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Abstract

Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still
unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared
spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving
ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power
and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with
pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many
cells with significant vocalization-derived STRFs (STRFvoc) and DMR-derived STRFs (STRFdmr), the BF, latency, bandwidth and
global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on
a non-homogenous Poisson process. Moreover STRFvoc predicted neural responses to vocalizations more accurately than
STRFdmr predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts,
which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRFvoc and
STRFdmr. Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict
responses to communication sounds from STRFs computed from artificial stimuli.
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Introduction

A major goal in auditory neuroscience is to characterize how

communication sounds are represented in the auditory pathway,

particularly at the cortical level. Speech, birdsongs and vocaliza-

tions are, spectrally and temporally, highly structured. A minimal

prerequisite to unravel the neural representation of these sounds is

to determine which spectro-temporal components drive auditory

neurons’ responses.

The spectro-temporal receptive field (STRF) is probably the

most commonly used model to describe the way complex stimuli

are processed by auditory cortex neurons. Originally, STRFs were

estimated using a reverse correlation of the neuron’s response to

white noise [1–3]. The model is linear and relies on the stimuli

statistics up to the second order [4,5]. Due to the poor response

elicited by white noise in the auditory cortex, families of synthetic

stimuli have been preferred to characterize STRFs. These

synthetic stimuli are commonly based on ripples (i.e. a sound

modulated sinusoidally in the temporal and spectral domains: see

[5–11]) or on random trains of pure tones [12–16]. Although more

spectro-temporally complex than pure tones, these synthetic

stimuli are still very different from conspecific vocalizations, both

form the acoustical and the behavioral perspectives.

By definition, the STRF is a linear approximation of the neural

response and theoretical drawbacks exist when computing STRFs

of a nonlinear neural response using sounds with high order

statistics [17]. These challenging nonlinearities of the responses

have been sometimes tackled by an artificial stimulus design [5], or

by the means of new analysis techniques [18,19]. However, it is

still not clear how STRF derived from artificial and natural sounds

differ, and which nonlinearities might explain these differences.

Indeed, only a few studies have tested how linear models of

auditory processing, computed using artificial stimuli, generalize to

natural stimuli. In the avian auditory system, several studies have

shown that STRFs can be used to describe how neurons extract

auditory information from conspecific songs [4,20,21]. So far,

studies performed in the mammalian auditory cortex have used

either sets of natural stimuli [22,23] or speech sounds to quantify

STRFs of auditory cortex neurons [16,24].

The present study compares the STRFs of guinea pig auditory

cortex neurons computed from conspecific vocalizations and from

dynamic broadband noises. The importance of vocal communi-

cation in guinea pig has been pointed out in pioneering studies

[25–27] and the rich repertoire of the guinea pig when living in

large colonies makes this animal a particularly well suited model

for studying the neural representation of communication sounds.

Here, the differences between STRF calculated from vocalizations
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vs. from DMRs were assessed by a similarity index, by their

predictive power and by classical parameters such as best

frequencies, latencies and bandwidths. To go further, we also

studied the influence of our sets of stimuli using a linear spiking

model and analyzed the impact of bursts, which constitute part of

the nonlinearity of cortical neurons’ responses.

Methods

Animal Preparation and Recording Procedures
Experiments were performed on 10 adult pigmented guinea-

pigs (390–650 g; national authorization Nu 91–271 to conduct

animal research, specifically approved by the CNRS and Paris-

Sud University) anesthetized by an initial injection of urethane

(1.2 g/kg, i.p.) preceded by a dose of Diazepam (6 mg/kg, i.p.).

Additional doses (0.5 g/kg, i.p.) of urethane were systematically

delivered when reflex movements were observed after pinching the

hindpaw (usually twice during a given recording session). The

body temperature was maintained around 37 Cu by a heating pad

throughout all the experiment. The trachea was cannulated and a

local anesthetic (Xylocaine, 2%) was infiltrated in each wound.

The stereotaxic frame supporting the animal was placed in a

sound attenuating chamber (IAC, model AC2).

A large opening was made in the temporal bone and very small

slits (200 mm) were made in the dura matter under microscopic

control. A diagram of the vasculature pattern was drawn and the

primary field (AI) location was first estimated based on those

observed in our previous studies [28–30]. A mapping of the

cortical surface was made to confirm the location of AI: neuronal

clusters were recorded with low impedance (,1 MV) electrodes

until a progression from low to high frequency was observed in the

caudo-rostral direction [31]. At a particular cortical site, the first

electrode penetration was made with a tungsten microelectrode

(.8 MV) and the following ones (made at close vicinity but

probably corresponding to different electrode tracks) were made

with glass micropipettes (5–10 MV). The signal from the electrode

was amplified (gain 10000; bandpass 0.3–10 kHz,) then multi-

plexed in an audio monitor and a voltage window discriminator.

The action potentials waveform and the corresponding TTL

pulses generated by the discriminator were digitized (50 kHz

sampling rate, Superscope, GW Instruments), visualized on-line

and stored for off-line analyses. The pulses were sent to the

acquisition board (PClab, PCL 720) of a laboratory microcom-

puter, which registered them with a 50 msec resolution and

provided on-line displays of the neuronal responses. Successive

recording sites were separated by at least 100 mm in depth. At the

end of the recording session (10–12 hours in duration), the animal

was sacrificed by a lethal dose of pentobarbital (200 mg/kg).

Histological Analyses
After each recording session, the brains were removed from the

skull and placed in the fixative solution for two weeks. The brains

were placed in a 30% sucrose solution in 0.1 M phosphate buffer

for 3–4 days, then coronal serial sections of the brain were cut on a

freezing microtome (50 mm thickness), mounted on glass slides,

dried and counterstained with cresyl violet. The analysis of

histological material was always done blind of the electrophysio-

logical results. The sections were examined under several

microscopic magnifications to find the electrode tracks corre-

sponding to the tungsten electrodes. The depth coordinates read

from the microdrive and determinations of the relative thickness of

cortical layers in the guinea-pig ACx [32] were used to assign each

recording to a cortical layer. Both in pilot experiments and in

previous studies [29,33] a good correspondence was found

between the value read on the microdrive and the actual depth

of small electrolytic lesions made via tungsten electrodes.

Tuning Curves Determination
Each recorded cell was first tested with pure tone to determine

its tuning curve at 70 dB. The cells included here were only those

exhibiting reliable and stable tuning curves when tested twice with

pure tones. The sound generating system used to deliver pure tone

frequencies was the same as previously described [33–35]: Pure

tones (100 ms, rise/fall time 5 ms, presented at 1 Hz) were

generated by a remotely controlled wave analyzer (Hewlett-

Packard model HP 8903B) and attenuated by a passive

programmable attenuator (Wavetek, P557, maximal attenuation

127 dB), both controlled via an IEEE bus. Stimuli were delivered

through a calibrated earphone (Beyer DT48) placed close to the

ear canal. In situ calibration of the system was done with a probe

tube using a sound level calibrator and a condenser microphone/

preamplifier (Bruel and Kjaer models 4133 and 2639T) and a

standard reference tone (1 kHz at 94 dB re 20 mPa) generated by

the calibrator (B&K model 4230). The acoustic calibration

provided a speaker output that could be corrected to ensure an

almost flat frequency response (66 dB from 0.5 kHz to 30 kHz)

with minimal harmonic distortion (about 5%). The sound delivery

system (the HP 8903B, the attenuators and the speaker) can deliver

tones of 80 dB up to 20 kHz and of 70 dB up to 35 kHz.

Harmonic distortion products were measured to be down about

50 dB from the fundamental.

STRF Determination
Two sets of stimuli were used to compute STRFs: conspecific

vocalizations and Dynamic Moving Ripples (DMRs). The

spectrographic representation of vocalizations and DMRs were

obtained using a gammatone filter bank constituted of 100 filters

logarithmically spaced from 100 Hz to 22 kHz [36]. The energy

envelope E k,tð Þfor each frequency band k was obtained by low-

pass filtering at 50 Hz the half-wave rectified output of filter

centered on CFk. The envelope was then resampled at 1 kHz using

a cubic spline interpolation in order to match the PSTH bin size

(1 ms).

Natural stimuli consisted of 9 sound files composed of guinea-

pig vocalizations from the guinea pig repertoire (purr, whistle and

chutter – see Figure 1A–B). These vocalizations were not recorded

from the set of guinea pigs used for the present study: they had

been previously recorded from adult male guinea pigs of our

colony (sampling rate 44 kHz, Sennheiser MD46 microphone,

Sound Edit Software; see [30,37]). On average, natural stimuli files

were 2 sec long (ranging from 1 to 3.5 sec), their average sound

level was set to 70 dB SPL and stimuli were presented 20 times at

0.5 Hz repetition rate. A set of vocalizations was selected such that

their spectrum uniformly sampled the frequency range of [0.5–

22 kHz]. The overall vocalization spectrum spanned frequencies

from 0.1 to 22.5 kHz (Figure 1D).

We also computed the modulation spectrum of the vocalizations

by performing a 2-D Fast Fourier Transform of the stimulus

correlation matrix [38]. This matrix is obtained by cross-

correlating the envelope E(k,t)within each frequency band k to

the envelope of all other frequency bands E(l,t) for lwk. We

display in Figure 1E the modulation power on a log-scale relative

to the maximum. Two contour lines represent an attenuation of 25

and 50 dB from that maximum. It exhibited a star-like shape

typical of natural sounds [20]. The power was concentrated on

two branches of this star-like shape. The horizontal branch

corresponds to temporal modulations with no spectral modulation

(fluctuation of sound level in time), the vertical branch corresponds

STRFs from Artificial and Natural Stimuli
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to low temporal modulations and power in spectral modulations

(harmonic structure). Finally, we computed the modulation depth,

MD~
(maxE-minE)

maxE
, and contrast,C~

(maxE-minE)

maxEzminE
,where E

denotes all samples of each stimuli envelope per frequency band.

The modulation depth for the vocalization was 0.82 while the

contrast was 0.69.

Dynamic moving ripples (DMR) were generated according to

the method described by Escabi and Schreiner [10] but taking

temporal and spectral modulation parameters in the appropriate

range for cortical neurons. Briefly, the stimuli consist of a signal

having temporal and spectral modulations varying randomly

through time. The temporal modulations (variations of energy

through time in each frequency band) were continuously varied

from 250 to 50 Hz. Samples were uniformly drawn within that

modulation ranges at 6 Hz and a cubic spline interpolation was

used to resample the trajectory at 1 kHz. Spectral modulations

(variations of energy along the frequency axis) varied from 0 to

2 cycl./oct. using the same procedure but sampling at 3 Hz. Note,

however, that uniformly sampling these intervals before the cubic

interpolation did not produce a uniform sampling in the

modulation power spectrum of the DMRs (see Figure 1E). Indeed,

since the instantaneous modulation followed a complex trajectory

between the samples, the modulation power spectrum was biased

with a trend similar to the vocalizations. To match the way the

vocalization files were presented, we generated nine different

DMRs of 2 seconds each at a sound level of 70 dB SPL. Each

DMR file was repeated 20 times at a 0.5 Hz repetition rate. The

procedure allows studying the trial-by-trial reliability of neuronal

responses the same way as for the responses to vocalizations (see

below). An example of DMR is presented in Figure 1C. The

overall spectrum of the set of artificial sounds was flat over the

range of frequencies considered. The spectro-temporal modula-

tions of DMRs are displayed in Figure 1E. The modulation depth

per frequency band of the DMRs was found to be inferior to that

of the vocalizations (0.62) as was the contrast (0.45).

Data Analysis
STRF calculation. For each cell, two STRFs were derived

from the responses to the two sets of stimuli using a regularized

reverse correlation technique performed with the STRFPak

software [4]: a STRFvoc was obtained from the cell’s responses

to all the vocalizations stimuli and a STRFdmr was obtained from

all the DMRs (except for the computations of the STRF predictive

power as explained below). The STRF is a linear approximation of

the stimulus-response function which relates the spectro-temporal

representation of a stimulus to the neural response. The STRF is

described as the linear kernel of the following convolution:

Rest(t)~

ðf max

f min

ðt~300

t~0

S(f ,t)STRF (f ,t{t)dtdf zRmean, ð1Þ

where S(f,t) is the spectrographic representation of the stimulus

(fmin = 0.5 kHz; fmax = 22 kHz), Rmean the mean firing rate of the

Figure 1. Statistics of the two sets of stimuli: Guinea-pig vocalizations and Dynamic Moving Ripples (DMRs). A. and B. Spectrograms of
guinea-pig vocalizations. The chutter call is made of sound bursts in the medium frequency range (A). Whistle calls are high-pitched sounds rising in
frequency whereas purr calls contain repetitions of low frequency sound bursts (B). C. Spectrogram of a DMR. All spectrograms are in logarithmic
frequency scale. D. Average spectrum of our stimuli. The average spectrum of all DMRs is represented by the black line; the average spectrum of the
vocalizations by the dashed dark grey line. The light grey line represents the spectrum of each vocalization file used. The vocalizations were selected
to obtain a flat spectrum matching closely that of the DMRs. E. Modulation spectrum of the vocalizations and DMRs. As shown, both stimuli spanned
the same range of temporal and spectral modulations. F. Distribution of sound intensity in 20 ms time bins calculated for both DMRs (filled-black line)
and vocalizations (dashed dark grey line). Light grey lines show the distribution of sound intensity for each vocalization. The difference between the
two distributions reflects the existence of large amplitude fluctuations through time in guinea-pig calls.
doi:10.1371/journal.pone.0050539.g001
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observed response and Rest is the estimated firing rate giving a

minimum mean square error. The STRF estimation is performed

here using a reverse correlation technique. Indeed, defining the

STRF as the linear system providing the least mean square error

on the firing rate is equivalent to the following expression in the

Fourier domain:

STRF~(S�:S)-1S�R: ð2Þ

The STRF can thus be estimated by multiplying the inverse of the

power spectrum of the stimulus (S*S)21 and the spectrum of the

cross-correlation between the stimulus and the neuronal response

S*R. This cross-correlation was obtained using the PSTH of the 20

repetitions binned with 1 ms bins. The PSTH were smoothed with

a Hanning window of 20 ms half-width. In practice, singular value

decomposition (SVD) is used when inverting the stimuli power

spectrum. SVD allows to retain only the significant components of

the stimuli power spectrum and a tolerance factor is chosen to

determine the level at which these components are considered

significant. This regularization procedure implements a smoothing

constraint on the STRF (modulation power mainly in the low

frequency region) similar to procedures applied in other studies

[22]. The regularization parameter providing the best correlation

coefficient (CC) between the measured and predicted rate was

chosen when analyzing our cortical recordings. As did other

groups when using repetitions of brief broadband stimuli [39], we

removed the neuronal activity occurring in the first 50 ms of each

DMR to exclude onset responses from the STRFs computation.

We computed STRF significance using a bootstrap algorithm

[8,9]. Bootstrap estimates of the STRF were computed from 100

different random combinations with replacement of pairs of

stimuli and evoked responses. Each STRF obtained was used to

compute a standard deviation per pixel. We used the average

variance over all pixels of the STRF to define two significance

contours at values above 3 and above 5 times the standard

deviation, s (respectively black and white lines in the figures

showing individual examples). The significance contours were then

used when assessing the STRF shape differences. We discarded

from our analysis the STRFs of cells which met at least two of the

following criteria: (a) few responses on their raster, (b) small and

scattered significant zones in the STRF which varied with the

regularization parameter value and (c) very poor STRF predic-

tions (measured by CC,.05, see below). About 30–40% of the

cells were discarded of the subsequent analyses (see the percent-

ages in the 2nd paragraph of the Results section).

Goodness of fit for the STRF prediction (CC). The STRF

predictions were assessed using the correlation coefficient (CC)

between the predicted and measured response. The correlation

coefficient is given by:

CC~
S Rest(t){Rest

� �
R(t){Rmeanð ÞT

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S Rest(t){Rest

� �2T
t
S R(t){Rmeanð Þ2Tt

q ð3Þ

where x denotes averaging over the stimulus set and STt averaging

over time. Predicted responses were obtained by the convolution

of the STRF with a test stimulus not used for the STRF

computation. For instance, using vocalizations #1 to 8, we

computed a STRF which was then convolved with the spectro-

gram of vocalization #9. The result of this convolution gave the

prediction to vocalization #9 which was compared to a smoothed

measured response. This smoothed response corresponds to the

PSTH from 10 trials smoothed using a Hanning window with

20 ms half-width. By repeating this procedure to all vocalizations

(respectively DMRs), we computed an average CCvoc (respectively

CCdmr).

The CCvoc and CCdmr constitute a goodness of fit measure

which is affected by the inter-trial variability of the measured

response. Since the PSTH is a noisy estimate of the neuron’s

response, there is a maximal value that predictions can reach (i.e.

CCvoc,1 and CCdmr,1). That value depends on the level of noise

in the PSTH. To account for such effects, we compared the CCvoc

and CCdmr to the level of inter-trial variability. We assessed this

level of inter-trial variability using a correlation coefficient between

two smoothed PSTHs estimates (cf previous paragraph) obtained

from half of the 20 trials (CCpsth-psth). In order to obtain a correct

estimate of CCpsth-psth, the procedure was repeated 10 times for

different random permutations. Finally, we evaluated which STRF

predictions significantly captured the cell’s response signal (i.e. the

noise-free part of the neuron’s response) by performing a paired t-

test between CCvoc (respectively CCdmr) and CCpsth-psth for 10

random permutations of PSTH estimates.

Comparison between STRF derived from vocalizations

and from DMRs. The comparison between STRFs obtained

from vocalizations and DMRs was performed on both STRF

predictive power and STRF differences in shape. The correlation

coefficient (see above) was also computed between stimulus

ensembles. These predictive powers are denoted CCvoc2dmr when

using the STRFvoc to predict responses to DMR and CCdmr2voc

when using the STRFdmr to predict the responses to vocalizations.

The differences in shape for the STRF were quantified using the

similarity index (SI) previously introduced by [10]. This index is

given by:

SI~
S STRFvoc(t)
�������!

{STRF0voc

� �
STRFvoc(t)
�������!

{STRF0dmr

� �
T

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S STRFvoc(t)
�������!

{STRF0voc

� �2

T
t
S STRFdmr(t)
�������!

{STRF0dmr

� �2

T
t

r ð4Þ

where STRFvoc
�����!

(respectively STRFdmr
������!

) is a vector version of the

STRFvoc (respectively STRFdmr) and STRF0voc (respectively

STRF0dmr) is the mean value of STRFvoc
�����!

(respectively STRFdmr
������!

).

The SI corresponds to a correlation coefficient computed between

the two STRFs reshaped into vectors. Pixels outside the significant

contours were set to zero for this analysis. The similarity index

approaching a value of 1 indicates that the STRFs have identical

shapes; a value close to 0 indicates that the shapes are totally

different and a value of 21 indicates that regions of excitation are

replaced by regions of inhibition and vice-versa.

Comparison between parameters derived from STRF and

from classical tuning curves. STRFs were used to measure

cell’s response properties such as best frequency (BF), bandwidth

(BW) and latency of the response. The BF was defined as the

frequency for which the value obtained in the STRF was

maximum, the BW as the frequency range over which positive

STRF values were significant and latency as the time at which the

STRF reached its maximum value. These parameters were

compared to those obtained from classical tuning curves and

compared between STRFvoc and STRFdmr.

Linear spiking model of neural processing. To estimate

the putative causes of the differences between STRFvoc and

STRFdmr, (assessed by the similarity index SI), we built a neural

model in which processing was set linear and similar for DMRs

and vocalizations. A two-stage model was used to generate a set of

artificial STRFs. This model was constituted of (1) a linear filter

stage where the stimulus was convolved to an artificial STRF

(STRFart), followed by (2) a non-homogenous Poisson process

STRFs from Artificial and Natural Stimuli
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(NHPP) used to mimic the discrete spiking events on a single trial

basis. Then, from these surrogate spike trains, we computed the

STRF (denoted STRF* in the following) as we did from the real

spike trains. We used the same PSTH smoothing parameters,

significant contours and method for choosing the tolerance factor

as for the real data. Since the NHPP model produces a firing rate

depending linearly on the spectro-temporal properties of the

stimuli, the estimated STRF* obtained from the regularized

reverse correlation technique should only differ from the STRFart

due to the limited statistics available in our experimental paradigm

(i.e. the limited number of stimulus presentations and the low

firing rate of cortical neurons under anesthesia, see below).

To match with the physiological data, we produced 42 artificial

STRFart and generated 20 responses for each vocalization and

DMR. The STRFart were constituted by excitatory and inhibitory

zones in the temporal and spectral domains. To produce the

zones, we used either a Gaussian function (purely excitatory

STRFart) or the first derivative of a Gaussian (STRFart with lateral

inhibition on one side) or its second derivative (STRFart with

surround inhibition). More precisely, STRFart were set according

to STRF (v,t)~Gs(v)Gt(t), where Gs(v) (respectively Gt(t))
denotes the STRF shape in the spectral (respectively temporal)

domain.

As the NHPP model was built in order to control for putative

biases in the stimulus ensembles, it was necessary to match it as

closely as possible to the cortical data. In the spectral domain,

Gs(v) was set to match the range of the center frequencies

observed in our data and its standard deviations to match the

measured bandwidths. In the temporal domain, the latencies of

the artificial STRFs were chosen in the range observed in our

population. Considering the NHPP model response strength and

reliability, we set its average firing rate to match the mean evoked

firing rate of the population of the recorded cells. Moreover, the

spike timing reliability (as indexed by the Rcorr, see below) was

computed and found to be similar for the cortical data and the

NHPP model (unpaired t-test for vocalizations, p = 0.32; for

DMRs, p = 0.12).

So far, the artificial STRF were described by:

STRF (v,t)~Gs(v)Gt(t), i.e. as the product of a function of

space and a function of time. Such artificial STRFs are called

separable but it should be noted that not all STRFs in our data can

be expressed in a separable form. Hence, as a subsequent control,

we considered the case of unseparable artificial STRFs. In order to

produce unseparable STRFart, we rotated the separable kernel by

an angle % in the spectro-temporal plane. The angle was chosen

to be uniformly distributed between [2p/4, p/4]. This procedure

is sufficient to make the STRF unseparable and assess the effect of

separability on the bias of the estimation procedure. In the Result

section, unless explicitly mentioned, the results are only presented

for separable STRFart.

Spike-timing reliability of neuronal responses. As in

previous studies [30,40], we evaluated the trial-to-trial spike-timing

reliability to a given stimuli using the Rcorr index introduced by

Schreiber et al. [41]. This index measures the average correlation

across trials (i.e. between the spike trains obtained from several

repetitions of the same stimulus). This correlation is given by a

scalar product between pairs of trials, the result being divided by

the norms of the two trials. Each spike train si
!, used for the scalar

product, is given by a vector of zeros and ones convolved by a

Gaussian window of different standard deviations s. Therefore,

the correlation measure Rcorr is given by:

Rcorr(s)~
2

N(N{1)

XN

i~1

XN

j~iz1

si
!: sj
!

si
!�� �� sj

!�� �� ð5Þ

in which N is the number of stimulus presentations. The value of

Rcorr typically increases as a function of the smoothing window’s

width s. This is due to the progressive removal of any temporal

differences between pairs of spike trains when the size of the

smoothing window gets larger. Window sizes ranging from 1 to

90 ms were analyzed. The results presented here are for s
= 20 ms. A possible bias in the Rcorr statistic can come from the

stimuli length [30]. To avoid this bias, Rcorr were computed using

a sliding window of 200 ms and the averaged Rcorr was then kept

as the final result.

Effects of bursts of action potentials on STRF

computation. Bursts are groups of action potentials emitted

with short inter-spike intervals (,5 ms). They constitute one of the

many nonlinear neuronal mechanisms that can alter the procedure

of STRFs computation. Indeed, the nonlinear dynamics typical of

bursting behavior [42–44] is very different from a linear filter

model such as the STRF. For instance, thalamic low-threshold

bursts have been shown to generate different STRFs than single

spikes [45]. To assess the importance of this nonlinearity, the

number of bursting events was determined using a detection

procedure applied in previous studies [46–51]. Here, bursts were

defined as groups of action potentials (APs) in which the two first

APs are separated by 5 ms or less (with the possibility that the two

last APs are separated by 10 ms when the burst is made of more

than 2 spikes). These criteria have been mainly applied at the

thalamic level, but they also successfully detected the increase in

bursts proportion in auditory cortex at switch from waking to slow

wave sleep [33]. Although this procedure differs from non-

parametric ones based on deviation from a Poisson process [52],

we chose it because it is based upon physiological (but more

conservative) criteria. The percentage of bursting events was

defined as:100 � NBurst

NBurstzNuniqueAP

.

For a subset of cells exhibiting at least 100 bursts over all trials in

each stimulus set (i.e., over the 20 repetitions of the 9 DMRs or 9

vocalization files), we split each evoked spike train into two

components: the single APs component from which we computed

a STRFAP and the burst component from which we computed a

STRFBurst.

Results

Only cells exhibiting stable action potential waveforms during

the entire recording session (<60 min) were included in the

present study. Ninety two cells, all exhibiting robust responses to

pure tones, were recorded in the primary auditory cortex of adult

guinea-pigs. Two to thirteen cells were collected from each animal

(mean 9 cells/animal). Cells were recorded from 200 to 2050 mm

below pia and, based on the laminar analyses performed by

Wallace and Palmer [32], each cell was assigned to a cortical layer.

Using pure tones, the characteristic frequency (CF) was between

0.7 and 20 kHz and the threshold between 0 to 60 dB SPL.

During the tuning curve determination, spontaneous activity

ranged from 0.01 to 3.4 spikes/sec (median 0.42; mean6sem

0.8161.12) and at 20 dB above threshold the responses at the best

frequency ranged from 10.2 to 65.3 spikes/sec (median 15.1;

mean6sem 20.568.2).
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Characterization of the Cells with Significant STRFs
From the responses collected at presentation of vocalizations,

STRFs exhibiting significant zones (see Methods) were obtained

for 62% (57/92) of the cells. From the responses collected at

presentation of DMR, STRFs exhibiting significant zones were

obtained for 68% (63/92) of the cells. Figure 2 displays examples

of four STRFs obtained in both conditions. In all figures, black

and white lines indicate significance contours at 3 and 5 s,

respectively (red indicates ‘‘excitatory areas’’ and blue indicates

‘‘inhibitory areas’’).

First, we looked for potential differences between cells whose

responses could be fitted with significant STRFs (with DMR and/

or with vocalizations) compared to cells which could not. There

was no difference between these two cell populations in terms of

cortical depth, breadth of tuning and response latency when tested

with pure tones (see Table 1). Cells showing significant STRFvoc

had a higher spontaneous rate than those which did not, but

spontaneous activity was not a critical factor because such effect

was not observed for cells showing significant STRFdmr. Although

cells showing no STRFdmr had a higher percentage of evoked

bursts in their responses, this was not the case for the STRFvoc. In

contrast, both for the responses to DMRs and to vocalizations, the

strength of evoked responses and their temporal reliability were

higher for cells whose responses allowed the estimation of a

significant STRF compared to cells which did not (see Table 1).

Second, we investigated the STRFs’ predictive power and

compared it to the inter-trial variability. The predictive power of

STRFvoc and STRFdmr was quantified by the correlation

coefficient between the actual PSTH and the predicted PSTH

from the STRF (CCvoc and CCdmr; see Methods). Two individual

examples are presented in Figure 3A–3B, one with a high

(JL21HE, Figure 3A1–A2) and the other with a low (JL14GE,

Figure 3B1–B2) predictive power. The distributions of the

predictive power measures CCvoc and CCdmr are presented in

Figure 3C for all cells with significant STRFvoc (C1) and/or

STRFdmr (C2). They significantly differed (x2 = 24.18; p = 0.04)

and so did their mean values (0.288 for STRFvoc vs. 0.191 for

STRFdmr; unpaired t-test, p,0.01), indicating that for the cell

population under study, responses to vocalizations are better

predicted by STRFvoc than responses to DMRs are predicted by

STRFdmr.

We then investigated how linear the stimulus-response relation-

ship is (for the vocalizations and the DMRs) by comparing the

predictive power (CCvoc and CCdmr) to the inter-trial variability

(CCpsth-psth). The latter was computed using the correlation

coefficientapplied on the cells’ PSTH splitted into two sets of 10

trials (see Methods). For a large majority of cells (51/57 for

vocalizations and 62/63 for DMRs), both the CCvoc and CCdmr

were significantly smaller (paired t-test, p,0.05) than the CCpsth-

psth (see Figure 4A1–A2). Figure 4A1 shows that for almost all cells

showing significant STRFvoc, the CCpsth-psth is high and higher

than the CCvoc. On average over the whole population, the CCvoc

was 2.85 times larger than the CCpsth-psth. For the DMRs, the

CCpsth-psth was on average 4.07 times larger than the CCdmr

(Figure 4A2). These results show that a low predictive power

cannot be solely attributed to the inter-trial variability. Indeed, for

the cells in the upper left part of Figures 4A1 and 4A2, the cells

responses are highly reproducible (high CCpsth-psth value), but still

the responses are poorly fitted by the STRF model, resulting in a

low CCvoc (or CCdmr) value. Noteworthy, the CCpsth-psth did not

Figure 2. Individual examples for four neurons exhibiting either similar (A. and B.) or different (C. and D.) STRFs derived from
responses to vocalizations (top row) and responses to dynamic moving ripples (DMR, bottom row). For each STRF, the color code
represents ‘‘excitation’’ in red and ‘‘inhibition’’ in blue, units are in spikes/(sec2*dB). In A. and B., the neurons display relatively similar STRFs with
vocalizations and DMRs: The best frequency (BF) was similar with vocalizations and DMRs (6.5 kHz in A and B) and the excitation area was
circumscribed to the same frequency range, despite some differences in the overall shape. Thus, the similarity index (SI, indicated between the two
rows) was relatively high (0.45 and 0.38). In C. and D. the neurons display quite different STRFs estimated from responses to vocalizations and DMRs;
in particular, the BF, the shape and the frequency range of the excitatory area differed. Therefore, the values of the SI are low (0.17 and 0.00). Insets in
each STRF show the AP waveform during presentation of the stimuli.
doi:10.1371/journal.pone.0050539.g002

STRFs from Artificial and Natural Stimuli

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e50539



significantly differ between the two stimulus sets (CCpsth-psth = 0.55

for the vocalizations and CCpsth-psth = 0.53 for the DMR; unpaired

t-test, p = 0.43), indicating that the inter-trial variability was

similar for vocalizations and DMR.

Spike-timing Reliability is Independent of the Stimulus
Set

Over the 20 repetitions of each vocalization and DMR file, the

spike trains can exhibit either a low (Figure 4B1–B2) or a high

Table 1. Characteristics of the cells exhibiting significant STRF compared with those exhibiting no significant STRF using
vocalizations and Dynamic Moving Ripples (DMRs).

Responses to vocalizations Responses to DMRs

STRF (n = 57) No STRF (n = 36) p value STRF (n = 63) No STRF (n = 29) Stat diff

Mean Depth (mm) 1126 1130 p = 0.32 1129 1007 p = 0.23

(range mm) 350–2150 200–1970 270–2150 200–1950

Tuning width

Q20 dB 1.82 1.78 p = 0.43 1.70 1.66 p = 0.85

Latency

Mean (ms) 35.6 34.1 p = 0.63 36.2 32.4 p = 0.23

sem (ms) 19.3 18.9 p = 0.82 19.1 19.2 p = 0.96

Spontaneous 2.72 1.29 p = 0.01 2.13 2.34 p = 0.78

Evoked 5.71 2.97 p = 0.001 5.16 2.92 p = 0.04

% Evoked bursts 7.99 5.95 p = 0.12 5.91 10.70 p = 0.001

Rcorr 0.46 0.39 p = 0.01 0.43 0.32 p = 0.002

Unpaired t-tests were used to determine if the parameters differed between these 2 types of cells.
doi:10.1371/journal.pone.0050539.t001

Figure 3. Predictions between measured responses and predicted responses based on the STRFvoc (top, A and C) and on the
STRFdmr (bottom, B and D) quantified by the Correlation Coefficients (CC). A–B. Individual examples showing the actual measured
responses for a neuron presenting good predictions (JL21HE; left panel) and a neuron presenting poor predictions (JL14GE, middle panel). The top
row shows the responses to vocalizations corresponding to spectrograms displayed on the top with the measured responses in blue and the
predicted responses in red. The bottom row shows the responses to DMR corresponding to spectrograms displayed on the top (blue curve, measured
responses; red curve, predicted responses). C1–C2. Distributions of the CC values for the STRFvoc (A) and for the STRFdmr (B). The mean value of 0.29
obtained for the STRFvoc is significantly higher than the mean value obtained for the STRFdmr (0.19). The CC values presented here are for STRFvoc

tested on vocalization responses and for STRFdmr tested on DMR responses.
doi:10.1371/journal.pone.0050539.g003
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(Figure 4C1–C2) trial-to-trial temporal reliability. For each cell, we

quantified the spike timing reliability at presentation of natural

and artificial stimuli by the Rcorr index ([41], see Methods). The

mean Rcorr values were not significantly different when quantified

during the presentation of DMRs and of vocalizations (Rcorrdmr

= 0.44, Rcorrvoc = 0.46; paired t-test, p = 0.11). These values were

as high (or higher) than those obtained in our previous studies

[30,40]. As indicated in Table 1, the Rcorr index was higher for

responses which could be predicted by significant STRFs than for

responses which could not, and this hold true for both STRFvoc

and STRFdmr. A correlation was observed between Rcorrvoc and

the values of CCvoc for the responses to vocalizations (r = 0.37,

p,0.05) but not between Rcorrdmr and the values of CCdmr

(r = 0.22, p = 0.17). This can be explained given that the CCvoc

and the CCdmr were not correlated (r = 0.08, p = 0.6, - see below,

Quantification using the predictive power) despite the correlation between

Rcorrvoc and Rcorrdmr (r = 0.4, p,0.01). Thus, spike-timing

reliability (indexed by Rcorr) is independent of the stimulus set.

Comparison between STRFs Obtained from Natural and
Artificial Stimuli

The responses of forty-two neurons (45%) allowed estimation of

significant STRFs from both vocalizations and DMRs. Unless

explicitly specified, all subsequent comparisons will focus on this

population of 42 cells. For these cells, the strength of evoked

responses did not significantly differ between the DMRs and the

vocalizations (paired t-test; p = 0.82). Figures 2A and 2B depict

two STRFs showing similarities when computed from vocaliza-

tions and DMR: despite slight differences in the shape of the

excitatory areas, these areas are in the same frequency range.

However, in many cases the STRFvoc and STRFdmr exhibited

Figure 4. Inter-trial variability. A. Comparison between the inter-trial variability and the predictive power. The inter-trial variability computed with
the Correlation Coefficient between PSTH (CCpsth-psth) is compared for each cell to the predictive power for the vocalizations (A1) and the DMR (A2).
In most of the cases (black stars in A1 and A2), CCpsth-psth is significantly higher (paired t-test, p,.05) than CCvoc (A1) or CCdmr (A2). In very few cases
(black dots), CCpsth-psth is not significantly different than CCvoc or CCdmr. B–C. Examples of four neurons showing either a low (B) or a high (C) spike
timing reliability. For each plot, the neuron’s STRF (top) is shown, together with the raster plot (middle) of 20 responses to the stimulus for which the
spectrogram (frequency vs. time) is represented on the bottom. Values inserted along the raster plots are the values of the trial-by-trial spike timing
reliability as computed with the Rcorr. B1 and B2 show responses with a low spike-timing reliability, whereas C1 and C2 show responses with a high
spike-timing reliability. Insets in each STRF show the AP waveforms. STRF units and scale are the same as in Figure 2.
doi:10.1371/journal.pone.0050539.g004
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important differences. Figures 2C and 2D show two examples of

cells exhibiting important mismatches between their STRFvoc and

STRFdmr: Not only the shapes of the excitatory and inhibitory

areas differ but they are also located in different frequency ranges.

The differences between STRFvoc and STRFdmr were quantified

by classical measurements (BF, bandwidth and latency; see below),

a similarity index and their predictive power.

Quantification using classical parameters. Best frequen-

cies, bandwidths and latencies of the excitatory area extracted

from STRFvoc were compared with those obtained from the

STRFdmr. Important differences were noted and there was no

significant correlation between the parameters derived from both

types of STRFs (lowest p value p = 0.15 for the BF values). For

example, the BFs derived from STRFdmr and from STRFvoc rarely

matched (paired t-test, p,0.001; Figure 5A). As shown in

Figures 5B and 5C, discrepancies between STRFvoc and STRFdmr

also exist in terms of bandwidth of excitatory area (paired t-test,

p,0.01) and in some cases in terms of response latencies

(p = 0.17). The values of the bandwidths derived from STRFvoc

and STRFdmr were higher than those obtained from pure tones

(p,0.01 in both cases) and the response latencies were smaller

(p,0.001 in both cases).

Interestingly, the BFs derived from the tuning curves usually

matched the BFs derived from the STRFdmr (paired t-test,

p = 0.69) but did not match the values derived from the STRFvoc

(paired t-test, p,0.0001, see Figure S1). This could suggest that

STRFdmr better capture the classical receptive field properties. For

each cell, we computed the coordinate of the STRFdmr maxima

(ie, a point in the time-frequency domain corresponding to the

latency and BF of the cell as extracted from the STRFdmr) and

looked whether at this point, the STRFvoc was excitatory or not.

This was true for 21/42 cells (50%) but for 19/42 cells (45%) the

STRFvoc was not significantly excitatory at the point (defined by

the BF and the latency) where the STRFdmr was maximum (the

two other STRFs were inhibitory at this point). Performing the

reverse analysis, we found that for 17/42 cells (44%), the STRFdmr

was excitatory at the location where the STRFvoc was maximum,

but for 21/42 (50%) of the cells, the STRFdmr was not significantly

excitatory. Finally, note that only 13/42 (31%) cells showed a

consistent excitatory STRF in both analyses, meaning that for

69% of the cells, either the maximum of STRFvoc was unrelated to

features in the DMR condition or the STRFdmr was unrelated to

features in the vocalization.

In order to emphasize that the differences between STRFvoc

and STRFdmr were not only a consequence of the differences

between artificial and natural stimuli, we built a linear spiking

model and simulated its responses to the two sets of stimuli (see

Methods). We then computed STRF*voc and STRF*dmr for this

linear spiking model, and extracted from these STRFs* the best

frequency, the bandwidth and the latency. As expected, all these

parameters were highly correlated between STRF*voc and

STRF*dmr (Best Frequency: r = 0.72, p,0.001; bandwidth:

r = 0.48, p,0.01; latency: r = 0.34, p,0.05). The bandwidths

and latencies were not significantly different (paired t-test, p = 0.88

for the bandwidth and p = 0.51 for the latencies) between

STRF*voc and STRF*dmr, however, the BF were slightly, but

significantly smaller for the vocalizations than for the DMR (mean

BF = 3.4 for the vocalizations, mean BF = 3.5 for the DMR, paired

t-test, p = 0.03).

Quantification using the Similarity Index (SI). The SI

quantifies the similarity between STRFvoc and STRFdmr by taking

into account the shape, frequency range and strength of significant

excitatory and inhibitory areas [10]. The mean SI value was 0.15

(range –0.1 to 0.5) and its distribution is biased toward low values

(Figure 6A). As for the classical tuning curve parameters, we

computed the similarity between the STRFs* produced by the

linear spiking model. If the differences between STRFs that we

observed in the real data were only due to the stimuli, low SI

values should also be obtained with the model. Actually, with the

model, we obtained a relatively high mean SI value of 0.62 (range

0.27 to 0.90; Figure 6B). Slightly smaller values of SI were

obtained using unseparable STRFart (mean = 0.52). The distribu-

tion of SI values obtained using the linear spiking model on

separable STRFart clearly differs from that of the real data

(x2 = 63.5; p,0.0001). Figure 6C show examples of the artificial

STRF (STRFart used to generate surrogate spike trains), STRF*voc

and STRF*dmr estimated from the NHPP model responses. The

higher SI values obtained with the model compared to the real

data indicate that the differences between STRFvoc and STRFdmr

cannot simply be accounted for by differences in the stimulus

statistics. Note that (as mentioned in the Methods section), the

NHPP model matched the physiological data with regards to the

STRF characteristics (BF, BW and latency) but also in terms of

Figure 5. Comparison between the STRF parameters derived from the STRFvoc and the STRFdmr. A. Scattergram showing the values of
the BF derived from the STRFvoc (abscissa) against the values of the BF derived from the STRFdmr (ordinates). For half of the cases, the values are
similar (dots around the diagonal line) whereas for the other half, the values derived from the STRFdmr were higher than those derived from the
STRFvoc. B. Scattergram showing the bandwidth values derived from the STRFvoc (abscissa) against the bandwidth value derived from the STRFdmr

(ordinates). In many cases, the values were lower with STRFvoc indicating a larger bandwidth of excitatory responses when tested with vocalizations.
C. Scattergram showing the latency values derived from the STRFvoc (abscissa) against the bandwidth value derived from the STRFdmr (ordinates). The
latencies of the excitatory responses were often similar but, in some cases, they were lower with DMRs than with vocalizations. STRF units and scale
are the same as in Figure 2.
doi:10.1371/journal.pone.0050539.g005
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spiking response (mean firing rate and spike timing reliability).

Indeed, the Rcorr did not differ between cortical and surrogate

spike trains (unpaired t-test for vocalizations, p = 0.32; for DMRs,

p = 0.12). The inter-trial variability (as indexed by the CCpsth-psth)

was lower for the surrogate responses than for the cortical

responses (unpaired t-test for vocalizations p,0.001; for DMRs,

p,0.001) indicating that, with surrogate responses which are

noisier than the real data, the NHPP model still produces STRF*s

that show more similarity between stimuli than the cortical data.

This emphasizes that the observed differences between cortical

STRFvoc and STRFdmr originate from other factors than the

acoustic differences between stimuli.

Quantification using the predictive power. As described

for the entire population, for the 42 cells whose STRFdmr and

STRFvoc were both significant, the values obtained for the CCvoc

(measuring the prediction of the STRFvoc on a new vocalization)

were significantly higher than the CCdmr (0.30 vs. 0.17; paired t-

test, p,0.0001). Interestingly, this was also the case for the NHPP

model (0.37 vs. 0.26; p,0.0001). To assess whether this better

predictability for the vocalizations originated from a bias in the

estimation procedure, we computed the CCvoc and CCdmr when

STRF* were estimated at equal regularization values for both

stimulus set. For all tolerance values used, the NHPP predictions

were significantly higher for vocalizations than for DMRs (paired

t-test; p,0.0001).

Since the predictive power values spanned a large range for

both DMRs and vocalizations (20.2 to 0.63), it could be suspected

that cells with a low CCdmr also show a low CCvoc. This was not

the case: there was no correlation between CCvoc and CCdmr

(r = 0.08, p = 0.6). Not surprisingly, when the STRF derived from

one set of stimuli was used to predict responses to the other set, the

predictive power decreased significantly (Figure 7). This holds true

both when using the STRFvoc to predict responses to DMRs

(CCdmr = 0.17 vs. CCvoc2dmr = 0.08; paired t-test, p,0.0001) and

when using the STRFdmr to predict responses to vocalizations

(CCvoc = 0.30 vs. CCdmr2voc = 0.12; paired t-test, p,0.0001). As

already pointed out by others [4,24], this confirms that the STRF

model poorly generalizes to another type of acoustic stimuli.

Contribution of Bursts to STRF Differences
Differences between STRFvoc and STRFdmr can result from

nonlinearities in the responses which can have a different impact

on the reverse-correlation performed on each stimulus set. We

evaluated whether high frequency bursts (.200 Hz) of APs –

which potentially constitute nonlinear responses – account for

some of the differences between the two types of STRF. On

average, evoked bursts represented 7.2% of the events at the

presentation of vocalizations and 7.3% at the presentation of

DMRs (ranging 0–38% in both cases). As bursts were made of at

least two action potentials (AP), this means that, on average, for

both set of stimuli, at least 15% of the total numbers of AP actually

comes from bursts. There were significantly more bursts in layers

III and V than in the other layers (10.4% and 8.95% respectively

vs. 5.07 in layer I/II; 4% in layer IV and 5.1% in layer VI).

First, to evaluate whether bursts are responsible for the observed

differences between STRFvoc and STRFdmr, we removed all bursts

from the spike trains and recomputed the SI index between

STRFvoc and STRFdmr. If bursts were responsible of the low SI

values, their removal should improve the mean SI. The reverse

was found: the SI between STRFvoc and STRFdmr significantly

decreased once bursts were removed (mean SIwithout Burst = 0.10 vs.

0.15 with the bursts; paired t-test p,0.05) indicating that bursts

contributed to increase, rather than to decrease, the similarity

between STRFvoc and STRFdmr. Moreover, we evaluated whether

bursts modify the response predictability by computing the CCvoc

and CCdmr on single AP responses. The removal of bursts did not

change the CC values (CCvoc without burst = 0.31 similar to

CCvoc = 0.30, paired t-test, p.0.3, CCdmr without burst = 0.18

similar to CCdmr = 0.17 paired t-test, p.0.3).

Despite these surprising results, we decided to go further by

evaluating whether the low SI index between STRFvoc and

STRFdmr resulted from a difference in the number of bursts

evoked by vocalizations and by DMRs. No correlation was

observed between the difference in percentage of bursts (or the

absolute value of this difference) and the SI value (r = 0.07,

p = 0.67). There was also no correlation between the difference in

number of spikes within bursts evoked by vocalizations and DMRs

(or the absolute value of this difference) and the SI values (r = 0.02,

p = 0.9). This lack of correlation suggests that the differences

between STRFvoc and STRFdmr cannot simply be explained by a

difference in burst proportions evoked by vocalizations and by

DMRs.

Nonetheless, the question remains whether evoked bursts

constitute a nonlinearity detrimental to STRF calculation. For

this purpose, we computed separately STRF from the single AP

and from the burst component of each spike train. After applying

the criterion to detect burst events (see Methods), we selected cells

having more than one hundred evoked bursts for each stimulus set

and, for each cell, we computed two STRFs: one with only single

action potentials (STRFAP) and one with only bursts (STRFBurst).

In total, 31/92 cells responding to vocalizations satisfied this

criterion, and 23/92 cells did for the DMRs. Figure 8 shows

examples of STRFs derived from bursts and single AP at

presentation of vocalizations (8A and 8B) or of DMRs (8C and

8D). In three cases (Figure 8A–C), these examples show that the

STRFBurst is quite similar to the STRFAP, but with more

prominent inhibitory zones in the STRFBurst. The STRFs

presented in Figure 8D shows an example of dissimilarity between

STRFBurst and STRFAP. The distribution of SI values between

STRFAP and STRFBurst did not differ from a normal distribution

(Figure 8E) and its mean value was 0.3960.22. There was no

correlation (r = 0.097, p = 0.52) between the number of bursts and

the similarity between the STRFAP and STRFBurst, indicating that

bursts generate STRFs which either match or differ from those

generated by the single AP.

Discussion

Testing guinea pig auditory cortex neurons with conspecific

vocalizations and dynamic moving ripples (DMRs) allowed

obtaining STRFs for a large proportion of cells (62% of the cells

exhibiting reliable tuning curves showed significant STRF with

vocalizations, 68% with DMRs). For 42 cells exhibiting significant

STRFs with both vocalizations and DMRs, the BF, latency,

bandwidth and global shape of the STRFs often differed between

vocalizations and DMRs. The trial-to-trial temporal reliability of

evoked responses was similar at vocalizations and DMRs but the

predictability (indexed by CCdmr and CCvoc) was higher for

vocalizations than for DMRs presentations. Cortical bursts, which

potentially introduce nonlinearities in the evoked responses,

cannot by themselves explain the differences between STRFvoc

and STRFdmr.

Differences between STRFvoc and STRFdmr

What can explain the large differences observed between

STRFvoc and STRFdmr? When estimating a neuron’s STRF using

reverse correlation, the stimulus parameter space should be

adequately sampled and the recorded response reliable. If not,
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the STRF estimates will be noisy and unreliable. In the following,

we aim at demonstrating that, even if some differences were

present between our two stimulus sets, they cannot, per se, account

for the differences between STRFs.

Potentially, some of the differences observed may originate from

stimulus-dependent biases in the STRF estimation procedure.

Indeed, although reverse correlation is, in principle, accounting for

acoustical differences in the stimulus sets, one can still suspect that

Figure 6. Comparisons between the similarity index (SI) obtained with the real and artificial neurons. A. Distribution of SI for the 42
neurons allowing for a paired-comparison between STRFvoc and STRFdmr. The mean SI of 0.15 is low and reflects important differences between the
two types of STRFs. B. Distribution of SI for 42 STRF*s generated from the NHPP model responses. The mean SI of 0.62 reflects that STRF*s from
vocalizations and DMRs show numerous similarities when calculated from the NHPP model’s responses. C. Two examples of STRFart (left) used to
generate surrogate responses with the NHPP model and their associated estimated STRF*voc (middle) and STRF*dmr (right). The first example (top)
displays a narrow excitatory zone surrounded by two inhibitory side bands. The second STRFart (bottom) is wider in spectral extent and has an
inhibitory zone only in the low frequencies. Estimated STRF*s obtained from both sets of stimuli are quite similar with high SI values (0.68 and 0.79).
Hence, the low SI values obtained from real data (A) cannot be attributed solely to differences in the statistics of our stimuli. STRF units and scale are
the same as in Figure 2.
doi:10.1371/journal.pone.0050539.g006
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some biases are produced by the regularization procedure. More

precisely, in each stimulus set, a regularization criterion specifies

which spectral and temporal modulation frequencies are used to

compute the stimuli autocorrelation. Since the regularization

criterion is chosen based on the STRF’s prediction for each

stimulus set, some degree of stimulus dependencies in STRF

estimates can be expected. In our experiment, although the two

sets of stimuli were matched in terms of average power and

modulation spectrum, the following differences still existed: (i)

conspecific vocalizations have frequent, rapid and large changes in

instantaneous sound intensity across frequency bands which do not

exist in DMRs and (ii) harmonics in vocalizations appear as

linearly spaced peaks in the spectrum whereas ripples are

sinusoidal spectral modulations on a logarithmic axis. However,

stimulus set biases are probably not the main source of the

observed differences between STRFvoc and STRFdmr for the

following two reasons.

Firstly, the differences between STRFvoc and STRFdmr were

much more pronounced for the real data than for the NHPP

model. The mean value of the Similarity Index (SI) between

STRFs was 0.62 in the NHPP model simulations, a much higher

value than the average SI obtained in our cortical data (SI = 0.15).

In fact, the linear spiking model was used to obtain an estimate of

the STRF shape differences solely due to stimulus set bias. Since

this model was closely matched to our real data (similar STRF

parameters, spontaneous and evoked firing rate, spike timing

reliability), an average SI of 0.62 constitutes the maximal value

that can be obtained taking into account the bias in our stimuli

sets. This strongly suggests that the differences between our stimuli

sets cannot, in itself, account for the STRF differences.

Secondly, our results suggest that auditory cortex neurons did

not show a linear spectro-temporal response. Indeed, if auditory

cortical neurons were responding linearly, their STRF should be

the best estimator of their response and the predictions should be

as high as the inter-trial reliability. In that case, the CCvoc (and

respectively the CCdmr) obtained should be equal to the CCpsth-

psth. In contrast, the majority of cells had significantly lower CC

than CCpsth-psth. We only observed predictions comparable to

inter-trial reliability in a few cases: CCvoc < CCpsth-psth for only 6/

Figure 7. Across stimuli STRF predictions. Top: Scattergram showing the CC values when STRFdmr are used to predict responses to DMR (CCdmr,
ordinates) against CC values when STRFvoc is used to predict responses to DMR (CCvoc2dmr, abscissa). Bottom: Scattergram showing the CC values
when STRFvoc are used to predict responses to vocalizations (CCvoc, ordinates) against CC values when STRFdmr is used to predict responses to
vocalizations (CCdmr2voc, abscissa). In both cases, the large majority of values are higher when the same stimulus set is used for computing the STRF
and for predicting the response (dots are mainly above the diagonal line).
doi:10.1371/journal.pone.0050539.g007
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57 cells and CCdmr < CCpsth-psth for only 1/63 cells (see

Figure 4A1–A2).

Bursts do not Account for the STRFs Differences
The higher value of inter-trial reliability over the linear

predictability strongly suggests a nonlinear behavior of auditory

cortex neurons. We favor this hypothesis and consider that most of

the differences observed in STRFvoc vs. STRFdmr (as well as the

relatively poor predictability of the STRF) originate from the

response nonlinearities. To further investigate these nonlinearities,

we examined the effects introduced by high frequency bursts.

Putatively, neural bursts constitute a response nonlinearity since

these events occur as a result of complex interactions of nonlinear

processes on different time scales [42–44]. On average, spikes from

bursts represented around 15% of the action potentials (AP)

emitted by cortical cells. These bursts reflected sometimes similar,

sometimes different components of the STRFs than the single AP.

Our analysis shows that bursts cannot account for the differences

between STRFvoc and STRFdmr. Indeed, when removing entirely

the bursts, the predictions did not change, and the discrepancy

between STRFvoc and STRFdmr increased (the mean SI decreased

from 0.15 to 0.10). This suggests that bursts occurred more

frequently for acoustical events falling within the linear part of a

neuron’s receptive field. This is in good agreement with the

observations that auditory thalamus bursts occurred preferentially

at the neurons’ BF [51]. It is also in good agreement with the

Figure 8. Comparison between STRFs obtained from single action potentials (STRFAP) and from bursts (STRFBurst). A., B. and C. show
examples of cells exhibiting relatively similar STRFAP and STRFBurst (SI.0.5). In the three cases, the main excitatory zone is in the same frequency
range for STRFAP and STRFBurst; differences are mainly observed in small excitatory and inhibitory areas. Note that inhibition zones are more
prominent in STRFBurst than in STRFAP. D. Example of differences between STRFAP and STRFBurst (SI,0.5). The maximal excitatory zone is different for
the Burst response than for the single APs response. E. Distribution of SI between STRFAP and STRFBursts (mean SI = 0.3960.22). The distribution shows
a continuous range of SI values indicating that bursts of spikes can produce, on average, a STRF relatively similar to the STRF produced by single APs.
STRF units and scale are the same as in Figure 2.
doi:10.1371/journal.pone.0050539.g008
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results by Shih et al (2011): they showed that spikes contained in

short interspike intervals (ISI) were more feature selective and

conveyed more information than spikes contained in long ISI [53].

However, in that study, since a liberal criterion was set to detect

potential bursts (ISI,15 ms), there is no guarantee that real

‘‘bursts’’ were detected and not simply accelerations of tonic firing

rate.

Here, our criterion for isolating cortical bursts was based on

parameters amply validated at the thalamic [46–51] and cortical

level [33,54]. Nonetheless, different types of bursts can be

generated by different cortical cells (review in [55,56]) and

therefore the possibility of implementing cortical bursts in a model

is not as straightforward as at the thalamic level [45]. In previous

studies, differences in cortical cell types have been shown to

produce different STRFs [57,58]. At variance with these studies,

no claim can be made here about differences according to cortical

cell types, i.e., potential differences between regular spiking cells

vs. thin spike cells. The very low proportion of thin spike cells

obtained here (n = 4) compared with the large proportion of broad

spike cells (n = 88) makes statistical analyses meaningless.

Non Linearity and Context Dependence of Auditory
Responses

Response nonlinearities leading to differences in STRFs have

been investigated in an increasing number of studies [17–

19,22,45,59]. Initially, Theunissen and colleagues [4] proposed

that although they observed differences in STRF obtained from bird

songs and random tones, the nonlinear neural response was locally

correctly approximated (i.e. within each stimulus set) by the

estimated STRF. This hypothesis is corroborated by the good

predictions obtained at different levels of the bird auditory system.

An average CC of 0.51 and 0.45 was observed in the bird forebrain

[4] and in sub-regions of the field L, the average CC ranged 0.37 to

0.63 [60]. A mean CC of 0.69 was even observed when testing field

L neurons with artificial stimuli closely matching songbird acoustics

[58]. When predictability is comparable to inter-trial reproducibil-

ity, one can use the STRF as a good linear estimate in each subset in

order to better capture the full nonlinear neural response.

Improvement of predictions was for instance demonstrated in the

inferior colliculus by Lesica and Groethe [23] when using STRFs

obtained at two different stimulus levels. Note that, at the level of the

inferior colliculus, STRFs seem to provide a good predictability in

all species (Zebra finch: mean CC = 0.4 in [21]; Gerbils: mean

CC = 0.6 in [23]; Bat: median CC.0.3 in [61]).

Surprisingly, studies performed in the auditory cortex of

mammals did not report such a high predictability. For example,

using ensembles of natural stimuli, Machens et al. [22] showed

that only 11% of the response power was predicted by the STRF

linear model. Similarly, using artificial stimuli (dynamic random

chords), Sahani and Linden [62] found that STRF models account

for 18 to 40% of the stimulus related power in auditory cortex

response; and more recently CC of 0.25 for speech-like stimuli and

0.13 for TORC stimuli were reported by David et al. [24]. Thus,

with a mean CC of 0.29 for the STRFvoc and a mean value of 0.19

for the STRFdmr our results are in the range of what was

previously reported in mammalian auditory cortex.

This literature suggests that two factors contribute to the

heterogeneity of the CC values. Firstly, the predictability seems to

deteriorate when progressing from midbrain to cortex in mammals

(see for example Lesica and Groethe [23] in the midbrain vs.

Machens et al [22], David et al [24] in the cortex), maybe as a

consequence of additional nonlinear processing occurring in the

thalamo-cortical network. Secondly, the predictability seems to be

higher for natural than for artificial stimuli. In fact, this is also true

for our NHPP simulations: the CC values were slightly, but

significantly higher, for vocalizations than for DMR (0.37 vs. 0.26

respectively). This suggests that, compared to artificial stimuli,

communication sounds which contain amplitude modulations

across frequency bands, produce a theoretical bias toward higher

CC values. However, it remains, that in most cases, the predictions

are far from been optimal at the cortical level. High values of

temporal reliability were observed independently of the stimulus

set, even though vocalizations had more frequent and rapid

variations of sound intensity. Hence, the question remains of

explaining what generates this deterministic stimulus-response

function.

In fact, any arbitrary stimulus-response function can be

approximated by Wiener kernel series, the STRF being the first

order kernel. If higher order kernels are important in describing

cortical neuron responses, then interactions between different

spectro-temporal components matters. Many types of contextual

effects have a strong impact on the neurons’ receptive field in

auditory cortex: Additional peaks in the neuron’s STRF can be

observed by reducing the stimulus spectral content [63] and multi-

linear modeling has been shown to account for two-tones

suppression and adaptation [18]. In fact, other types of contextual

effects have a strong impact on the neurons’ receptive field. For

instance, the attention for a target stimulus during a behavioral

task can shift the STRF excitatory area [8,9]; the shift from

wakefulness to slow-wave sleep can shrink the receptive area of

cortical and thalamic cells [33,34,64,65]. These acoustical and

state-dependent contextual effects point out that STRFs reflect a

snapshot, not only of the neuron’s response, but also of the entire

network converging on that particular neuron.

Conclusion
Our results should be taken as additional evidence that cortical

neurons, showing reliable tuning curves, process communication

sounds in a way that cannot be predicted based on the responses

obtained with artificial stimuli. This is probably not the result of a

‘‘learned’’ significance of these natural stimuli but most likely of

the particular acoustic characteristics of these communication

sounds and of the nonlinearity of the cortical responses. It was not

the purpose of our study to dissect the mechanisms of cortical

nonlinearities, but an original contribution of our work is to show

that cortical high frequency bursts do not constitute nonlinearities

detrimental to cortical STRF estimation. Further studies, com-

bining the use of virtual vocalizations [66], electrophysiological

recordings and modeling approaches, are required to understand

to what extent the processing of communication sounds benefit

from these cortical nonlinearities.

Supporting Information

Figure S1 Comparison between parameters obtained
with pure tones and those derived either from STRFdmr

or from STRFvoc. A. These scattergrams show the values of the

parameters derived from classical tuning curves (abscissa) against

the values of the BF derived from STRFdmr (ordinates). The values

of the BF was similar (A1), the tuning bandwidth were slightly

broader (A2) and the latency shorter (A3) when computed from

STRFdmr than with pure tones. B. These scattergrams show the

values of the parameters derived from classical tuning curves

(abscissa) against the values of the BF derived from STRFvoc

(ordinates). In many cases, the values of the BF was lower (B1), the

bandwidth was broader (B2) and the latency was shorter (B3) when

computed from STRFvoc than with pure tones.

(TIF)

STRFs from Artificial and Natural Stimuli

PLOS ONE | www.plosone.org 14 November 2012 | Volume 7 | Issue 11 | e50539



Acknowledgments

We thank the reviewers for insightful comments on a previous version of

the MS. We warmly thank Nathalie Samson and Pascale Leblanc-Veyrac

for taking care of the guinea-pig colony.

Author Contributions

Conceived and designed the experiments: JL CH. Performed the

experiments: JME. Analyzed the data: JL. Contributed reagents/

materials/analysis tools: JL CH. Wrote the paper: JL JME CH.

References

1. de Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and

limitations of the reverse-correlation technique. J Acoust Soc Am 63: 115–135.

2. Aertsen AM, Johannesma PI (1981) The spectro-temporal receptive field. A

functional characteristic of auditory neurons. Biol Cybern 42: 133–143.

3. Eggermont JJ, Johannesma PM, Aertsen AM (1983) Reverse-correlation

methods in auditory research. Q Rev Biophys 16: 341–414.

4. Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of
nonlinear auditory neurons obtained using natural sounds. J Neurosci 20: 2315–

2331.

5. Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectrotemporal

reverse correlation for the auditory system: optimizing stimulus design. J Comput
Neurosci 9: 85–111.

6. Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in

ferret primary auditory cortex. I. Characteristics of single-unit responses to

moving ripple spectra. J Neurophysiol 76: 3503–3523.

7. Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in
ferret primary auditory cortex. II. Prediction of unit responses to arbitrary

dynamic spectra. J Neurophysiol 76: 3524–3534.

8. Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of

spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6:
1216–1223.

9. Fritz JB, Elhilali M, Shamma SA (2005) Differential dynamic plasticity of A1
receptive fields during multiple spectral tasks. J Neurosci 25: 7623–7635.

10. Escabi MA, Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by

neurons in the auditory midbrain. J Neurosci 22: 4114–4131.

11. Miller LM, Escabı́ MA, Read HL, Schreiner CE (2002) Spectrotemporal

receptive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol
87: 516–527.

12. de Charms RC, Blake DT, Merzenich MM (1998) Optimizing sound features
for cortical neurons. Science 280: 1439–1443.

13. Rutkowski RG, Shackleton TM, Schnupp JWH, Wallace MN, Palmer AR

(2002) Spectrotemporal receptive field properties of single units in the primary,

dorsocaudal and ventrorostral auditory cortex of the guinea pig. Audiol
Neurootol 7: 214–227.

14. Linden JF, Liu RC, Sahani M, Schreiner CE, Merzenich MM (2003)

Spectrotemporal structure of receptive fields in areas AI and AAF of mouse
auditory cortex. J Neurophysiol 90: 2660–2675.

15. Valentine PA, Eggermont JJ (2004) Stimulus dependence of spectro-temporal
receptive fields in cat primary auditory cortex. Hear Res 196: 119–133.

16. Bitterman Y, Mukamel R, Malach R, Fried I, Nelken I (2008) Ultra-fine

frequency tuning revealed in single neurons of human auditory cortex. Nature

451: 197–201.

17. Christianson GB, Sahani M, Linden JF (2008) The consequences of response
nonlinearities for interpretation of spectrotemporal receptive fields. J Neurosci

28: 446–455.

18. Ahrens MB, Linden JF, Sahani M (2008) Nonlinearities and contextual

influences in auditory cortical responses modeled with multilinear spectro-
temporal methods. J Neurosci 28: 1929–1942.

19. Atencio CA, Sharpee TO, Schreiner CE (2008) Cooperative nonlinearities in
auditory cortical neurons. Neuron 58: 956–966.

20. Woolley SMN, Fremouw TE, Hsu A, Theunissen FE (2005) Tuning for spectro-

temporal modulations as a mechanism for auditory discrimination of natural

sounds. Nat Neurosci 8: 1371–1379.

21. Woolley SMN, Gill PR, Theunissen FE (2006) Stimulus-dependent auditory
tuning results in synchronous population coding of vocalizations in the songbird

midbrain. J Neurosci 26: 2499–2512.

22. Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields

measured with natural sounds. J Neurosci 24: 1089–1100.

23. Lesica NA, Grothe B (2008) Dynamic spectrotemporal feature selectivity in the

auditory midbrain. J Neurosci 28: 5412–5421.

24. David SV, Mesgarani N, Fritz JB, Shamma SA (2009) Rapid synaptic depression
explains nonlinear modulation of spectro-temporal tuning in primary auditory

cortex by natural stimuli. J Neurosci 29: 3374–3386.

25. Berryman JC (1976) Guinea-pig vocalizations: their structure, causation and

function. Z Tierpsychol 41: 80–106.

26. Berryman JC (1970) Guinea-pig voclizations. Guinea-Pig Newsletter 2: 9–18.

27. King JA (1956) Social relations in the domestic guinea pig under seminatural

conditions Ecology 37: 221–228.

28. Edeline JM, Pham P, Weinberger NM (1993) Rapid development of learning-
induced receptive field plasticity in the auditory cortex. Behav Neurosci 107:

539–551.

29. Manunta Y, Edeline JM (1999) Effects of noradrenaline on frequency tuning of

auditory cortex neurons during wakefulness and slow-wave sleep. Eur J Neurosci
11: 2134–2150.

30. Huetz C, Philibert B, Edeline JM (2009) A spike-timing code for discriminating

conspecific vocalizations in the thalamocortical system of anesthetized and
awake guinea pigs. J Neurosci 29: 334–350.

31. Wallace MN, Rutkowski RG, Palmer AR (2000) Identification and localisation

of auditory areas in guinea pig cortex. Exp Brain Res 132: 445–456.

32. Wallace MN, Palmer AR (2008) Laminar differences in the response properties

of cells in the primary auditory cortex. Exp Brain Res 184: 179–191.

33. Edeline JM, Dutrieux G, Manunta Y, Hennevin E (2001) Diversity of receptive
field changes in auditory cortex during natural sleep. Eur J Neurosci 14: 1865–

1880.

34. Edeline JM, Manunta Y, Hennevin E (2000) Auditory thalamus neurons during
sleep: changes in frequency selectivity, threshold, and receptive field size.

J Neurophysiol 84: 934–952.

35. Manunta Y, Edeline JM (2004) Noradrenergic induction of selective plasticity in
the frequency tuning of auditory cortex neurons. J Neurophysiol 92: 1445–1463.

36. Slaney M (1998) Auditory Toolbox. Apple Tech. Report.

37. Philibert B, Laudanski J, Edeline JM (2005) Auditory thalamus responses to
guinea-pig vocalizations: a comparison between rat and guinea-pig. Hear Res

209: 97–103.

38. Singh NC, Theunissen FE (2003) Modulation spectra of natural sounds and
ethological theories of auditory processing. J Acous Soc Am 114: 3394–3411.

39. Elhilali M, Fritz JB, Klein DJ, Simon JZ, Shamma SA (2004) Dynamics of

precise spike timing in primary auditory cortex. J Neurosci 24: 1159–1172.

40. Huetz C, Negro CD, Lebas N, Tarroux P, Edeline JM (2006) Contribution of

spike timing to the information transmitted by HVC neurons. Eur J Neurosci 24:

1091–1108.

41. Schreiber S, Fellous J, Whitmer D, Tiesinga P, Sejnowski T (2003) A new

correlation-based measure of spike timing reliability Neurocomputing 52–4:

925–931.

42. Rinzel J, Ermentrout B (1998) Methods in Neuronal Modeling: From Synapses

to Networks. 251–291.

43. Izhikevich E (2000) Neural excitability, spiking and bursting Int. J.Bif. Chaos 10:
1171–1266.

44. Coombes S, Bressloff P (2005) BURSTING: The Genesis of Rhythm in the

Nervous. (London) World Scientific Publishing Co. Pte. Ltd.

45. Lesica NA, Stanley GB (2004) Encoding of natural scene movies by tonic and

burst spikes in the lateral geniculate nucleus. J Neurosci 24: 10731–10740.

46. Guido W, Lu SM, Sherman SM (1992) Relative contributions of burst and tonic
responses to the receptive field properties of lateral geniculate neurons in the cat.

J Neurophysiol 68: 2199–2211.

47. Guido W, Weyand T (1995) Burst responses in thalamic relay cells of the awake
behaving cat. J Neurophysiol 74: 1782–1786.

48. Ramcharan EJ, Gnadt JW, Sherman SM (2000) Burst and tonic firing in

thalamic cells of unanesthetized, behaving monkeys. Vis Neurosci 17: 55–62.

49. Swadlow HA, Gusev AG (2001) The impact of ‘bursting’ thalamic impulses at a

neocortical synapse. Nat Neurosci 4: 402–408.

50. Swadlow HA, Gusev AG, Bezdudnaya T (2002) Activation of a cortical column
by a thalamocortical impulse. J Neurosci 22: 7766–7773.

51. Massaux A, Dutrieux G, Cotillon-Williams N, Manunta Y, Edeline JM (2004)

Auditory thalamus bursts in anesthetized and non-anesthetized states: contribu-
tion to functional properties. J Neurophysiol 91: 2117–2134.

52. Gourévitch B, Eggermont JJ (2007) A nonparametric approach for detection of

bursts in spike trains. J Neurosci Methods 160: 349–358.

53. Shih YJ, Attencio CA, Schreiner CE (2011) Improved stimulus representation by
short interspike intervals in primary auditory cortex. J Neurophysiol. 105: 1908–

17.

54. Manunta Y, Edeline JM (2000) Noradrenaline does not change the mode of

discharge of auditory cortex neurons. Neuroreport 11: 23–26.

55. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, et al.
(2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:

793–807.

56. PINGroup, Ascoli GA, et al. (2008) Petilla terminology: nomenclature of
features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:

557–568.

57. Atencio CA, Schreiner CE (2008) Spectrotemporal processing differences
between auditory cortical fast-spiking and regular-spiking neurons. J Neurosci

28: 3897–3910.

58. Nagel KI, Doupe AJ (2008) Organizing principles of spectro-temporal encoding
in the avian primary auditory area field L. Neuron 58: 938–955.

59. Escabı́ MA, Nassiri R, Miller LM, Schreiner CE, Read HL (2005) The

contribution of spike threshold to acoustic feature selectivity, spike information
content, and information throughput. J Neurosci 25: 9524–9534.

60. Sen K, Theunissen FE, Doupe AJ (2001) Feature analysis of natural sounds in

the songbird auditory forebrain. J Neurophysiol 86: 1445–1458.

STRFs from Artificial and Natural Stimuli

PLOS ONE | www.plosone.org 15 November 2012 | Volume 7 | Issue 11 | e50539



61. Andoni S, Li N, Pollak GD (2007) Spectrotemporal receptive fields in the

inferior colliculus revealing selectivity for spectral motion in conspecific
vocalizations. J Neurosci 27: 4882–4893.

62. Sahani M, Linden JF (2003) How Linear are Auditory Cortical Responses?

Advances in Neural Information Processing System 15: 109–116.
63. Gourévitch B, Noreña A, Shaw G, Eggermont JJ (2009) Spectrotemporal

receptive fields in anesthetized cat primary auditory cortex are context
dependent. Cereb Cortex 19: 1448–1461.

64. Issa EB, Wang X (2011) Altered neural responses to sounds in primate primary

auditory cortex during slow-wave sleep. J Neurosci 31: 2965–2973.

65. Issa EB, Wang X (2008) Sensory responses during sleep in primate primary and

secondary auditory cortex. J Neurosci 28: 14467–14480.

66. DiMattina C, Wang X (2006) Virtual vocalization stimuli for investigating

neural representations of species-specific vocalizations. J Neurophysiol 95: 1244–

62.

STRFs from Artificial and Natural Stimuli

PLOS ONE | www.plosone.org 16 November 2012 | Volume 7 | Issue 11 | e50539


