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Abstract

Biomarker host genetic signatures are considered key tools for improved early diagnosis of tuberculosis (TB) disease
(development). The analysis of gene expression changes based on a limited number of genes or single study designs,
however, may not be sufficient for the identification of universal diagnostic biomarker profiles. Here we propose that
biological pathway and process based analyses from multiple data sets may be more relevant for identification of key
pathways in TB pathogenesis, and may reveal novel candidate diagnostic TB biomarkers. A number of independent
genome-wide gene expression studies have recently been performed to study expression of biomarkers for TB disease. We
have integrated the results from these independent studies and performed pathway- as well as biological process-based
analysis on the total data set. Interestingly, IFNa/b signalling is not the single dominant pathway in the analysis of the total
dataset, but combined, functional, analysis of biomarkers suggests a strong dominant role for myeloid cell involvement in
inflammation.
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Introduction

Biomarkers are defined as: ‘‘characteristics that can be

objectively measured and evaluated as an indicator of a normal

biological process, a pathogenic process, or a (pharmacologic)

response to a therapeutic intervention’’ [1]. Biomarkers could be

of great significance in the battle against tuberculosis (TB),

especially in the development of better diagnostics and new

vaccines [2]. A number of new TB vaccine candidates have been

developed over the past decade and many of them are currently in

early stage clinical development. The next major step will be to

test the protective efficacy of these new candidates, which will

present a major challenge because of the nature of TB infection

and its progression to disease: in most individuals, infection with

Mycobacterium tuberculosis (Mtb) results in latent infection that can

persist for decades, with active disease development in about 3–

10% of infected individuals, mostly within the first 2 years post

infection [3,4]. The low incidence rates of TB disease require large

and lengthy clinical vaccine efficacy trials in TB endemic areas to

achieve the statistical power needed to demonstrate vaccine

induced protection against disease development.

As an alternative to using clinical endpoints, scientists are

urgently searching for biomarkers that predict whether individuals

are (long-term) protected or at (increased) risk for disease

development. Such biomarkers would allow assessment of vaccine

efficacy at earlier stages and with smaller groups of individuals,

and allow comparison of multiple TB vaccine candidates in

efficacy studies. Thus, the demonstration of TB vaccine efficacy

and biomarker efficacy are both of eminent importance. Such

biomarkers would also facilitate licensure of new efficacious TB

vaccines in different age groups (infants, children, adults) as well as

ethnically and geographically different populations (particularly

Africa and Asia) without having to perform further large scale

efficacy testing.

Biomarker Challenges
Identification of biomarkers of protection against TB disease is

challenging because there is no gold standard of infection or

protection. Our understanding of what is strictly required for host

protection from TB disease is incomplete, which hampers vaccine

development [2,2,5]. Moreover, validation of biomarkers against

clinical endpoints is difficult because in TB clinical endpoints

cannot always be clearly defined. For the curative response to

treatment time to sputum conversion is frequently used, but for

protection against disease development no gold standard clinical

definition is available. In infant BCG vaccination studies,

protection has been defined as known exposure to TB within the

household without the development of disease within 2 years

following exposure [6]. This definition is probably suitable for

infants that experience most exposure within the household,
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however, for most (adult) people it is difficult to trace exposure to

TB and thus disease-free time post exposure [7]; moreover, adults

may more often be re-exposed during the 2 year follow up period,

confounding estimations of disease incidence. Clinical endpoints

should be comparable among studies to allow ranking and

prioritization of biomarkers [2]. An additional complexity is that

new candidate TB vaccines are quite different by nature, e.g. live

vaccines compared to subunit vaccines or priming compared to

boosting vaccines, which each may induce protection in a different

manner and may thus require different sets of biomarkers to

evaluate vaccine induced protection [2].

Next to biomarkers of protection against TB disease develop-

ment, also biomarkers predicting disease risk are extremely

important in vaccine trials: these may identify individuals at risk

at an early stage and thus help to significantly shorten follow-up

times and numbers. Biomarkers of early TB disease development

may be easier to identify since in contrast to protection, TB disease

can be demonstrated using microbiological diagnosis (bacterial

staining or culture, GeneXpert MTB/RIF), X-ray or made highly

likely based on clinical manifestations. To identify biomarkers of

disease-risk, patients can be compared to various other groups,

including those with latent TB, treated TB patients or patients

with other inflammatory or infectious diseases. Early identification

of individuals at risk of developing TB disease will help reducing

the occurrence of contagious pulmonary TB and thus limit disease

transmission.

Biomarkers will thus be critical tools in the battle against TB.

However, a number of issues need to be taken into consideration

when comparing biomarker studies. First, geographic or ethnic

variations may significantly impact on immune responses towards

TB due to a variety of factors which include: host genetic factors;

the presence of environmental microbes like helminths or HIV

[8,9] (Table 1); exposure to/infection with immunomodulatory

(environmental) non-tuberculous mycobacteria; previous BCG

vaccination; Mtb exposure intensity and frequency; reinfection

rates; Mtb strain heterogeneity etc. Concomitant HIV infection

may predominantly affect biomarkers derived from the CD4+ T

cell compartment. In addition, metabolic conditions may influence

immunity and biomarker signatures following vaccination or

infection. For example, obesity and type 2 diabetes mellitus (T2D)

both result in continuous low-grade systemic inflammation,

including cytokine and chemokine production, switching of

macrophage subsets from anti-inflammatory Mf2 to pro-inflam-

matory Mf1 [10,11]. The significance of T2D for TB has emerged

from epidemiological data and prompted WHO to initiate

combined care for TB and T2D [12–15]. Patients with T2D

have a 3-fold increased risk to develop TB disease, and

achievement of negative sputum cultures as a measure of

treatment success takes longer as compared to non-T2D TB

patients [12–15]. Also low body mass indexes and malnutrition are

significant risk factors for the development of TB disease,

indicating that nutritional status is an important factor for TB

disease, which may significantly affect measurable biomarker

profiles [14,16].

Secondly, the type of material used for biomarker determination

may greatly determine the type of biomarkers that can be

detected. Whole blood contains large numbers of neutrophils,

which are present at a very low frequency in isolated PBMCs, and

which seem to be cells that express promising TB biomarkers [17–

20]. On the other hand, the strong signal from these large

numbers of neutrophils in whole blood may obscure highly

relevant and specific gene expression profiles from smaller

populations, e.g. T-cells, B-cells, monocytes or other relatively

rare populations. Furthermore, it is recognized that the isolation of

cells from whole blood may alter their gene expression profiles,

which is further enhanced if blood processing is delayed for several

hours [21–23]. Therefore, biomarkers should preferably be

analysed on the same type of material over different studies and

processing time should be standardized to reduce variation

(Table 1) [22–25]. These differences in cell populations may be

reflected in differential expression of particular biomarkers, and

thus not only reflect the response to TB but also indicate changes

in comorbidities. Finally, biomarkers for different forms of disease

may be different, e.g. pulmonary vs. extrapulmonary TB, partly

because samples obtained from peripheral blood, sputum or

pleural fluid have different cellular compositions.

TB biomarkers and other diseases
The use of biomarkers to predict TB disease progression (or

ultimately vaccine efficacy or protection) is complicated by the

nature of these markers. Most TB biomarkers or biomarker-

signatures identified so far are indicators of general (intracellular)

infection and subsequent immune activation, rather than highly

specific for TB disease. There is a large overlap with biomarkers

reported in other inflammatory diseases including SLE, sarcoid-

osis, melioidosis and Still’s disease [17,26,27], as well as following

Yellow Fever vaccination [28]. With the exception of sarcoidosis

and melioidosis, most of these diseases can be discriminated rather

easily from TB based on clinical symptoms or examination in

combination with existing diagnostics.

It is unsurprising that TB biomarker profiles overlap signifi-

cantly with other infections and inflammatory conditions, since

most pathways represent genes associated with immune activation

and inflammation. At the cellular level, infection with any

pathogen may trigger activation of innate cells through pattern

recognition receptors (TLRs, NLRs etc.), resulting in upregulation

of markers and cytokines/chemokines irrespective of the exact

nature of the pathogen. Following specific recognition by the

adaptive immune system, this will similarly result in activation of

innate cells, initiating a modular response to eliminate the

Table 1. Factors that may affect TB Biomarkers.

patient age

geographic origin/
ethnicity

environmental exposure (eg environmental
mycobacteria)

previous vaccinations (eg BCG during
childhood)

co-infections (eg HIV, Helminths)

metabolic state (malnutrition, obesity, T2D)

use of immunomodulating drugs (eg immune
suppression)

pathogen strain (eg MDR, Beijing)

route of entrance (eg vaccine vs natural
infection)

site of disease (pulmonary vs extrapulmonary)

time since infection/stage of disease
progression

sample type of sample (eg whole blood, PBMCs, fluid from disease site)

time between collection and
fixation

sample handling (eg isolation procedures, temperature)

doi:10.1371journal.pone.0073230.t001
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invading pathogen. Thus, it is to be anticipated that a large

number of biomarkers should be shared between disease processes

that rely on similar host-module responses.

Global TB Biomarker Signatures
Multiple studies have analysed production of single cytokines or

chemokines, or the expression of cell surface markers at the

protein or mRNA level as biomarkers for TB disease. More

recently, single candidate biomarkers were combined into

multicomponent signatures to increase power and specificity.

Advanced statistical methods were applied to select genes from

(global) transcriptomic datasets and to compile signatures includ-

ing the smallest possible number of genes to retain good predictive

values. Such signatures appear to be more powerful biomarkers

than individual genes or proteins [19,29,30].

Recently, multiple groups have reported global gene expression

analysis in different cohorts of TB patients with active disease

(Table 2). In these studies, signaling through the type I interferon

(Interferon alpha/beta (IFNa/b)) pathway was frequently reported

as important in TB disease, although the molecules identified as

differentially expressed or produced were not identical between all

different cohorts or studies. Because the pathways involved are

clearly related and overlapping, we decided to analyse the TB

biomarker signatures emerging from these genome wide tran-

scriptomic studies as a group, using a ‘‘helicopter’’ perspective by

jointly analyzing data from all published genome wide expression

studies on TB disease to date. A helicopter view over all data may

allow comparative analysis of all available data rather than a

comparison of individual pathways identified by each study. Since

all data are assessed to be equally important the distant view from

the helicopter should allow identification of major players in the

TB disease development. This should help to better characterize

the key processes and pathways involved rather than identifying

markers which might be relatively unique to certain study settings,

determined e.g. by the specific population sampled, time and type

of sampling, and other possible confounders discussed above. We

reasoned that the processes or pathways identified by such an

analysis should be more reliable and generic, and thus may

provide a platform for further TB biomarker exploration and

evaluation in a global context.

Methods

Data input
Over 6 years eight independent genome wide expression studies

have been performed on blood from patients with active TB

disease (Table 2) [17–20,26,29,31,32]. Individuals with active TB

disease were compared to different control populations, including:

patients longitudinally followed during treatment; healthy (infect-

ed) individuals; and patients with other (infectious) diseases

(Table 2). Patients originated from different geographical regions,

including Europe, Asia, Saharan and Sub-Saharan Africa. Gene

expression data were analysed within each study, mostly involving

pathway analysis to determine the most dominant signaling

pathways within that cohort in comparison to their specific

control population. Gene signatures were determined that could

serve as biomarkers to discriminate patients with active TB disease

from the respective control population included. A number of

studies also included pathway ontology analysis to decipher the

potential cell subsets or cellular processes that were most different

between TB disease and control populations.

Here, we combined all genes identified by each of the eight

independent global gene expression studies to discriminate

between patients with active TB disease and controls, into a

single data set, allowing more comprehensive analysis of gene

expression changes during TB disease. All genes identified by each

of the individual studies as differentially expressed between TB

disease and their respective control populations were included in

this analysis. Gating criteria for gene selection were determined by

the individual authors and their selection of genes differentially

expressed in TB disease versus their respective control population

was added into our study, irrespective whether the genes were up

or downregulated. A total gene-set of 409 genes was the result of

combining all 8 individual studies.

Analysis
The total gene-set (409 genes) from all studies mentioned in

Table 2 was analysed functionally using 3 different platforms:

a. Modular analysis: grouping based on similar expression

kinetics over multiple diseases/processes as described by

Chaussabel et al [33]. We have used the updated version of

the modules that is available at: http://www.biir.net/

public_wikis/module_annotation/G2_Trial_8_Modules.

Genes (both formal gene names according to genecards.org

and alternative names as specified in Table S1) were searched

within the modules and indicated in Table S1. Colour coding

was performed based on the name of the modules and thus all

modules named ‘interferon’ or ‘inflammation’ received the

same colour.

b. Molecular interactions: association of genes into ‘integrated

pathway analysis’ (IPA), including analysis of canonical

pathways involved using IngenuityTM platforms, available

at: www.ingenuity.com. All 409 genes were inserted into

Ingenuity integrated pathway analysis and network generation

was performed to search for defined molecular interactions

between genes (gene products). Results were visualized as

networks (Figure 1) and ranked as canonical pathways

involved (Table 3).

c. Biological pathways: Gene Set Enrichment Analysis (GSEA)

[34]. Genes were tested against the ‘Molecular signature

Database’ (MsigDB, http://www.broad.mit.edu/gsea/

msigdb) C2 collection (4850 gene sets). All 409 genes were

compared to the database of 4850 known datasets to search

for the datasets with the highest overlap in gene-expression

profiles and thereby to identify processes or diseases that

mimic our set of genes derived from TB disease patients

(Table 4).

Results and Discussion

Pathway analysis of state-of-the art Biomarker data
The combination of individual markers from these 8 indepen-

dent studies (table 2) [17–20,26,29,31,32], yielded 409 genes

associated with TB disease, 39 of which were identified by more

than 1 independent study. All 409 genes are summarized in

Table S1 and include a reference to the original studies that have

identified these genes as well as the number of studies that

identified that particular gene. All genes identified by more than

one study are separately analysed in Figure 3.

Modular analysis. Categorizing individual genes is a useful

tool to obtain insights in relative representations of functional

groups in the dataset. A number of independent studies have used

the modular classification described by Damian Chaussabel [33],

which is based on the assumption that the probability for multiple

transcripts to follow a complex pattern of expression across dozens

of conditions only by chance is low and such sets of genes should

A Helicopter Perspective on TB Biomarkers
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therefore constitute coherent and biologically meaningful tran-

scriptional units. He used microarray based gene expression

profiles from a number of diseases and grouped genes according to

their concordance in expression profiles [33]. Pubmed searches

were done to identify module functional associations, resulting in

rather broad, cell type based allocations in particular as a

consequence of using PBMCs as source material. Conceptually

the modular framework is very elegant and expected to give

insights in processes that are strongly enriched within a gene

expression data set. However, the number of genes that can be

grouped into the modules initially was limited. Recently, a novel

version of these modules was published, which is now based on

Illumina microarray platforms and contains a larger number of

genes (publically available at: http://www.biir.net/public_wikis/

module_annotation/G2_Trial_8_Modules). Also the number of

modules was greatly expanded in this new version compared to the

previous version [33]. All 409 genes in our current data set were

annotated according to the latest version of the modules (web

publication date August 2012) (Table S1). 371/409 (90.7%) genes

in the combined dataset were retrieved and assigned to modules

(Table S1). However, the majority of genes (195/371 or 52.6%)

were allocated to modules without functional assignment (unde-

termined/not determined), resulting in only 176/409 (43.0%) of

genes with a functional classification (Table S1, Figure 2). Two

modules are highly represented in the dataset: 68/176 (36.6%) of

the allocated genes belong to the inflammatory signature and 36/

176 (20.5%) genes belong to the interferon related signature.

Genes identified in more than 1 independent studies also

predominantly represented patterns of inflammation (9/39; 23%)

and interferon related pathways (7/39; 17.9%) (Figure 3).

The modular analysis as described above thus hints towards a

prominent role for inflammation and interferon signaling in TB

disease, as was also described by most individual studies. The

disadvantage of the modular data analysis is the limited relation of

gene sets within a module to specific functional capacities, the

relative lack of sensitivity for small changes in gene expression

profiles, mostly because the data sets used to annotate the modules

were all derived from PBMCs, with their particular cellular

composition, and did not include specialized cell types, or

specifically activated pathways. For example, monocytes and

macrophages only represent a low proportion of PBMCs (5–10%)

and thus specific monocyte activation pathways may not be

recognized by the modular annotation.

Molecular Interactions. Ingenuity based pathway analysis

revealed highly significant overlap with 92 canonical pathways

with p,0.001 and a total of 196 canonical pathways p,0.05. To

select the most important pathways within our dataset we defined

and applied filter criteria on the 92 canonical pathways with the

highest significance. First, pathways were excluded if they were

smaller than 50 genes; secondly, pathways were excluded if fewer

than 10 out of the total of 409 gene dataset mapped in that

pathway; and thirdly, we only considered pathways in which our

genes represented at least 10% of the total gene-set in that

pathway. This resulted in 36 pathways that were significantly

abundant in our data set of 409 genes (Table 3, Figure 2).
Biological pathways. Gene Set Enrichment Analysis

(GSEA) [34] determines whether there is significant overlap or

enrichment of genes in published biological pathways with genes

in a query list. To evaluate the degree of enrichment the GSEA

method calculates an Enrichment score (ES) and False Discovery

Rate (FDR). We tested our set of 409 genes against the Molecular

signature Database C2 collection (4850 gene sets) collected from

various sources such as online pathway databases, publications in

PubMed, and knowledge of domain experts. In the GSEA analysis

230 gene sets were returned with a significant enrichment score

(ES) although only 15 of these gene sets were significant at an FDR

of ,5% (Table 4, Figure 2).

Pathway and process based analysis
TREM1 signaling pathway. The Ingenuity canonical path-

way overlapping the combined dataset with highest significance

level was ‘TREM1 signaling’ (Table 3). Genes that comprise the

TREM1 canonical pathway are depicted in Table 5, in addition

genes identified in our dataset are indicated. The dataset overlaps

with TREM1 signaling directly, but also has significant overlap

with TLR and downstream TLR signalling as well as with effector

Table 2. Information on studies included.

study reference population sample collection # TB patients type of sample

initial,
independent

1 Mistry R, JID, 2007: 195, 357 active TB disease vs healthy infected controls South Africa n = 10 whole blood

2 Jacobsen M, J Mol Med, 2007:
85, 613

active TB disease vs healthy infected controls Germany n = 9 PBMC

3 Berry MP, Nature, 2010: 466, 973 active TB disease vs healthy infected &
uninfected controls vs other inflammatory
disorders
(SLE, Stills, Streptococcus,
Staphylococcus)

United Kingdom
(test), South Africa
(validation)

n = 13, n = 20 whole blood

4 Maertzdorf J, Genes & Immunity,
2011: 12, 15

active TB disease vs healthy infected &
uninfected controls

South Africa n = 33 whole blood

5 Maertzdorf J, PLoS ONE, 2011:
6, e26938

active TB disease vs healthy infected &
uninfected controls

The Gambia n = 46 whole blood

6 Maertzdorf J, PNAS, 2012:
109, 7853

active TB disease vs heatlhy infected &
uninfected controls & sarcoidosis

Germany n = 8 whole blood

7 Cliff J, JID, 2013: 207, 18 active TB disease over time during treatment South Africa n = 27, n = 9 whole blood

8 Ottenhoff TH, PLOS ONE, 2012:
7, e45839

active TB disease over time during treatment
vs healthy controls

Indonesia n = 23 PBMC

doi:10.1371journal.pone.0073230.t002
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cytokines secreted following TREM1 activation. This is a novel

finding, not detected in any of the individual published studies.

TREM1 or ‘Triggering receptor expressed on myeloid cells 1’ is a

member of the Ig superfamily and is predominantly expressed on

myeloid cells. Cell surface expression of TREM1 is increased upon

cellular activation, e.g. by LPS and other microbial products [35].

Expression of TREM1 results in amplification of neutrophil- and

monocyte-mediated inflammatory responses, by increased cyto-

kine production and upregulation of cell activation markers, as

seen in bacterial and fungal infections. TREM1 signaling

pathways interact with signaling pathways downstream from the

IFNaR1/2 and from TLRs [36,37]. Cross-talk between TREM1

and TLR2 and TLR4 signaling cascades have been demonstrated,

and potentially also other TLR (TLR 3, 5, 7, 8, and 9) and

possibly NLR signaling pathways are influenced by TREM1

signaling [37]. TREM1 and TLR2 signaling pathways can

synergize at the level of cytokine production [37]. TREM1 plays

a crucial role in fine-tuning of the inflammatory response by

amplifying or dampening TLR induced signals, and is known to

tune the septic response in order to facilitate efficient clearance of

the pathogen without damaging the host [36]. The ligand of

TREM1 is currently unknown, although it has been speculated

that it may be expressed on pathogens, thereby directly activating

TREM1 signaling [37]. Peptidoglycans on gram positive bacteria

and endotoxins on gram-negative bacteria are candidate ligands,

and mycobacterial peptidoglycans might also serve as TREM1

ligands. This remains to be determined but would be an

interesting explanation for the increased TREM1 signaling

observed in patients with active TB disease.

A soluble variant of TREM1 has also been identified

(sTREM1). This results from the shedding of cell surface TREM1

by metalloproteinases, and is thought to negatively regulate

TREM receptor signaling through neutralization of the ligands

[35]. In patients with pulmonary TB sTREM1 has been detected

Figure 1. Ingenuity pathway analysis of all genes identified by unbiased methods related to TB disease. All 409 biomarkers were
analysed by integrated pathway analysis using Ingenuity and the most dominant network is depicted here. Signalling pathways were coloured
according to functional classification into myeloid cells, T cells and B cells and type I interferon related genes.
doi:10.1371journal.pone.0073230.g001
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in sputum [38], but levels could not discriminate pulmonary TB

from community acquired pneumonia caused by other pathogens.

In patients with pleural effusions, sTREM1 levels could discrim-

inate infectious, including TB, from non-infectious causes and the

levels of pleural fluid sTREM1 appeared a useful tool to

discriminate Mtb infection from malignancies [39]. An indepen-

dent study on pleural effusions showed a similar increase in

sTREM1 levels in TB effusions compared to non-infectious

effusions [40]. In addition, surface TREM1 was assessed on cells

within the effusions and was undetectable in effusions from

patients with TB pleuritis [40], however cell numbers and cellular

composition were not described. Similarly, in BAL (bronchoalve-

Table 3. Results of Ingenuity pathway analysis.

Ingenuity Canonical Pathways
-log (p-
value) p-value Ratio Overlap with dataset

categorie in table S1 (approximate)

TREM1 Signaling TREM 1 signalling 1,6E01 1,00E-16 3,33E-01 19/57 (33%)

Fcc Rec.-mediated Phagocytosis in Macroph. and Monoc. myeloid cells 1,46E01 2,50E-15 2,32E-01 22/95 (23%)

Mitochondrial Dysfunction mitochondria 1,39E01 1,12E-14 1,85E-01 25/135 (19%)

Pattern Recognition Rec. in Recognition of Bacteria and
Viruses

myeloid cells 1,37E01 1,99E-14 2,21E-01 21/95 (22%)

Macroph., Fibrobl. and Endothelial Cells in Rheumatoid
Arthritis

myeloid cells 1,18E01 1,58E-12 1,06E-01 33/311 (11%)

B Cell Receptor Signaling B cell 9,78E00 1,65E-10 1,36E-01 22/162 (14%)

PI3K Signaling in B Lymphocytes B cell 9,21E00 6,16E-10 1,48E-01 19/128 (15%)

Communication between Innate and Adaptive
Immune Cells

– 8,43E00 3,70E-09 1,61E-01 15/93 (16%)

Dendritic Cell Maturation myeloid cells 8,3E00 5,00E-09 1,09E-01 21/192 (11%)

Systemic Lupus Erythematosus Signaling inflammation 8,17E00 6,76E-09 1,01E-01 23/228 (10%)

IL-8 Signaling inflammation 7,72E00 1,90E-08 1,09E-01 21/192 (11%)

Natural Killer Cell Signaling – 6,76E00 1,73E-07 1,36E-01 15/110 (14%)

Prod. of Nitric Oxide and Reactive Oxygen Species
in Macroph.

myeloid cells 6,5E00 3,16E-07 1,02E-01 19/186 (10%)

NF-kB Signaling inflammation 6,45E00 3,50E-07 1,06E-01 18/170 (11%)

Role of Tissue Factor in Cancer – 6,03E00 9,33E-07 1,28E-01 14/109 (13%)

Erythropoietin Signaling hematopoiesis 5,85E00 1,40E-06 1,49E-01 11/74 (15%)

Altered T Cell and B Cell Signaling in Rheumatoid Arthritis inflammation 5,83E00 1,47E-06 1,4E-01 12/86 (14%)

Toll-like Receptor Signaling myeloid cells 5,79E00 1,62E-06 1,75E-01 10/57 (18%)

IL-3 Signaling hematopoiesis 5,59E00 2,57E-06 1,51E-01 11/73 (15%)

CD28 Signaling in T Helper Cells T cells 5,01E00 9,77E-06 1,07E-01 13/122 (11%)

IL-12 Signaling and Production in Macrophages myeloid cells 4,98E00 1,05E-05 1,02E-01 14/137 (10%)

Chemokine Signaling inflammation 4,92E00 1,20E-05 1,47E-01 10/68 (15%)

FAK Signaling – 4,76E00 1,74E-05 1,12E-01 11/98 (11%)

FLT3 Signaling in Hematopoietic Progenitor Cells hematopoiesis 4,75E00 1,78E-05 1,37E-01 10/73 (14%)

Atherosclerosis Signaling – 4,73E00 1,86E-05 9,92E-02 13/131 (10%)

iCOS-iCOSL Signaling in T Helper Cells T cells 4,73E00 1,86E-05 1,07E-01 12/112 (11%)

Rac Signaling – 4,73E00 1,86E-05 1,03E-01 12/117 (10%)

Apoptosis Signaling – 4,67E00 2,14E-05 1,2E-01 11/92 (12%)

Prolactin Signaling hematopoiesis 4,65E00 2,24E-05 1,3E-01 10/77 (13%)

Pancreatic Adenocarcinoma Signaling – 4,6E00 2,51E-05 1,04E-01 12/115 (10%)

PDGF Signaling – 4,44E00 3,63E-05 1,27E-01 10/79 (13%)

IL-6 Signaling inflammation 4,21E00 6,17E-05 9,84E-02 12/122 (10%)

HGF Signaling hematopoiesis 4,19E00 6,45E-05 1,08E-01 11/102 (11%)

G Beta Gamma Signaling – 3,94E00 1,15E-04 1E-01 10/100 (10%)

Fc Epsilon RI Signaling – 3,81E00 1,54E-04 9,91E-02 11/111 (10%)

T Cell Receptor Signaling T cells 3,62E00 2,39E-04 9,8E-02 10/102 (10%)

IGF-1 Signaling – 3,59E00 2,57E-04 9,8E-02 10/102 (10%)

All canonical pathways significantly associated with the dataset are depicted (p,0.001), after application of the following filter criteria: gene set comprises at least 50
genes, at least 10 genes from dataset are retrieved in gene set and at least 10% of genes from gene set are present in the data set of 409 genes.
doi:10.1371journal.pone.0073230.t003
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olar lavage) cells from patients with pulmonary TB no significant

increase in cell-surface TREM1 expression was observed com-

pared to BAL cells from non-infectious controls, whereas BAL cells

from patients with other pulmonary infections did express

increased TREM1 levels on macrophages and neutrophils [41].

Thus, TREM1 related signaling seems important during active TB

disease; although cellular TREM1 expression levels may not be

changed, levels of soluble sTREM1 are increased at the site of

disease.

Myeloid lineage cells. In addition to TREM1 signaling, a

number of other pathways associated with myeloid cell function or

activation were prominently identified in the Ingenuity analysis

(Table 3). These included: ‘Fcc receptor-mediated phagocytosis in

macrophages and monocytes’; ‘role of pattern recognition

receptors in recognition of bacteria and viruses’; ‘role of

macrophages, fibroblasts and endothelial cells in Rheumatoid

Arthritis’; ‘Dendritic cell maturation’; Production of Nitric Oxide

and reactive oxygen species in macrophages’; ‘Toll-like receptor

signaling’; ‘IL-12 signaling and production in macrophages’. In

Table 3 these are grouped together into a ‘myeloid’ category,

which was then applied to allocate individual genes into functional

categories in Table S1. Increased expression of genes associated

with Toll-like receptor signaling [18,19,26] and Fcc Receptor

signaling [26,29] were previously reported in patients with active

TB disease. Grouping of genes according to the canonical pathway

based groups resulted in categorization of 107 out of the total 409

genes in the dataset. The myeloid signature thus identified is

strong and also more clearly represented than in any of the

individual studies: 56/107 (52.3%) genes that were grouped into

canonical pathways were in the myeloid category, although the

majority overlaps with other categories as well, including TREM1

signaling.

As with the Ingenuity based pathway analysis, most of the

GSEA gene sets we identified represented a myeloid biased gene

signature and an inflammatory immune response. The gene sets

SEKI_INFLAMMATORY_RESPONSE_LPS_UP, ICHIBA_-

GRAFT_VERSUS_HOST_DISEASE_35D_UPICHIBA_GRA-

FT_VERSUS_HOST_DISEASE_D7_UP, JISON_SICKLE_-

CELL_DISEASE_UP and REACTOME_IMMUNE_SYSTEM

overlap with each other and comprise many genes associated

with myeloid cells (Table 4). The dominance of these gene

signatures reflect the findings of the studies the signatures were

derived from. Cliff et al [31], Berry et al [17] and Ottenhoff

et al [32] all highlight an increased myeloid cell inflammatory

responses in active TB patients when compared to controls.

Network analysis revealed a strong contribution of genes

associated with myeloid cells in the most dominant network

(figure 1), however many genes overlapped with more than one

process (Table S1, Figure 1). These comprised signaling pathways

around Akt, MYD88 and the NFkB complex as central players in

the network, indicating an important role for inflammation,

phagocytes and professional antigen presenting cells including

macrophages. Indeed the early microarray studies performed in

TB patients indicated that genes with roles in inflammation and

immunity were most abundantly expressed [18,20,26,32] and

most inflammation related genes differentially expressed were

derived from monocytes [17,19,29,32]. Interestingly, Cliff et al.

speculated that some of the genes specifically upregulated during

TB disease can be expressed by macrophages and DCs but not by

monocytes, and thus may reflect activated APCs, possibly cells

trafficking between lungs and lymphoid tissue via the blood [31].

This could also explain the relatively high myeloid gene expression

observed in TB patients and in particular the involvement of TLR

and Fc receptor induced signaling, since these processes would

normally be expected to occur at the site of disease rather than in

the circulation. The pathways associated with these myeloid cells

point towards a strong role for direct pathogen related processes,

even in the circulation (not the disease site in TB).

T-cells and B-cells. Although the emerged profiles are

dominated by inflammatory and myeloid gene signatures there

was one gene set associated with CD4 T Cell/follicular helper T

cell activation (PICCALUGA_ANGIOIMMUNOBLASTI-

Table 4. Results from GSEA.

GSEA gene expression data sets categorie in table S1 NES FDR q-val SIZE

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS myeloid cells 2,07 0,041 15

REACTOME_GPCR_LIGAND_BINDING myeloid cells 2,08 0,041 18

SEKI_INFLAMMATORY_RESPONSE_LPS_UP inflammation 2,14 0,034 18

SMID_BREAST_CANCER_NORMAL_LIKE_UP inflammation 2,15 0,034 31

PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_UP T cells 2,32 0,041 18

MOSERLE_IFNA_RESPONSE interferon 2,25 0,028 16

LIU_VAV3_PROSTATE_CARCINOGENESIS_UP inflammation 2,16 0,037 16

SENGUPTA_NASOPHARYNGEAL_CARCINOMA_WITH_LMP1_UP inflammation 2,12 0,032 17

SEITZ_NEOPLASTIC_TRANSFORMATION_BY_8P_DELETION_UP myeloid cells 2,08 0,04 15

ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D_UP inflammation 2,13 0,033 25

ICHIBA_GRAFT_VERSUS_HOST_DISEASE_D7_UP inflammation 2,17 0,037 26

TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_3D_UP myeloid cells 2,27 0,04 26

MARKEY_RB1_ACUTE_LOF_UP inflammation 2,52 0,014 39

JISON_SICKLE_CELL_DISEASE_UP inflammation 2,25 0,023 36

REACTOME_IMMUNE_SYSTEM inflammation 2,25 0,034 101

Gene sets with an FDR ,5% were included in this analysis. SIZE indicates the number of genes in both the gene set and the expression dataset. NES the primary result
of the gene set enrichment analysis is the enrichment score (ES), which reflects the degree to which a gene set is overrepresented in a list of genes. Normalizing the
enrichment score (NES) accounts for differences in gene set size and in correlations between gene sets and the expression dataset.
doi:10.1371journal.pone.0073230.t004
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C_LYMPHOMA_UP) [42] (Table 4). CD4 T cells are important

for the control of Mtb infection and TB disease, proliferate and are

activated in response to antigens from M. tuberculosis. It is

possible that these follicular helper T cells are contributing to the

formation of B cell follicles during active TB disease. Studies of

human TB granulomas have identified B cell follicle structures

which may contribute to the immune response in TB, and

activated B cells have been found in granulomas of nonhuman

primates infected with Mtb [43,44].

As expected also canonical pathways associated with B cell

function (as previously reported by [19,31]), T cell function

(previously reported by [31]) and more general inflammation

processes were identified by Ingenuity analysis (Table 3). The

potential functional implications of B cells in TB disease have been

debated for decades, in particular because intracellular pathogens

Figure 2. Functional classification of individual genes identified by gene expression analysis on TB patients. Categories have been
based on combined output from Ingenuity and GSEA software modules and may include multiple canonical pathways or cell processes. Myeloid cells
includes the following canonical pathways: role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis; Fcg Receptor mediated
phagocytosis in macrophages and monocytes; role of pattern recognition receptors in recognition of bacteria and viruses; IL12 signaling and
production in macrophages; Dendritic cell maturation; production of Nitrox Oxide and Reactive Oxygen Species in Macrophages; Toll like receptor
signaling. T cells includes: T cell receptor signaling; CD28 signaling in T helper cells; iCOS-iCOSL signaling in T helper cells. B cells includes: B cell
receptor signaling; PI3K signaling in B lymphocytes. Interferon related pathways include: Interferon signaling, role of jak1, jak2 and tyk2 in interferon
signaling, role of PKR in interferon induction and antiviral response. Inflammation includes: IL-8 signaling; NF-kB signaling; altered T cell and B cell
signaling in Rheumatoid Arthritis; systemic lupus erythematosus signaling; chemokine signaling; IL-6 signaling. TREM1 includes specifically TREM1
signaling and mitochondrial dysfunction also only contains mitochondrial dysfunction. Finally, hematopoiesis includes: erythropoietin signaling; IL-3
signaling; FLT3 signaling in hematopoietic progenitor cells; prolactin signaling; HGF signaling.
doi:10.1371journal.pone.0073230.g002

Figure 3. Genes identified by more than 1 independent study. Genes identified by more than 1 independent global genome-wide gene
expression analysis. Manuscript numbers refer to Table 2. Classification into modules, functional groups according to Ingenuity and GSEA was
performed according to Tables 3 & 4 and identical to Genes identified by more than 1 independent global genome-wide gene expression analysis.
Manuscript numbers refer to Table 2. Classification into modules, functional groups according to Ingenuity and GSEA was performed according to
Tables 3 & 4 and identical to Table S1.
doi:10.1371journal.pone.0073230.g003
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are considered to be sequestered from circulating antibodies.

However, functional significance of B cells in TB disease has been

demonstrated in mouse models: B cell deficient mice appear more

susceptible to TB [45], and Fc-receptors play a role in protection.

Furthermore, in addition to the presence of B cells in human TB

lesions as described above, the expression of human FccR1 is a

consistent and strong component in TB biomarker signatures

[19,29,30]. These observations suggest that B cells may play a

hitherto unappreciated role in immunity in TB. This is further

supported by recent results that suggest that also intracellular

binding of antibody to pathogens can take place via a cytosolic Fc-

receptor called TRIM21 [46,47]. Pathogen bound antibody

triggering of TRIM21 subsequently stimulated transcription factor

pathways including NF-kB, IRF7 and others, resulting in immune

activation and inflammatory signals. This may open up an

interesting new angle for the potential role of B cells and in

particular antibodies in the combat against TB, which should be

explored in more detail. Interestingly, our network based analysis

of genes expressed in peripheral blood from TB patients does

include TRIM21 (Figure 1). Gene expression of TRIM21 was

detected in cohorts of TB patients compared to healthy controls

[19] (Table S1) and was grouped close to Fc Receptors and its

defined signaling molecule IRF7 in the Ingenuity network analysis.

Hematopoiesis. A process which was not expected but

clearly represented in the canonical pathway analysis was

hematopoiesis, represented by ‘Erythropoietin signaling’; ‘IL-3

signaling’; ‘FLT3 signaling in hematopoietic progenitor cells’;

‘prolactin signaling’ and ‘HGF signaling’. This indicates that in the

blood of patients with TB disease active remodeling apparently is

ongoing, either with renewal of hematopoietic cells at a possibly

increased rate compared to non-TB controls or with cells

emerging from the bone marrow and on their way to the site of

inflammation (mostly the lung in TB patients). Recently it has

been demonstrated that Mtb may hijack mesenchymal stem cells

and may survive in the CD271+ stem cells for a long period after

successful treatment of pulmonary TB, hiding from the immune

system [48]. This suggests that stem cells in the bone marrow may

be active players in TB disease, revealing a new cell type involved

in TB pathogenesis. Another interesting link between mycobac-

terial infections and stem cells is the recent observation that

Mycobacterium leprae is capable of reprogramming host gene

expression in adult Schwann cells and induces a dedifferentiation

program towards stem cell like cells (SLC) [49]. These SLC can

Table 5. TREM1 canonical pathway.

identified in study nr:

Akt 5

anti-TREM1 Ab

CASP1

Casp1-Casp5

CASP5

CCL2 8

CCL3

CCL7 8

CD40 4;8

CD83

CD86

CSF2

CXCL3 2

DEFB4A/DEFB4B

EBOV

ERK1/2 5

FCGR2B 5

Flagellin

GRB2

ICAM1

IL10

IL18

IL1B

IL6

IL8 7

IRAK1

ITGA5

ITGAX

ITGB1

JAK2

L-Ala-?-D-Glu-meso-diaminopimelinic acid

LAT2

lipopolysaccharide

lipoteichoic acid

MARV

MARV GP

MPO 2;6

MYD88 4

N-acetylmuramyl-L-alanyl-D-isoglutamine

NFkB (complex)

NLR

NOD2

Pam3-Cys

PLC gamma 5

poly rI:rC-RNA

prostaglandin E2

resiquimod

SIGIRR

ST2

Table 5. Cont.

identified in study nr:

STAT3

STAT5a/b 4

Tlr 4;8;3*

TLR2 4

TLR4 4

TNF

TREM1

TYROBP 3

Genes involved in TREM1 signaling canonical pathway according to Ingenuity
Integrated Pathway analysis. Genes identified in our 409 gene total geneset are
indicated in the right column. * TLR genes include TLR2,4,5,6,7,8 and were
identified by multiple studies, all genes identified count in overlap with
pathway count according to Ingenuity
doi:10.1371journal.pone.0073230.t005
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subsequently redifferentiate into end stage tissue cells, and also

release bacteria onto macrophages locally in tissues [49]. It

remains unknown whether Mtb also possesses the capacity to

reprogram host cells by activating pathways characteristic for

hematopoiesis, but this may be an interesting possibility that fits

with the observed changes in gene expression profiles. Interest-

ingly, the vast majority of genes categorized as ‘hematopoiesis’ is

also associated with several myeloid functions (Table 3).

Type I Interferon Signaling. Berry et al [17] were the first

to describe that Type I interferon signaling was increased in TB

patients. The pathway MOSERLE_IFNA_RESPONSE was

amongst the 15 most significant pathways identified by GSEA in

active TB disease (Table 4). Surprisingly, interferon a/b related

signaling pathways were not amongst the top pathways represent-

ed by our dataset in Ingenuity (Table 3), despite it being detected

with high significance in several individual studies. Interferon

signaling reached statistical significance (p = 0.000026), but was

lost during application of gating criteria, due to the small number

of genes in the pathway (,50) and the small number of genes

overlapping with our dataset (,10). However, because of the

interest in IFNa/b signaling in TB disease, we added a category

IFNa/b to table 3 based on all 3 canonical pathway datasets

related to type I interferon signaling in Ingenuity ‘interferon

signaling’; ‘role of JAK1, JAK2 and TYK2 in interferon signaling’

and ‘role of PKR in interferon induction and antiviral response’.

IFN signaling represented 13/107 (12.1%) genes in our dataset

and was thereby not the most dominant pathway (figure 1,

Table S1). Signaling through IFNa/b seems an important

pathway associated with TB disease in most independent studies,

although many molecules involved in downstream IFNa/b
pathways are not uniquely involved in transmitting signals derived

from IFNa/b receptors but may also be critical components in

other pathways.

Type I interferons are classically known as early response

molecules in the context of viral infections and are well known

immune modulators. Type I interferon signaling in mycobacterial

infections, as shown in progressive leprosy disease, may contribute

to disease pathogenesis or protection, depending on the balance

between IFNa/b and IFNc [50], in which IFNa/b may actively

inhibit IFNc signalling. Interestingly in virus infection models the

IFNa/b response mediated enhanced antiviral activity during

acute infection but exerted strong immunomodulatory effects

during chronic infection [51]. Both TB and leprosy are long term,

chronic infections; in both diseases an increased expression of

IFNb induced genes has been observed, suggesting its potential

involvement in tissue damage and inflammation, and in regulating

adaptive IFNc responses. It may be speculated that patients with

latent Mtb infection have strong IFNc induced responses which

are downregulated by IFNa/b during reactivation from latent to

active TB disease [4,50].

Macrophages or monocytes infected with Mtb produce and

secrete type I interferons [52]. Mtb strains with increased virulence

induce increased IFNA mRNA in lungs of infected mice [53], and

lower local levels of pro-inflammatory cytokine mRNAs (IL-6, IL-

12, TNFa and IFNc). The effect of IFNa/b was further

investigated by administration of IFNa to mice following infection

with Mtb, resulting in increased pulmonary bacterial loads and

reduced survival of the mice [53]. In vitro, addition of type I

interferons to BCG infected macrophages resulted in increased

outgrowth of BCG, suggesting direct effects of type I interferons on

infected cells in favor of the mycobacteria [54]. The increase in

type I interferons and IFNa/b signaling during active TB disease

may therefore reflect IFNa/b production by infected monocytes/

macrophages and facilitate and maintain rather than clear chronic

infection.

Fibrosis. Statistically, using GSEA analysis, the greatest

overlap of our gene-set was observed with the gene set

Figure 4. Schematic representation of events during active TB Disease. Pathway and process based analysis suggests that these processes
are key players in TB disease pathogenesis.
doi:10.1371journal.pone.0073230.g004
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MARKEY_RB1_ACUTE_LOF_UP, a gene set expressed in

fibroblasts [55] (Table 4). Fibroblasts secrete extracellular matrix

molecules, while extracellular matrix destruction is necessary for

the growth and persistence of Mtb: Mtb is a potent inducer of the

metalloproteinases (MMPs) which destroy extracellular matrix

[56]. MMP9 and MMP25 are found among our gene list of 409.

MMP expression is enhanced by G protein coupled receptor

signalling and type 1 interferon – both of which are represented in

our GSEA analysis (REACTOME_GPCR_LIGAND_BINDING

and MOSERLE_IFNA_RESPONSE). MMP9 is the most abun-

dant of the MMPs and has been found to correlate with disease

severity in TB patients [57]. The neutrophil specific matrix

metalloproteinase MMP25 degrades substrates found in fibroblasts

and may enhance the phagocytic removal of neutrophils from

inflammatory sites [58].

Conclusions

Analysis of gene-expression data is a complex process which can

be performed using many different strategies. Commonly genes

are grouped according to similar changes in expression profiles,

e.g. using non-hierarchical clustering. More recently, groups of

genes have been clustered into modules based on their shared

expression (and likely involvement) in biological processes [33].

These modular representations have become more popular in

annotating function to gene expression data. However, joint

expression of genes during certain processes/diseases does not

necessarily demonstrate functional relatedness. Related gene

expression events may be dynamic and occur in sequence rather

than simultaneously such that genes with strong functional

relations may not necessarily be detected at the same time point

in the (disease) process and therefore may not group into the same

cluster or module. The assessment of pathways and processes that

seem key in the disease process seems to be more valuable than

merely assessing the combination of genes with the highest

changes in expression levels.

Here we explored functional interactions based on known

molecular interactions (Ingenuity) and enrichment of genes in

biological pathways (GSEA) to analyze gene expression data

described in TB disease at a higher aggregation level, from an

helicopter perspective. Dominant pathways may not only serve as

biomarkers at the transcription level as such, but products from

these pathways or cellular responses induced by that particular

pathway may also be significant indicators of disease, potentially

allowing easier assessment of pathway activity in simpler tests.

Future assessments of biomarkers for vaccine-induced protection

may benefit from similar, pathway/process based analyses to allow

more powerful biomarker selection (Figure 4).

Interestingly, multiple genes affected in TB disease were

involved in more than a single pathway (Table S1, Figure 1),

emphasizing the impact of individual signaling components in

multiple pathways. Therefore, assessment of total pathway

function or at least multiple components from the same pathways

may be a more reliable measurement of such pathways than

individual markers that are functionally involved in many different

signal transduction chains.

The combined analysis of TB biomarkers of disease identified

by 8 independent studies revealed a less dominant role for the

IFNa/b related genes, but revealed a very strong involvement of

myeloid cells. In particular signaling through Pattern Recognition

Receptors, Fc receptors, fibrosis and TREM1 seemed key players

during active TB disease. These findings may be somewhat

unexpected, mostly because all profiling was performed in whole

blood or purified PBMCs and not at the site of disease. In

particular in Mtb infection, the local activation of myeloid cells

and receptors involved in pathogen recognition are expected to be

key players in the disease process, yet also systemic activation of

these pathways is emphasized by our analysis. These cells may

either traffic from the site of disease into the circulation or may

have been indirectly activated by pathogen derived products that

have entered the circulation, thus mirroring activated phagocytes

at the site of disease. It is somewhat surprising to detect a

prominent activated myeloid cell signature in the circulation,

because generally activation would occur in tissues and cells would

subsequently follow the lymphoid system to migrate towards

lymphoid organs. Apparently, during active TB disease inflam-

mation may be of such magnitude that the inflammatory site spills

over into the circulation such that activated myeloid cells can be

detected in peripheral blood (Figure 4).

In this context, the identification of TREM1 signalling is

interesting, providing a new angle for activation of monocytic cells

by Mtb. Potentially, Mtb derived molecules target this pathway, in

synergy with TLRs, to activate innate and adaptive immune

responses. Additional new leads may include pathways associated

with hematopoiesis and B cell activation. Several pathways

associated with hematopoiesis were identified by Ingenuity

pathway analysis, which may support new recent leads of

circulating hematopoietic progenitor cells during TB disease.

However, the individual genes that fit into these pathways are also

involved in myeloid cell activation and inflammation. Therefore

genes exclusively associated with hematopoiesis in particular need

to be investigated to determine the relevance of hematopoiesis in

TB disease. B cell activation in the circulation of patients with TB

disease may also require more detailed investigation, in particular

since also TB granulomas harbour B cells suggesting active

involvement with disease.

All of these pathways deserve more in-depth (functional) analysis

in TB disease and hopefully will guide exploration of new

therapeutic targets for TB disease.

Thus, our ‘helicopter’ like pathway-based analysis of multiple

independent studies reveals novel insights in the pathogenesis and

potential biomarkers of TB disease, implying a strong role for

myeloid cells in TB pathogenesis which deserves more in-depth

investigation.

Supporting Information

Table S1 All genes identified by the 8 independent
global genome-wide gene expression analyses. Genes

names are the official gene names according to gene cards (www.

genecards.org) and alternative names are given in the second

column. Manuscript numbers refer to Table 2. Classification into

modules, functional groups according to Ingenuity and GSEA was

performed according to Tables 3 & 4.

(XLS)
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