped with the commercially
available 600K Affymetrix Axion HD genotyping array using
DNA extracted from blood samples. The phenotypes were pre-
adjusted for the fixed pen effect via the flowing statistical model:

y = Xb+ Zu+ e,

where y was a vector the raw phenotypes; X and Z were design
matrices; bwas a vector of the fixed pen effects; u∼N(0,Gσ 2

u ) was
the vector of genetic values; G was the SNP derived relatedness
matrix (VanRaden, 2008); σ 2

u was the additive genetic variance;
e∼N(0, Iσ 2

e ) was the vector of residuals; σ 2
e was the residual

variance and I was the identity matrix. The adjusted phenotypes

Y = y − Xb̂ were used as model response in the genomic
prediction models.

RESULTS

Predictive Ability in the Rice Population
Predictive ability of all models in the rice breeding population
was shown inTable 3 and Figure S1. Overall, the gene annotation
based haplotype models (∼|GA models) outperformed GBLUP
and the naïve haplotype models to some extent. Among the three
gene annotation based haplotype models, GHAPI |GA, where an
identity matrix was used to measure similarity between pairs
of haplotype alleles, performed best in respect of predictive
ability. For plant height,GHAPI |GA showed the highest predictive
ability. Compared toGBLUP, 4.73 and 6.43% extra accuracy were
obtained by incorporating gene annotation in a haplotype model
for dry season (DS_PH) and wet season (WS_PH), respectively;
GHAPI |GA improved 2.21% (DS_PH) and 3.43% (WS_PH) of the
predictive ability compared to the naïve haplotype model GHAPI .
For flowering time, GHAPI |GA was 5.62 and 7.07% higher than
GBLUP in respect of predictive ability in dry season and wet
season, respectively; GHAPI |GA outperformed GHAPI by 1.62 and

TABLE 2 | Datasets description.

Datasets # of observations # of markers Reference genome # of mapped SNPs # of represented genes # of haplotypes

Rice 315 58,227 Oryza sativa Japonica Group (Build 4.0) 44,831 22,509 25,453

Arabidopsis 349 208,481 Arabidopsis thaliana (assembly TAIR10.1) 193,646 27,169 167,837

Chicken 435 408,715 Gallus gallus (assembly GGA 5) 233,417 17,686 45,470

#Denoted “the number.”
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TABLE 3 | Pearson’s correlation between observed and predicted phenotypes in the rice breeding population (Mean ± SE).

Traits GBLUPa GHAPI
b GHAPI|GA

c GHAP1
b GHAP1|GA

c GHAP2
b GHAP2|GA

c

DS_PH 0.486 ± 0.007 0.498 ± 0.007 0.509 ± 0.007 0.493 ± 0.007 0.501 ± 0.007 0.498 ± 0.007 0.503 ± 0.007

DS_FLW 0.534 ± 0.005 0.555 ± 0.005 0.564 ± 0.005 0.530 ± 0.005 0.552 ± 0.005 0.540 ± 0.005 0.553 ± 0.005

DS_YLD 0.289 ± 0.006 0.285 ± 0.006 0.313 ± 0.006 0.286 ± 0.006 0.312 ± 0.006 0.286 ± 0.006 0.311 ± 0.006

WS_PH 0.482 ± 0.006 0.496 ± 0.005 0.513 ± 0.005 0.489 ± 0.006 0.507 ± 0.005 0.492 ± 0.006 0.509 ± 0.005

WS_FLW 0.467 ± 0.007 0.487 ± 0.006 0.500 ± 0.006 0.465 ± 0.006 0.491 ± 0.006 0.474 ± 0.006 0.492 ± 0.006

WS_YLD 0.258 ± 0.007 0.242 ± 0.007 0.268 ± 0.008 0.264 ± 0.007 0.282 ± 0.008 0.256 ± 0.007 0.280 ± 0.008

For each trait (row), the values in boldface indicate the best prediction among all models. DS, dry season; WS, wet season; PH, plant height; FLW, flower time; YLD, grain yield.
aGenomic best linear unbiased prediction (VanRaden, 2008).
bHaplotype similarity based models without gene annotation. HAPI, HAP1, and Hap2 are differ on the way of evaluating haplotype similarity.
c∼|GA denoted gene annotation guided GP models.

2.67% in DS_FLW and WS_FLW, respectively. For grain yield,
GHAPI |GA showed the highest predictive ability in DS_YLD,
which was 8.30 and 9.82% higher than GBLUP and GHAPI ,
respectively; GHAP1|GA showed the best predictive ability in
WS_YLD, which was 9.30% and 16.53% higher than GBLUP and
GHAPI , respectively.

Predictive Ability in the Arabidopsis
Population
Table 4 and Figure S2 showed the predictive ability in the
Arabidopsis population. Overall, gene annotation based
haplotype models outperformed GBLUP and the naïve haplotype
models in 8 out of 12 traits. For Laav, PH1S,MSB, FT, and RGRbv,
GHAPI |GA showed the best performance in respect of predictive
ability and outperformed GBLUP by 5.47, 13.61, 5.59, 3.58, and
26.67%, respectively. For LL, PL, and RGRav, GHAP1|GA showed
the best performance and outperformed GBLUP by 0.56%, 1.98%
and 9.78%, respectively. However, GHAPI , GHAP1, and GHAP2,
in which gene annotation information was not integrated,
outperformed GBLUP and the gene annotation based haplotype
models (∼|GA) for the traits RB, PL/LL, and TPH.

Predictive Ability in the Yellow Chicken
Population
Table 5 and Figure S3 showed the predictive ability in the
yellow chicken population. The haplotype models benefit from
gene annotation information in six (MTW, MTMW, RFI, EW,
DW, and BW45) out of 17 traits, where gene annotation
models outperformed GBLUP and naïve haplotype models by
0.40∼3.43%. For ADG, ADFI, EWG, BMW, AFW, and IL,
GBLUP showed the best performance, while haplotype models
with or without gene annotation did not show any extra gain in
respect of predictive ability. For RFI and FCR, GHAPI was slightly
better than GBLUP.

DISCUSSION

In this study, SNPs were mapped to protein coding genes
according to the physical positions and used for haplotype
construction. Different from our previous study (Gao et al.,
2017), in which genic region haplotypes were encoded in both
a numerical and a categorical strategy, here we constructed

individual similarity matrices from the haplotype allele similarity
matrices via strategies described by Hickey et al. (2013). Three
strategies were utilized to calculate similarity scores between
haplotype alleles. Individual similarity matrices were constructed
by averaging the haplotype similarity among all genes or genome
regions and used in the genetic evaluations.

Generally, the gene annotation based haplotype models
proposed in this study potentially improved the genomic
predictive ability. In the three datasets of rice, Arabidopsis, and
yellow chicken, gene annotation based models improved the
predictive ability in several traits, especially traits in the rice
breeding population (Table 3 and Figure S1) and the Arabidopsis
population (Table 4 and Figure S2), compared to GBLUPmodel.
Results in the rice dataset showed that incorporating gene
annotation in a haplotype model could improve the predictive
ability. However, the extent of improvement was slightly lower
compared to the categorical models in Gao et al. (2017). The
phenomenon could be explained by two possible reasons. Firstly,
non-additive effects played important roles in controlling the
plant traits (Shen et al., 2014). Dominance and epistasis were
additionally considered in the previous gene annotation based
categorical models (Gao et al., 2017). The impact of non-
additive effects on predictive ability could also be seen when
comparing the performance of haplotype allele dosage models
with categorical epistasis models in Gao et al. (2017). Secondly,
the haplotype allele similarity scores could more or less reflect
the identical by decent (IBD) between SNP alleles and thus better
in measuring relatedness between pairs of individuals (de Roos
et al., 2011). However, the advantages on similarity measuring
were not always transferred into the predictive ability (Hickey
et al., 2013).

However, integrating gene annotation just slightly improved
the predictive ability of several traits and did not show any
improvement in the rest in the yellow chicken population
(Table 5 and Figure S3). The possible reasons were the frequent
recombination in the chicken genome (Fulton et al., 2016) and
the underlying trait genetic architecture. Generally speaking,
haplotype models were more powerful on reflecting real
relatedness between individuals. However, the advantages of
haplotype derived relatedness matrices could be expected
only when haplotypes were better in tracing the underlying
recombination events than SNPs. Previous studies have found

Frontiers in Genetics | www.frontiersin.org 6 August 2018 | Volume 9 | Article 364

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Gao et al. Genome-Annotation-Guided Genomic Prediction

TABLE 4 | Pearson’s correlation between observed and predicted phenotypes in the Arabidopsis population (Mean ± SE).

Traits GBLUPa GHAPI
b GHAPI|GA

c GHAP1
b GHAP1|GA

c GHAP2
b GHAP2|GA

c

Labv 0.163 ± 0.009 0.161 ± 0.009 0.170 ± 0.009 0.164 ± 0.009 0.176 ± 0.009 0.166 ± 0.009 0.174 ± 0.009

Laav 0.201 ± 0.006 0.205 ± 0.006 0.212 ± 0.005 0.200 ± 0.006 0.209 ± 0.006 0.201 ± 0.006 0.208 ± 0.006

PH1S 0.191 ± 0.005 0.196 ± 0.005 0.217 ± 0.005 0.190 ± 0.005 0.213 ± 0.005 0.191 ± 0.005 0.211 ± 0.005

TPH 0.185 ± 0.007 0.183 ± 0.007 0.175 ± 0.007 0.186 ± 0.007 0.181 ± 0.007 0.185 ± 0.007 0.179 ± 0.007

MSB 0.340 ± 0.004 0.346 ± 0.004 0.359 ± 0.004 0.337 ± 0.004 0.346 ± 0.004 0.337 ± 0.004 0.348 ± 0.004

RB 0.281 ± 0.006 0.289 ± 0.007 0.283 ± 0.007 0.281 ± 0.007 0.277 ± 0.006 0.282 ± 0.006 0.276 ± 0.006

LL 0.356 ± 0.006 0.355 ± 0.005 0.353 ± 0.005 0.356 ± 0.006 0.358 ± 0.006 0.358 ± 0.006 0.357 ± 0.005

PL 0.303 ± 0.006 0.301 ± 0.006 0.301 ± 0.005 0.305 ± 0.006 0.309 ± 0.006 0.306 ± 0.006 0.307 ± 0.006

PL/LL 0.255 ± 0.009 0.249 ± 0.009 0.237 ± 0.008 0.258 ± 0.010 0.247 ± 0.008 0.257 ± 0.009 0.245 ± 0.008

FT 0.643 ± 0.003 0.653 ± 0.003 0.666 ± 0.003 0.642 ± 0.003 0.658 ± 0.003 0.644 ± 0.003 0.660 ± 0.003

RGRbv 0.045 ± 0.007 0.050 ± 0.007 0.057 ± 0.007 0.042 ± 0.007 0.054 ± 0.008 0.042 ± 0.007 0.054 ± 0.008

RGRav 0.184 ± 0.006 0.179 ± 0.006 0.194 ± 0.006 0.184 ± 0.006 0.202 ± 0.006 0.183 ± 0.006 0.199 ± 0.006

For each trait (row), the values in boldface indicate the best prediction among all models. LAbv, leaf area before vernalization; LAav, leaf area after vernalization; FT, flowering time; PL/LL,

petiole to leaf length ratio; PL, petiole length; LL, leaf length; RB, rosette branching; MSB, main stem branching; PH1S, plant height at 1st silique; TPH, total plant height; RGRbv, relative

growth rate before vernalization; RGRav, relative growth rate after vernalization.
aGenomic best linear unbiased prediction (VanRaden, 2008).
bHaplotype similarity based models without gene annotation. HAPI, HAP1, and Hap2 are differ on the way of evaluating haplotype similarity.
c∼|GA denoted gene annotation guided GP models.

TABLE 5 | Pearson’s correlation between observed and predicted phenotypes in the yellow chicken population (Mean ± SE).

Traits GBLUPa GHAPI
b GHAPI|GA

c GHAP1
b GHAP1|GA

c GHAP2
b GHAP2|GA

c

ADG 0.351 ± 0.005 0.344 ± 0.005 0.342 ± 0.004 0.345 ± 0.005 0.345 ± 0.004 0.345 ± 0.005 0.345 ± 0.004

ADFI 0.440 ± 0.004 0.437 ± 0.004 0.438 ± 0.004 0.436 ± 0.004 0.439 ± 0.004 0.437 ± 0.004 0.440 ± 0.004

MTW 0.322 ± 0.005 0.315 ± 0.004 0.328 ± 0.004 0.314 ± 0.005 0.325 ± 0.004 0.316 ± 0.005 0.326 ± 0.004

MTMW 0.322 ± 0.005 0.315 ± 0.004 0.328 ± 0.004 0.314 ± 0.005 0.325 ± 0.004 0.316 ± 0.005 0.327 ± 0.004

RFI 0.464 ± 0.005 0.468 ± 0.005 0.468 ± 0.005 0.465 ± 0.005 0.466 ± 0.005 0.467 ± 0.005 0.467 ± 0.005

FCR 0.288 ± 0.004 0.289 ± 0.004 0.274 ± 0.004 0.286 ± 0.004 0.271 ± 0.004 0.288 ± 0.004 0.273 ± 0.004

EWG 0.257 ± 0.009 0.253 ± 0.009 0.256 ± 0.009 0.253 ± 0.009 0.256 ± 0.008 0.254 ± 0.009 0.256 ± 0.009

EW 0.253 ± 0.009 0.249 ± 0.010 0.253 ± 0.009 0.250 ± 0.010 0.254 ± 0.009 0.250 ± 0.010 0.254 ± 0.009

BMW 0.144 ± 0.011 0.142 ± 0.011 0.138 ± 0.011 0.144 ± 0.011 0.142 ± 0.011 0.143 ± 0.011 0.141 ± 0.011

BMP 0.128 ± 0.011 0.128 ± 0.011 0.123 ± 0.011 0.130 ± 0.011 0.128 ± 0.011 0.129 ± 0.011 0.126 ± 0.011

DW 0.175 ± 0.010 0.172 ± 0.010 0.176 ± 0.010 0.175 ± 0.010 0.181 ± 0.009 0.174 ± 0.010 0.179 ± 0.010

DP 0.128 ± 0.011 0.128 ± 0.011 0.123 ± 0.011 0.130 ± 0.011 0.128 ± 0.011 0.129 ± 0.011 0.126 ± 0.011

AFW 0.114 ± 0.009 0.108 ± 0.009 0.104 ± 0.009 0.112 ± 0.009 0.110 ± 0.009 0.111 ± 0.009 0.108 ± 0.009

AFP 0.128 ± 0.011 0.128 ± 0.011 0.123 ± 0.011 0.130 ± 0.011 0.128 ± 0.011 0.129 ± 0.011 0.126 ± 0.011

GW 0.067 ± 0.011 0.070 ± 0.010 0.066 ± 0.011 0.071 ± 0.010 0.068 ± 0.011 0.070 ± 0.011 0.067 ± 0.011

IL 0.045 ± 0.005 0.041 ± 0.005 0.037 ± 0.005 0.043 ± 0.005 0.040 ± 0.005 0.043 ± 0.005 0.039 ± 0.005

BW45 0.307 ± 0.005 0.306 ± 0.005 0.309 ± 0.005 0.303 ± 0.005 0.302 ± 0.005 0.304 ± 0.005 0.304 ± 0.005

For each trait (row), the values in boldface indicate the best prediction among all models. ADG, Average daily gain; ADFI, Average daily feed intake; MTW, Mid-term body weight; MTMW,

Mid-term metabolic body weight; RFI, Residual feed intake; FCR, Feed conversion rate; EWG, Eviscerated weight with giblet; EW, Eviscerated weight; BMW, Breast muscle weight;

BMP, Breast muscle percentage; DW, Drumstick weight; DP, Drumstick percentage; AFW, Abdominal fat weight; AFP, Abdominal fat percentage; GW, Gizzard weight; IL, intestine length;

BW45, body weight at 45 day.
aGenomic best linear unbiased prediction (VanRaden, 2008).
bHaplotype similarity based models without gene annotation. HAPI, HAP1, and Hap2 are differ on the way of evaluating haplotype similarity.
c∼|GA denoted gene annotation guided GP models.

extensive diversity and large number of recombination hotpots
in the chicken genome (Fulton et al., 2016), which shorten the
real haplotype blocks and thus linkage disequilibrium based
approaches weremore suitable for haplotype blocks constructing.
In this study, instead of considering linkage disequilibrium,
we implemented a strategy similar to Meuwissen et al. (2014),

where maximum number of haplotype alleles was used as
threshold when adding SNPs to haplotypes, for haploblock
constructing. This approach might not be suitable for the
species that extensive diversity and abundant recombination
existed in the genome. Therefore, linkage disequilibrium based
haploblock construction methods (Cuyabano et al., 2015; Da,
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2015) should be suggested for such species. Nevertheless, the
main focus of this study was to provide methods of building
genic similarity relationship matrices, though the haplotype
could be defined through various rules. Even the setting of
threshold of the number of haplotype alleles harbored in each
haploblock was relatively arbitrary, it was an easy way to build
haplotypes and good at controlling the number of variables
within each haploblock. Actually, LD information was also
reflected indirectly by restricting the maximum of haplotype
alleles in certain haploblock, since lower LD among consecutive
SNPs would increase the number of haplotype alleles rapidly
when adding more SNPs to the haploblocks. Moreover, to our
knowledge, the LD based haplotype construction method might
have problems on inadequate accurate estimations of LD level
in small populations and difficulty in selecting LD threshold for
combining consecutive SNPs into haplotype.

In this study, the relatedness matrices used for genetic
evaluation were constructed by averaging the relatedness based
on individual genes, which meant that weights were assigned
equally among genes. The underlying assumption of this
approach was that all genes contributed equally to the relatedness
matrices and thus to the traits. However, abundant accumulative
biological knowledge had shown that gene effects were different
among traits. Moreover, previous studies had found that genomic
prediction models could be improved when genetic architecture
was considered by assigning different weights to SNPs (Zhang
et al., 2010; Ober et al., 2012; Gao et al., 2015). Therefore, similar
approaches to construct trait specific relatedness matrices by
weighting genes differently (Zhang et al., 2010; Ober et al., 2012;
Gao et al., 2015) in the paradigm of genic similarity genomic
prediction models are worth trying in the future.

Overall, we proposed a new strategy to construct relatedness
matrices on the gene level by transferring the genic haplotype
similarity scores into individual similarity matrices. New
explanatory variables on the gene level were derived from
phased SNPs and through which the prediction model was
moved one step further from SNPs to biologically functional
units. The genic similarity matrices based model showed
benefit in respect of predictive ability for many traits in
the studied populations. However, predictive ability was not
improved in some traits, especially in the yellow chicken
population, which indicated that the newly proposed approach

still had rooms for improvement to adapt different traits or
populations. The uniform weight assigned among genes when

constructing the relatedness matrices and the insensitivity to
genome recombination rate (the strategy for genic haplotype
construction) could be the two major limitations of the new
approach. Nevertheless, the idea of constructing relatedness
matrices on the biologically functional units potentially improved
predictive ability.
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