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Abstract: Malaria comprises a spectrum of disease syndromes and the immune system is a major
participant in malarial disease. This is particularly true in relation to the immune responses elicited
against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection.
Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease.
While no single mouse model of Plasmodium infection completely recapitulates all the features of
malaria in humans, collectively the existing models are invaluable for defining the events that lead
to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium
infection that are available, and highlight some of the main contributions these models have made
with regards to identifying immune mechanisms of parasite control and the immunopathogenesis
of malaria.

Keywords: mouse models; Plasmodium; adaptive immunity; innate immunity; T cells; B cells;
macrophages; neutrophils; antibodies; cytokines

1. The Immune Response to Plasmodium Asexual Blood Stages Dictates Malarial Disease

Malaria is still a significant problem in the world with over 600,000 deaths resulting
from 241 million cases in 2021, 95% of them concentrated in the African subcontinent [1].
The RTS, S Mosquirix™ vaccine in children has limited efficacy [2,3] but current efforts in
improving this vaccine appear to be moving towards vaccine-mediated protection that is
more durable [4]. Nonetheless, any further improvements in the development of efficacious
therapeutics and vaccines require a better understanding of what constitutes an effective
anti-malarial immune response.

Malaria is caused by infection with parasites of the species Plasmodium, deposited into
the dermis of the skin by female Anopheles mosquitos while probing for a blood meal. The
sporozoites travel through the blood circulation, invading the liver where they undergo
several rounds of asexual division in hepatocytes before being released as merozoites into
the blood stream. Whilst hepatocytes infected with P. falciparum always transition to liver
schizogony, some species such as P. vivax and P. ovale can also differentiate to become a
dormant stage known as a hypnozoite that can reactivate to cause malaria relapses [5].
Upon release into the blood stream parasites infect red blood cells (iRBCs) and replicate
every 24–72 h depending on species. Clinical symptoms of malaria are exclusively caused
by the erythrocytic lifecycle of Plasmodium.

The clinical manifestations of malaria are wide-ranging and include symptoms such
as hypoglycemia, acidosis and anemia. Accumulation and sequestration of iRBCs on
vascular endothelial cells is associated with vascular activation which is known to underlie
organ-specific pathologies such as cerebral malaria, acute lung injury, hepatomegaly and
liver fibrosis [6] (Table 1). While sterile immunity to malaria generally does not occur,
years of repeated exposure to the parasite in endemic regions facilitates the development
of clinical immunity that can be characterized by reduced parasite load (anti-parasite

Vaccines 2022, 10, 1525. https://doi.org/10.3390/vaccines10091525 https://www.mdpi.com/journal/vaccines

https://doi.org/10.3390/vaccines10091525
https://doi.org/10.3390/vaccines10091525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com
https://orcid.org/0000-0002-8020-4761
https://doi.org/10.3390/vaccines10091525
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com/article/10.3390/vaccines10091525?type=check_update&version=2


Vaccines 2022, 10, 1525 2 of 41

immunity) and controlled inflammatory responses to iRBCs (clinical immunity). Malarial
disease encompasses a spectrum of virulence which is influenced by a number of factors
including genetic variation of both the host and parasite [7–9], the make-up of the intestinal
microbiome of the host [10] and environmental influences such transmission intensity or
the presence of co-infections [11–13].

Table 1. The main clinical manifestations of Plasmodium infection.

Disease Manifestation Species of Plasmodium Probable Mechanism Severity References

Fever All species

Schizogony-induced inflammation
from 24–72 h depending on parasite
species. Mediated by endogenous
pyrogens induced during schizogeny
such as TNF-α, IL-6, IL-1β and
prostaglandin E2).

Not generally lethal [14]

Anemia All species

Erythrophagocytosis.
Dyserythropoiesis.
RBC destruction by
parasite replication.

Can be lethal [15]

Cerebral malaria P. falciparum (children)
P. falciparum and P. vivax (Adults)

Vascular activation via parasite
sequestration on the brain
endothelium, followed by
breakdown of the blood brain barrier,
vasogenic odema and herniation.

20% mortality [16–19]

Malaria-associated acute
respiratory distress and
Malaria-associated Acute
Lung Injury

P. falciparum,
P. vivax
P. knowlsei
P. ovale

Vascular activation via parasite
sequestration on the pulmonary
endothelial followed by
pulmonary leak.

40% mortality [20–22]

Hepatomegaly/Liver
fibrosis

P. falciparum
P. vivax
P. ovale

Jaundice and hepatic dysfunction
due to infiltration of iRBCs and
sequestration of iRBCs in the liver.
Results in activation of hepatic
stellate cells to
become myofibroblasts.

Normally an indicator
of severe malaria [23,24]

Acute Kidney Injury (AKI)
P. falciparum
P. vivax
P. malariae

Glomerulonephritis, acute tubular
necrosis and acute interstitial
nephritis due to hemodynamic
dysfunction and inflammation.
Results in proteinuria,
microalbuminuria and urinary casts
along with hemolytic-uremic
syndrome. Contributes to metabolic
acidosis and can be exacerbated by
liver damage.

Normally an indicator
of severe malaria and
found in around 40%
of those with
severe disease

[25]

Lactic acidosis P. falciparum

Tissue hypoperfusion and hypoxia
resulting from capillary obstruction
with sequestered iRBCs and anemia
Production of lactate by iRBCs.
Impaired lactate clearance by the
liver and kidney.

Normally an indicator
of severe malaria [26]

Hypoglycemia P. falciparum
P. vivax

Illness-induced fasting and
inhibition of gluconeogenesis.

An indicator of severe
malaria and more
common in children
than adults. Predicts
mortality in malaria

[27]

Mouse models are commonly used to study the immunology of erythrocytic malaria.
Given the well-characterized range of different rodent Plasmodium species and strains, as
well as the plethora of mouse lines currently available to investigators, this article will
outline some of the parasite-mouse combinations that are commonly used to study the dif-
ferent facets of blood stage malaria immunology. In addition, we will discuss novel models
of rodent malaria that have not yet been fully harnessed to determine the environmental
and genetic contributions to generating immune responses to Plasmodium iRBCs.
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2. Utility of Rodent Plasmodium Species in the Investigation of Blood Stage Immunology

Human parasites cannot infect mice unless the mice are genetically humanized [28,29].
Whilst humanized mouse models have some utility in the investigation of immune re-
sponses to P. falciparum in a controlled environment, several species of Plasmodium exist
that naturally infect rodents (Table 2). Isolated and cloned from Thamnomys thicket rats
in the Central African Region in the 1960s [30], they have been instrumental in the study
of the immunobiology of the erythrocytic stages of Plasmodium infection [31]. Although
apparently asymptomatic in their original hosts, infection of mice gives rise to a number of
different phenotypes of infection, many of which mimic various states of disease found in
human Plasmodium infection. Rodent Plasmodium parasites cannot infect humans making
them tractable and non-hazardous models of malaria. However rodent Plasmodium para-
sites have some differences to human Plasmodium parasites such as the variant antigen gene
families expressed in the blood stage. Rodent Plasmodium parasites do not have var genes
encoding P. falciparum erythrocyte membrane protein-1 (Pf EMP1) [32,33], nor genes encod-
ing the subtelomeric variant open reading frame (STEVOR) [34] or P. falciparum-encoded
repetitive interspersed families of polypeptides (RIFINS) [35]. Instead, rodent Plasmodium
parasites rely on genes encoded by Plasmodium interspersed repeat (pir) genes [36–39]
which are the largest multigene family in many Plasmodium species [39]. It is important to
note that no single rodent Plasmodium species replicates all features of human Plasmodium
infection. Therefore, specificity of the focus of a particular study in combination with the
correct choice of model is a key aspect of research into blood stage malaria immunology
using rodent models of malaria.

Table 2. Disease phenotype and pathophysiology of the main rodent Plasmodium species used in
biomedical research.

Species Clone RBC Preference Phenotypes References

P. berghei

ANKA Reticulocyte preference but will
invade normocytes

Asynchronous life cycle, sequesters in the liver, lung and
brain. Evidence of weight loss and anemia normally
present at the time of death.
C57BL/6J: lethal infection with breakdown of the BBB
and death between day 7–10 p.i. Pronounced
pulmonary pathology.
BALB/c: Death from hyperparasitemia. No discernible
cerebral complications. Less extensive lung pathology.
DBA/2J: No discernible cerebral complications. some
pulmonary pathology but less pronounced than BALB/c
mice. Death ~day 20 p.i from hyperparasitemia
and anemia.
Pet shop mice: resistant to death by cerebral malaria.
Death ~day 20 p.i. from hyperparasitemia.

[40–43]

NK65
New York (NY) Reticulocyte preference

Accumulates mostly in the lung, with very little
accumulation in the brain. Causes anemia over the course
of infection.
C57BL/6: death in ~20 days from respiratory distress.
BALB/c: no development of MA-ARDS.

[44,45]

NK65 Edinburgh (E) Normocytes and Reticulocytes

Accumulates in the lung but not the brain with some
evidence of anemia.
C57BL/6: death in 7–10 days from respiratory distress.
Early increase in peripheral parasitemia.
BALB/c: Resistant to respiratory distress upon infection.

[44,45]

K173 Reticulocyte preference

Very little parasite accumulation/sequestration in
the brain.
Does not produce gametocytes due to laboratory
adaptation from passaging.
C57BL/6: Used as model for cerebral malaria. Early death
after infection due to cerebral pathology accompanied
with very high parasitemia. Causes lung pathology with
increased pulmonary oedema.

[46,47]
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Table 2. Cont.

Species Clone RBC Preference Phenotypes References

P. yoelii

XL (also known as 17XL) Normocytes and reticulocytes

C57BL/6: Lethal within ~10 days p.i. due to
hyperparasitemia and severe anemia.
BALB/c: Lethal within ~10 days p.i.
DBA/2: Non-lethal infection.

[48]

XNL (also
known as 17XNL) Strong reticulocyte preference

C57BL/6: Resolving non-lethal infection accompanied
by anemia.
BALB/c: Resolving non-lethal infection.

[48,49]

YM Normocytes and reticulocytes

C57BL/6: Derivative of the XL line. Lethal within
~10 days p.i. due to hyperparasitemia and severe anemia.
DBA/2: Lethal infection in ~10 days p.i.
B10: Non-lethal infection.

[50–53]

nigeriensis N67 Normocytes and reticulocytes C57BL/6: Lethal at ~15–20 days p.i.
due to hyperparasitemia. [50,52,54]

nigeriensis N67C Normocytes and reticulocytes C57BL/6: Lethal within 7 days p.i. [50,54,55]

P. chabaudi

chabaudi AS Normocytes and reticulocytes

Synchronous life cycle. Sequesters predominantly in the
lung and liver.
C57BL/6: Resolving non-lethal infection accompanied by
anemia, thrombocytopenia, hypoglycemia, weight loss
and hypothermia. Recrudescent infections and sub-patent
for up to 3 months.
BALB/c: More severe infection than in C57BL/6J mice
but generally non-lethal in most BALB/c lines.
A/J mice: Lethal anemia due to poor control of iRBCs
and hyperparasitemia.

[31,56]

chabaudi BC Normocytes and reticulocytes C57BL/6: similar symptoms to P. chabaudi AS but
more severe. [57]

chabaudi CB Normocytes and reticulocytes C57BL/6: similar symptoms to P. chabaudi AS but
more severe. [58]

chabaudi ER Normocytes and reticulocytes C57BL/6: Similar symptoms to those of P. chabaudi AS.
Recrudescent infections occurs at 20 to 25 days p.i. [31,57,59]

chabaudi adami
Preference for
younger normocytes
over reticulocytes

BALB/c mice: Non-lethal infection with single peak of
infection around 10 days p.i.
A/J mice: Non-lethal resolving infection.
C57BL//6 mice: Non-lethal resolving infection.

[60–64]

P. vinckei

vinckei CY
Normocytes
Not thought to
invade reticulocytes

CBA: Lethal infection by 6 days p.i.
with hyperparasitemia. [65]

vinckei ATCC 30091
Normocytes
Not thought to
invade reticulocytes

ICR outbred mice: Lethal infection within 8–10 p.i. [66]

petteri AS
Normocytes
Not thought to
invade reticulocytes

AKR mice: Lethal in 5 days p.i. due to fast
growing parasites. [67,68]

petteri BS
Normocytes
Not thought to
invade reticulocytes

ICR outbred mice: Non-lethal infection with a peak of
parasitemia at 9 days p.i.
CBA: Non-lethal infection with a peak of parasitemia at
9 days p.i.

[65,66]

petteri AR
Normocytes
Not thought to
invade reticulocytes

AKR mice: Non-lethal with patent parasitemia not
detectable by 22 days p.i. [67,68]

petteri CR
Normocytes
Not thought to
invade reticulocytes

BALB/c: single peak of non-lethal infection.
CBA: single peak at 6 days p.i.; non-lethal infection. [65,69]

petteri HW
Normocytes
Not thought to
invade reticulocytes

C57BL/6: Lethal infection at 8–10 days p.i.
from hyperparasitemia. [70]

Abbreviations: BBB: blood-brain barrier; MA-ARDS: malaria-associated acute respiratory distress syndrome;
p.i.: post-infection.

Mice have been instrumental in elucidating the workings of the human immune
system [71]. Nonetheless, there are fundamental differences between the physiology of
mice and humans that should be noted such as a different balance of leukocyte subsets [72]
between both species as well as in splenic architecture where human (sinusoidal) and mouse
(non-sinusoidal) [73] differences would alter the direction of blood flow and possibly
the timing or mechanisms by which iRBCs induce splenic immune responses [73,74].
Splenic sinusoids are blood vessels in the red pulp that drain into the white pulp of the
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spleen where most splenic immune cells reside. In humans the endothelial cells lining
these sinuses form a barrier that RBCs have to squeeze through [74,75], a challenge for
Plasmodium-iRBCs which are more rigid than uninfected RBCs. On the other hand, the
mouse spleen endothelial cells have bigger gaps making it more likely for iRBCs to end
up in the white pulp with a potentially expedited adaptive response that may be based on
a higher antigenic load compared to humans with Plasmodium infection. Human spleens
also lack a substantial marginal zone [73], a B-cell enriched layer that also contains unique
macrophage populations that surrounds the follicles and periarteriolar sheath separating
the white and red pulp.

Circulating Plasmodium parasites have been found to alter expression of variant anti-
gens expressed on the RBC surface in both splenectomized squirrel monkeys infected
with P. falciparum [76] and splenectomized mice infected with P. chabaudi [77] suggesting a
splenic response occurs in primates and rodents infected with Plasmodium. Disorganization
of the white pulp in both human autopsy samples of malaria fatalities [78] and in mice
infected with P. chabaudi [79,80] also suggests involvement of the spleen in both species.
However, the structural differences that exist may impact the timing of immunological
events and possibly the importance of different cell types in orchestrating the immune
response. As such, some caution should be exercised when extrapolating findings from
rodent Plasmodium blood stage models with respect to the main players involved.

Despite these differences, the main features of the immune response to Plasmodium
iRBCs (Figure 1, Table 3) are largely replicated with a strong inflammatory response charac-
terized by interferon-γ (IFN-γ) producing CD4 T cells and the production of anti-parasite
antibodies. Mouse models of Plasmodium infection provide a tractable and highly informa-
tive model to define how the immune system operates in human Plasmodium infection, in
turn providing critical evidence of immune mechanisms in malaria that simply cannot be
obtained in humans. Advancements in both rodent genetic engineering technology [81,82]
and the ability to create transgenic rodent Plasmodium parasites [83,84] (Table 4) has facili-
tated dissection of immune responses to Plasmodium infection with unprecedented precision.
As such, mouse models of blood stage Plasmodium infection are a key tool in understanding
the immune responses driving Plasmodium parasite control and pathogenesis of malaria.

Figure 1. Contribution of mechanisms influencing immune control to Plasmodium-infected red blood
cells. Mouse models of malaria have been used to demonstrate how innate and adaptive immune
mechanisms synergize to effectuate control of iRBCs. In the white pulp of the spleen activation
of T helper cells including Th1 cells, Tfh cells and regulatory cells (both Treg cells and Tr1 cells)
are activated by antigen presenting cells which have phagocytosed iRBCs by-products of parasite
development that are released during schizogony. Tfh cells are critical in providing help to B cells to
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produce anti-parasite antibodies which play important roles via interaction with innate cells antibody-
dependent cellular cytotoxicity and in invasion blocking upon schizogony. The generation of anti-
parasite antibodies both within and out-with germinal centers has been interrogated in mouse models
of malaria gleaning important contributions towards what constitutes an efficacious cellular response
generating efficacious antibodies reactive against iRBCs. Figure created with Biorender. Abbrevi-
ations: ICOS: inducible T cell costimulatory; IFN: interferon; Ig: immunoglobulin; IL: interleukin;
iRBC: infected red blood cell; LLPC: long-lived plasma cell; M-CSF: macrophage colony-stimulating
factor; NO: nitric oxide; ROS: reactive oxygen species; TGF: transforming growth factor; TNF: tumor
necrosis factor.

Selection of a mouse host and parasite species to study immune responses to blood
stage Plasmodium infection is dependent on the question being asked. Some mouse-parasite
combinations are lethal from around 7 days post-infection whereas others resolve to become
a sub-patent infection that can only be detected by molecular methods and, in some cases,
can be completely cleared. When selecting which combination to use it is important
to determine whether the major goal of any study is to decipher anti-parasite immune
responses, clinical immunity or a combination of both. Other considerations may involve
the existence of comparative literature, the availability of transgenic tools (Table 4) or the
existence of databases from “big data” sets available online (Table 5) that can be mined
a priori to identify candidate molecules of importance.

Table 3. The main immunological features of the three most widely used Plasmodium species in the
study of the immune response elicited by Plasmodium-infected RBCs.

Rodent Species Model Uses Main Features References

Plasmodium chabaudi

Innate immune responses
Control of iRBCs by monocytes and γδ T cells, but not
neutrophils or NK cells.
Direct activation of DC for activation of T cell responses.

[85–92]

T cell responses Requires T cells for control of iRBCs. [59]

Immune regulation IL-10 is required for clinical immunity.
TGF-β provides some protection against pathogenesis. [93,94]

Generation of humoral immunity

Participation of both IgG and IgM in control of iRBCs.
Does not require antibodies for control of acute infection
with iRBCs.
Antibodies contribute to control of iRBCs during
chronic infection.

[11,95–97]

T and B cell memory responses Generates memory T and B cell responses that expand upon
secondary challenge infection. [98–100]

Immune basis of clonal virulence Clonal virulence is associated with differences in the immune
response induction. [101,102]

Host genetic basis of immune
resistance to infection by iRBCs

Genetic control of host immune responses mediates
immunological control of iRBCs and level of clinical immunity. [103,104]

Plasmodium yoelii

Innate immune responses
Macrophages are protective against iRBCs.
Minimal contribution of neutrophils,γδ-T cells or NK cells to
control of iRBCs.

[105–107]

T cell responses Requires T cell for control of iRBCs. [108]

Immune regulation IL-10 and TGF-β are required for clinical immunity. [93,109]

Generation of humoral immunity Requires antibodies for control of iRBCs during acute infection. [110]

T and B cell memory responses Generates memory T and B cell responses that expand upon
secondary challenge infection. [111,112]

Immune correlates of lethal vs.
non-lethal infection

Lethality is correlated with faster parasite growth and an early
burst of TGF-β. [113]

Plasmodium berghei ANKA

CD8 T cell induced vascular leak [114,115]

Pulmonary vascular leakage and
leukocyte infiltration [116]

Clonal differences in the induction of
experimental cerebral malaria [117]

NK65 Edinburgh Pulmonary vascular leakage and
leukocyte infiltration [45,118]

NK65 New York Pulmonary vascular leakage and
leukocyte infiltration [45]
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Table 4. Functionality of selected transgenic rodent Plasmodium parasites and mouse lines available
to study of the immune response to Plasmodium-iRBCs. Repositories of rodent malaria strains
available for use include the Rodent Malaria genetically modified Data Base (RMgmDB) (https:
//www.pberghei.eu/index.php), the European Malaria Reagent Repository (bank: http://www.
malariaresearch.eu/) and the Malaria Research and Reference Reagent Resource Center (MR4) (https:
//www.beiresources.org/ProgramInformation.aspx). All links last accessed on 8 September 2022.

Transgene Functionality Transgenic Parasites Properties of the Transgenic Parasite References

Luciferase

In vivo and ex vivo
visualization of organ-specific
parasite sequestration.
Can be imaged after injection of
D-luciferin using an IVIS imager

P. berghei ANKA
Expression of luciferase under the eEF1α
promoter (constitutive) or the AMA-1
promoter (schizont-specific).

[119]

P. berghei NK65
Edinburgh

Expression of luciferase under the
AMA-1 promoter (schizont-specific). [118]

P. chabaudi AS Expression of luciferase under the eEF1α
promoter (constitutive). [56]

Allelic replacement of rodent
Plasmodium proteins with human
Plasmodium proteins

Study of immune responses to
human Plasmodium parasite
vaccine targets

P. berghei ANKA Express P. falciparum merozoite
protein-119 (MSP-119). [120]

P. berghei ANKA Express P. falciparum apical membrane
antigen-1 (AMA-1). [121]

P. berghei ANKA
P. berghei NK65

Express P. vivax merozoite
protein-119 (MSP-119). [122]

Fluorescent proteins

Imaging of parasites ex-vivo by
microscopy. Assessment of
phagocytosis by flow cytometry
or Imagestream.

P. chabaudi AS Expression of GFP under the
eEF1α promoter. [85]

P. chabaudi AJ Expression of RFP under the
eEF1α promoter. [83]

P. yoelii XNL Expression of GFP under the
eEF1α promoter. [123]

P. berghei ANKA Expression of GFP under the
eEF1α promoter. [124]

P. berghei NK65E Expression of GFP under the AMA-1
promoter (schizont-specific). [118]

P. berghei NK65NY Expression of GFP under the AMA-1
promoter (schizont-specific). [45]

Insertion of peptide epitopes
recognized by available TCR
transgenic mice

Quantification of
antigen-specific
Plasmodium-induced T cells
responses

P. yoelii XNL

Express a CD4 and CD8
immunodominant epitope from the
glycoprotein LCMV. Can be tracked using
SMARTA or P14 TCR transgenic mice.

[112]

P. yoelii XNL

Express a CD4 and CD8
immunodominant epitope from the
model antigen chicken ovalbumin. Can
be tracked using OVA TCR transgenic
mice (OT-I and OT-II).

[125]

P. berghei ANKA

Express a CD4 and CD8
immunodominant epitope from the
model antigen chicken ovalbumin. Can
be tracked using OVA TCR transgenic
mice (OT-I and OT-II).

[126]

Endogenous parasite target epitope Parasite species Transgenic Mouse line Properties of the transgenic mouse line References

RPL6120–127 P. berghei ANKA Pb-I H2-Kb C57BL/6

Transgenic Pb-I CD8 T cells with
Vα8.3/Vβ10 TCRs that recognize
PbRPL6120–127 in P. berghei ANKA liver
stages but cross-react with blood stage
antigens in P. berghei ANKA,
PcRPLL6130–137 (P. chabaudi) and
PyRPL6123–130 (P. yoelii).

[127,128]

HSP90484–496 P. berghei ANKA Pb-II I-Ab C57BL/6

Transgenic Pb-II CD4 T cells with
Vα2/Vβ12 TCRs that react cross-react to
P. berghei NK65, P. chabaudi AS and
P. yoelii XNL.

[129,130]

37/39 kDa fragment of
MSP-11157–1171

P. chabaudi AS B5 I-Ed BALB/c
Contains B5 MSP-1-reactive CD4 T cells
with Vα2/Vβ8 TCRs reactive to
MSP-11157–1171.

[131]

21 kDa fragment of MSP-1 P. chabaudi AS IghNIMP23/+ C57BL/6
B cells express the NIMP23 Ig heavy
chain and harbor B cells that react to the
21 kDa fragment of P. chabaudi AS MSP-1.

[132]

Abbreviations: AMA-1: apical membrane antigen 1; eEF1: eukaryotic elongation factor; GFP: green fluorescent
protein; HSP: heat shock protein; LCMV: lymphocytic choriomeningitis virus; MSP-1: merozoite surface protein 1;
RFP: red fluorescent protein; RPL6: putative ribosomal protein L6.

https://www.pberghei.eu/index.php
https://www.pberghei.eu/index.php
http://www.malariaresearch.eu/
http://www.malariaresearch.eu/
https://www.beiresources.org/ProgramInformation.aspx
https://www.beiresources.org/ProgramInformation.aspx
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Table 5. Published and publicly available databases of sequencing data from rodent Plasmodium infections.

Cell Type Mouse Strain Parasite Strain Sequencing Type Database Access Code References

Whole Blood and spleen C57BL/6
P. chabaudi chabaudi AS
and
P. chabaudi chabaudi CB

Microarray GSE93631 [133]

Whole Blood and spleen C57BL6 P. chabaudi chabaudi AS Microarray GSE123391 [133]

GSE145781 [134]

Bone marrow C57BL/6J and C57BL/6J Elf4−/− mice P. yoelii XNL RNAseq GSE121035 [135]

Monocyte derived
dendritic cells C57BL/6 P. berghei ANKA RNAseq GSE126381 [136]

Splenic Macrophages C57BL/6 P. berghei ANKA Microarray GSE111593 [137]

Macrophages BALB/c P. yoelii XNL-Luc RNAseq GSE115906 [138]

Red pulp macrophages C57BL/6 P. chabaudi chabaudi AS Microarray GSE23565 [139]

NK cells C57BL/6 P. chabaudi chabaudi AS Microarray GSE12727 [140]

γδ T cells C57BL/6J P. chabaudi chabaudi AJ
Single cell TCR
sequencing and
RNAseq

GSE108478 [89]

CD4 T cells

C57BL/6 P. berghei ANKA microarray GSE24903 [141]

C57BL//6J and
Uba3fl/fl-Lck Cre+ (KO) Uba3fl/fl

and Uba3∆T mice on a C57BL/6J
background

P. yoelii XNL RNAseq GSE111066 [142]

C57BL/6 P. chabaudi chabaudi AS Microarray
Single-cell RNAseq

GSE81196
GSE81197 [143]

C57BL/6 P. yoelii XNL Microarray GSE85896 [144]

Regulatory T cells BALB/c P. yoelii XNL Microarray GSE34621 [49]

B cells

Tbx21fl/flCd23Cre and CD23Cre+ mice
on a C57BL/6J background P. berghei ANKA RNAseq

ATACseq
GSE120729
GSE120727 [145]

IFN-γR1−/− and C57BL/6J P. chabaudi chabaudi AS RNAseq GSE85205 [146]

C57BL/6 P. yoelii XNL RNAseq GSE134548 [110]

C57BL/6 P. chabaudi chabaudi AS RNAseq GSE115155 [132]

Microglia C57BL/6 wildtype and IFNAR−/− P. berghei ANKA Microarray GSE119650
GSE86082 [147]

Abbreviations: Cre: cre recombinase; Elf4: E74 Like ETS Transcription Factor 4: IFNAR: interferon-α receptor 1;
IFN-γR1: interferon-γ receptor 1; Tbx21: T box transcription factor 21; Uba3: Ubiquitin-Activating Enzyme 3.

3. Genetic Control of the Immune Responses to Plasmodium Infection

Population-wide genetic diversity and its effect on Plasmodium infection is evident in
human populations. This can be clearly seen with hemoglobinopathy gene polymorphisms
such as sickle cell, thalassemia or glucose-6-phosphate dehydrogenase (G6PD) [148–152]
which offer resistance to infection of RBCs by Plasmodium and reduced clinical severity when
infection does occur. Associations have been found with MHC haplotype [153,154] with
varying results [155], and polymorphisms in immune genes and the promoters controlling
their expression have been associated with malarial disease severity. For example, allele
variants [156] and promoter polymorphisms [157,158] controlling the expression of the
inflammatory cytokine tumor necrosis factor-α (TNF-α) have been associated with the
propensity to develop cerebral malaria [157,158] and anemia [157,159].

There is now an increasing number of publications using Genome-Wide Association
Studies (GWAS) for malaria [160–163]. These studies have found associations of poly-
morphisms encoding an erythrocyte calcium pump (ATP2B4) and an endothelial junction
protein (MARVELD3) with severe malaria [162], and linkages to genes on chromosome
6q21.3 and possibly 19p13.12 to the development of uncomplicated (mild) malaria [164].
Linkages to asymptomatic malaria have been found on chromosome 5q31 [164]. Collec-
tively these data suggest that the development of immune responses during Plasmodium
infection is, in part, genetically controlled. In support of this notion, the Fulani tribe of
western Africa who are generally more resistant to the clinical effects of Plasmodium infec-
tion have allelic variants of FcγRIIα [165], interleukin (IL)-10 [166] and IL-4 [167] which are
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not present in the more susceptible sympatric Dogon tribe [168,169]. It is thought that these
variants allow the Fulani to mount a robust and protective immune response to Plasmodium
that is characterized by early production of pro-inflammatory cytokines like IFN-γ [170].

In mice Plasmodium infections are also genetically controlled [171–174]. Between-strain
genetic diversity can explain the variation in disease severity in Mus musculus infected with
any of the rodent Plasmodium lines. For example, it is widely accepted that C57BL/6 mice are
susceptible to P. berghei ANKA (PbA) infection succumbing to neurological manifestations
of infection that resemble cerebral malaria, whereas BALB/c or DBA/2J are more resistant
and survive significantly longer, dying much later from hyperparasitemia [173]. Linkage
studies of P. chabaudi-AS-infected crossed lines of inbred, recombinant inbred and congenic
inbred lines of mice has led to the identification of several gene regions termed Char
(Chabaudi resistance) regions (reviewed in [103,104]) which include immune-associated
genes such as tumor necrosis factor (TNF) and lymphotoxin-α (LT-α) amongst others
demonstrating the importance of immunogenetics in the outcome of P. chabaudi infection
in mice.

The majority of studies elucidating immune responses to the erythrocytic stage of
Plasmodium infection are undertaken in genetically-uniform inbred mouse strains, many
using mice with C57BL/6 and BALB/c backgrounds (Table 2). Whilst beneficial by virtue
of uniform background genetics and MHC haplotype, such mice will not directly inform
on the immunogenetic basis of disease severity. Although necessary with respect to studies
incorporating genetically modified mouse lines, collectively such studies may bias our
understanding of infection immunology due to their highly selected life histories in labora-
tory settings [175]. Many of these inbred strains have skewed immune responses, such as
the Th1 skewed response in C57BL/6 mice or Th2-skewed response in BALB/c mice [176],
which have been exploited to understand genetic influences on the differential immune
responses mounted to Plasmodium parasites and the severity of infection [172]. As such, it
is important to be cognizant of this limitation of mouse models when interpreting data that
have been collected.

Several studies have endeavored to use outbred mouse lines, with Swiss Webster
mice commonly used. Nonetheless, such mice have inbreeding coefficients of ~0.48 [177]
which is rather removed from humans which are ~0.01–0.08 [178,179]. New endeavors to
generate mouse resources that are more aligned with human diversity include wild-derived
specific pathogen free (SPF) mice [180], or the Collaborative Cross (CC) mice [181–184]
and Diversity Outbred (DO) mice [182,185,186]. These colonies allow assessments of the
variation of immune responses to Plasmodium infections that may be more akin to humans.
Given that all of these under-utilized mouse colonies are SPF, they have the advantage
of assessing genetic diversity on anti-Plasmodium immune responses in the absence of
contributing environmental factors.

4. Modelling the Influence of Environmental Factors on Immune Responses to
Plasmodium Infection

Genetic diversity in immune responsiveness has been studied in wild-captured mice.
However responses in such mice are confounded by environmental factors [187] which
include differences in microbiota [188], a community of microorganisms including bacteria,
fungi, viruses and protozoans. These microorganisms colonize a number of external
facing environments of humans such as the respiratory tract, gastrointestinal tract and
skin. Studies in humans and mice have found associations between gut microbiota and
the susceptibility to Plasmodium infection [189,190]. Normally dominated by members
of the Firmicutes and Bacteroides taxa, the diversity of the bacterial microbiota has been
shown to increase upon P. falciparum infection [191,192]. Furthermore, upon infection with
Plasmodium the level of malarial disease may be affected by the increased composition
of bacterial microbiota. Specifically, it has been shown that severe malarial anemia in
P. falciparum-infected children in Uganda is associated with a greater alpha diversity of
bacteria in the gut [191].



Vaccines 2022, 10, 1525 10 of 41

Mouse models of malaria have been instrumental with respect to parsing out possi-
ble mechanisms underlying the effects of bacterial microbiota composition on immune
responses to Plasmodium blood stages. In general, bacterial microbiota play a key role in gly-
can metabolism in the gut giving rise to monosaccharides that are fermented to short-chain
fatty acids and used as an energy source for the host, but also have immunomodulatory
functions. Differences in the metabolic capacity of the bacterial microbiome correlate with
disease susceptibility to P. yoelii XNL infections [193]. Evidence that this may result from
the immunomodulatory effects of the bacterial microbiome comes from studies showing
that mice that are more resistant to P. yoelii XNL have microbiomes enriched for Lactobacillus
and Bifidobactierum [10] and a better humoral response to P. yoelii XNL with a higher magni-
tude of anti-parasite antibodies produced. Germinal Center (GC) reactions to Plasmodium
infection, as discussed below, are a key event resulting in an efficacious anti-Plasmodium
humoral response. Highly dynamic in nature, splenic GC reactions have been shown to be
continuously modulated by gut microbiota in P. yoelii XNL infections [191,194] demonstrat-
ing the utility of mouse models with regards to dissecting mechanisms by which microbiota
may influence malarial disease in those infected with Plasmodium. The implications of
this work for those undertaking research using mouse models of malaria to dissect the
immunology of blood stage infections is the choice of mouse vendor; the severity of ery-
throcytic Plasmodium infection in genetically similar mice obtained from different vendors
is significantly altered in response owing to the differences in gut microbiome [10].

Inbred mice that are removed from an SPF environment and have been exposed to
natural environments (“re-wilded mice”) are found to have a different immune landscape
modulated by the microbiota [188,195]. Recent work has studied the role of genetic diversity
in Plasmodium immune responses in the context of environmental exposures through co-
housing specific pathogen free (SPF) mice with mice obtained from pet shops that were not
SPF (so-called “dirty mice”) [196]. Influencing the environmental exposure of mice in this
way induced a less susceptible phenotype to P. berghei ANKA infections but did not alter
immune responses sufficiently to fully protect all mice [196]. However, it should be noted
that mice obtained from pet shops are highly inbred and do not recapitulate the genetic
diversity conferred by wild-derived, CC or DO mice described above.

In addition to the microbiota, there are other environmental factors that collectively
can influence the immune responses to Plasmodium iRBCs that are hard to consistently
replicate in laboratory mice. These include the alteration of the immune landscape of
humans by prior and current co-infections including the influence of immune responses
to existing liver stage Plasmodium parasites [197]. However there has been some success
in modelling co-infection scenarios in mice and measuring how immune responses to
Plasmodium are influenced when co-infections are present (for examples see [11,198]). In
addition, there are likely effects of the human biting rate (HBR) which would alter amounts
of mosquito saliva exposure [199–201] and has been shown to influence Plasmodium in-
fection in mice [202]. The entomological inoculation rate (EIR) may also differ and be
associated with a varying number and/or multiplicity of Plasmodium infection in an in-
dividual [203]. Without use of mouse models of blood stage infection where each aspect
can be dissected individually, it would be virtually impossible to determine the relative
influence each of these environmental factors has on immune responses mounted to blood
stage Plasmodium infection.

5. Mechanisms of Anti-Parasite Immunity: What Have We Learnt about Control of
iRBCs from Mouse Models of Plasmodium Infection?

Successful control of intraerythrocytic Plasmodium parasites requires a robust cellular
and humoral immune response that generates broadly-reactive antibodies. Rodent malaria
models of Plasmodium erythrocytic infection have been instrumental in revealing some of the
mechanisms governing the cellular immune responses to Plasmodium blood stage parasites,
as well as spatial information related to immune responses generated in different organs
where Plasmodium iRBCs sequester. It is challenging to obtain this level of information from
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human infections where the main available source for immune analysis is the peripheral
blood. Here we discuss some of the main findings from use of rodent models of Plasmodium
blood stage infection.

5.1. Invasion Blocking Is a Key Mechanism of Anti-Parasite Antibodies for the Control of iRBCs

The importance of humoral immunity in host defense against Plasmodium infection
was first demonstrated in rhesus monkeys [204] and later in P. falciparum-infected chil-
dren [205,206] when passive transfer of immune sera limited parasite growth and symptoms
associated with the disease. These observations formed the basis of the hypothesis that
there is a requirement for sustained antibody production in the control of Plasmodium blood
stage of infection where the clinical manifestations of the disease occur.

The possible effector functions of these antibodies have been elucidated with careful
in vitro culture studies. These range from recognition and uptake of iRBCs by phago-
cytes [207–209], blocking of parasite adhesion and invasion [210], to inhibition of parasite
growth [211]. The targets of these antibodies are numerous and involve proteins expressed
on the surface of merozoite required for RBC invasion such as merozoite surface protein 1
(MSP-1) or apical membrane antigen 1 (AMA) [212,213] as well as variant surface antigens
such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1) [214]. Positive
correlations between the breadth, as well as magnitude, of the antibody response and
successful control of iRBCs [212,213,215] provide further evidence of the importance of the
humoral response in controlling Plasmodium iRBCs.

The relative contributions of these mechanisms to parasite control are hard to assign in
humans; mouse models of infection have been instrumental in identifying the importance
of invasion blocking as a key mechanism of iRBC control in vivo. Studies using FcγR−/−
mice which are deficient in the FcγR used by phagocytes to detect IgG-opsonized iRBCs
demonstrate that IgG-dependent phagocytosis is not a key mechanism of control of iRBCs,
at least in the avirulent P. yoelii XNL model [216]. This conclusion is supported by a recent
study whereby in vivo tracking of a single generation of labeled iRBCs of either P. chabaudi
or P. yoelii adoptively transferred into mice demonstrated that parasite-specific IgG does
not affect the rate at which iRBC are cleared, but rather it limits the progression of the iRBC
to a new RBC by blocking invasion [210]. This is not a surprising finding when most IgG
was reactive to merozoites found within schizonts, the terminal stage of iRBCs prior to
release of merozoites that will infect new RBCs. The observation that infection of mice with
P. yoelii XNL line becomes lethal in a B cell-deficient host [11,217] does not differentiate the
role of IgG from other isotypes. There is a growing appreciation for the role that IgM plays
in the control of iRBCs. IgM may mediate antibody dependent phagocytosis through the
Fcµ receptor, although this receptor is expressed only on B cells in mice [218]. It is also
possible that complement-mediated lysis of opsonized iRBCs could contribute to parasite
control as shown in P. falciparum infections [219,220] although the effects of complement
depletion has been shown to be minimal in the P. chabaudi AS mouse model [221].

It is important to note that antibodies do not appear to be an absolute requirement
to control all species of Plasmodium infection in mice. Unlike in P. yoelii XNL infections, B
cell-deficient mice infected with P. chabaudi are able to control acute infection via antibody-
independent mechanisms [217,222]. Depletion of γδ T cells in B cell-deficient mice following
P. chabaudi AS infection led to exacerbated parasitemia, indicating a more critical role for γδ
T cells in cell-mediated immune response against P. chabaudi [223]. Thus, mouse models
of Plasmodium infection indicate that some immune mechanisms of iRBC control may be
differentially important for different species or clones of Plasmodium.

5.2. Plasmodium Blood Stage Infection Leads to the Development of Memory B Cells That Respond
during Secondary Challenge Infection

Humoral immune responses against malaria develop slowly, inefficiently and wane
over time in the absence of reinfection [224–226]. Antibodies are derived from antibody-
secreting cells (ASCs) that are comprised of plasmablasts and plasma cells. These cell
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types are generated from a specialized compartment called the germinal center (GC) in
secondary lymphoid tissue [227]. ASCs can also be found out-with the B cell follicles
of the spleen. Mouse models of infection have been instrumental in demonstrating that
this early response may have some protective qualities [228]. Memory B cells (MBCs)
and long-lived plasma cells (LLPC) offering protection against re-challenge infections are
also thought to develop in the GC after infection but some evidence suggests that these
are heterogeneous populations and some sub-populations of MBCs may form prior to
GC formation [229–231]. Given that secondary lymphoid tissue is not readily accessible
for study in Plasmodium-infected humans, mouse Plasmodium infections have allowed
dissection of cellular responses in humoral immunity to malaria. The investigation of B cell
responses to blood stage Plasmodium has typically utilized both P. chabaudi AS and P. yoelii
XNL. Despite differences in the importance of antibodies for iRBC control between these
species, the cellular mechanisms underlying B cell responses to Plasmodium blood stage
parasites appear similar regardless of which species was used to initiate infection [232–234].

The cellular basis underpinning the lack of efficacious long-lived humoral responses
to Plasmodium in those living in endemic areas is still incompletely understood. Indeed, it
has been shown that a large proportion of memory B cells in P. falciparum infection are IgM+
with IgG+ memory B cells developing with age [235]. IgM+ memory B cells in malaria
harbor somatically hypermutated B cell receptors [97] suggestive of affinity maturation
and can develop into plasma cells that secrete IgM neutralizing antibodies that have high
invasion-blocking capability against P. falciparum in vitro [236], suggesting that they may
play a key role in controlling iRBCs.

Following infection with P. chabaudi, Plasmodium-reactive memory B cells and plasma
cells can be detected over eight months post-primary infection [97,99]. Upon secondary
infection with homologous parasites, a more rapid production of IgG isotypes can be
observed [99] indicating recall responses are active and functional. B cell tetramers that
bind to MSP-1 have been used to show both class-switched IgG+ as well as somatically
hypermutated IgM+ memory B cells participate in recall responses [97]. The utility of
IgM+ memory B cells in the memory response to malaria has been demonstrated in the
P. chabaudi mouse model of malaria where IgM+ B cells were the dominant MBCs expanding
on challenge infections leading to the early protection against re-infections [97]. Work in
the P. yoelii XNL [111] and P. berghei ANKA [237] models have taken these results further
demonstrating participation of IgM+ memory B cells in splenic secondary germinal centers
upon challenge [111] with upregulation of the necessary CD80 and CD73 co-stimulatory
molecules resulting in differentiation into antibody secreting cells and the secretion of
iRBC-reactive antibodies. Thus, mouse models of malaria have demonstrated that IgM+
memory B cells are a critical player in the secondary responses to malaria.

One of the key mechanisms underpinning an impaired memory B cell response may
be related to apoptosis induced by blood stage infections. MSP-1 vaccinated BALB/c mice
infected with the lethal P. yoelii YM strain led to ablation of memory B cells and LLPCs,
including those that developed prior to vaccination with MSP-1 or unrelated antigens [238].
These data suggest that, although memory B cells and LLPCs can develop to blood stage
infection, more lethal Plasmodium infections may have a deleterious effect on these cell
subsets via induction of apoptosis, albeit by an unknown mechanism.

5.3. Development of Functional Anti-Plasmodium Blood Stage GC Responses

While there is evidence of the formation of GCs in individuals with malaria, there
are some indications that GC reactions might not be optimal during human Plasmodium
infection [239]. Mouse models have been instrumental in demonstrating that fully func-
tional GCs can develop in a primary blood stage Plasmodium infection leading to protective
B cell responses. In GCs, follicular helper T (Tfh) cells interact with B cells and help
push differentiation of B cells into plasma cells (short-lived and long-lived) and memory
B cells [227]. The P. yoelii mouse model of infection has been used to show that B cells
are the primary cell type expanding Tfh cells [240]. Upon expansion, IL-21, one of the
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major Tfh cell-derived cytokines, has been shown to be important in the development of
robust and durable class-switched B cell responses following blood stage infection with
P. chabaudi AS and P. yoelii XNL [232]. Disruption of IL-21-derived signals on B cells led to
a diminished level of Plasmodium-specific antibodies and resulted in increased parasitemia
which was correlated with a deficiency in the development of plasma cells and memory B
cells [232]. Furthermore, Tfh-deficient CD4CrexBcl6fl animals or SAP−/− deficient animals
were unable to clear chronic infection with P. chabaudi AS [95] demonstrating that, although
the establishment of chronic infection appears to be antibody-independent, antibodies are
critical for control of chronic infection.

During Plasmodium infection GCs form in the context of innate-derived inflammatory
responses as well as during responses to existing Plasmodium infections, particularly in
higher transmission areas where simultaneous multiclonal infection is common [12,13].
Mouse models of Plasmodium infection have demonstrated that B cell priming of Tfh cells
in the spleen after blood stage Plasmodium infection is dampened by type 1 interferon
via downregulation of T-cell expressed Inducible CO-Stimulator (ICOS) and interrup-
tion of ICOS-ICOSR signaling between GC Tfh cells and GC B cells, respectively [234].
The interaction between ICOS-ICOSR is critical for Tfh cell development against blood
stage Plasmodium infection in mice [241,242]. Furthermore, upregulation of the inhibitor
molecules Programmed Death-Ligand 1 (PD-L1) on antigen-presenting cells and Lym-
phocyte Activation Gene-3 (LAG-3) [243] on T cells negatively regulate the development
and function of Tfh cells. IL-6 also plays a role in Tfh cell differentiation in blood stage
Plasmodium infection, albeit IL-6R signaling appears to be more important for plasma cell
development [233]. Thus, Tfh cell development and the ensuing GC reactions are highly
dynamic processes controlled by positive and negative molecular regulators. These can be
soluble mediators such as cytokines, but also cellular mediators such as Cytotoxic Lym-
phocyte Associated Antigen-4 (CTLA4)-expressing T follicular regulatory cells [244] that
downregulate B cell responsiveness or reactions outside of the follicle such as the rapid
of expansion of extrafollicular plasmablasts that deplete the nutrients required for cells
participation in germinal center reactions with the follicles [110].

A key feature of the immune response in Plasmodium-infected individuals is the
induction of a strong production of pro-inflammatory cytokines, with IFN-γ a defining
cytokine. P. falciparum-induced IFN-γ in human infection has been shown to drive the
expansion of T-box Expressed in T cells (T-bet)+ CD21-CD27- atypical B cells [245] which
upregulate inhibitory receptors. In some [245], but not all [246], studies atypical B cells
appear to have reduced functionality with respect to antibody production. Atypical B cells
develop in both the P. chabaudi AS and the P. yoelii XNL models of Plasmodium infections [132,146]
making these mouse models a crucial tool in dissecting these contrasting observations in
human studies. The expansion of atypical B cells in acute febrile P. falciparum infection
are transcriptionally distinct from activated B cells or classical memory B cells and able to
interact with Tfh cells to differentiate into antibody secreting cells [246]. Mouse models of
non-lethal Plasmodium infection have been used to define the function of atypical B cells
in vivo, particularly with respect to their contribution to the memory B cell compartment
that remains upon resolution of acute Plasmodium infection. Using a transgenic mouse
that harbored antigen-specific B cells with BCRs that react to MSP-1 atypical B cells were
considered to be short-lived disappearing upon resolution of infection [132]. However
using Fc Receptor-Like 5 (FCRL5) as a marker of long-lived memory B cells [132] it has
also been shown in a secondary challenge infection in the P. chabaudi model that FCRL5-
expressing memory B cells have a robust recall response and that some of these cells adopt
an atypical phenotype in a T-bet-independent fashion [146].

Although there is evidence that IFN-γ both supports [112,145] or impairs [247–249] GC
B cell responses in mouse models of Plasmodium infection, the effects are likely contextual.
T-bet intrinsic expression in B cells, induced by signaling from the IFN-γ receptor is
needed for IgG2c isotype class switching during Plasmodium blood stage infection and also
enhances affinity maturation [145]. This IFN-γ likely comes from IL-21/IFN-γ expressing
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Tfh (Tfh1) cells [98]. Although first described in the periphery of P. falciparum-infected
individuals [239], rodent models of malaria have been instrumental in demonstrating the
lineage and function of Tfh1 cells [98] with interferon-mediated signaling via Interferon
Regulatory Factor 3 (IRF3) supporting a developmental shift away from Tfh cells to Th1
cells [250]. More recent studies have comprehensively dissected the intracellular signals
governing plasticity of the Tfh/Th1 cell phenotype in CD4+T cells responding to blood stage
Plasmodium infection [251]. Accordingly, molecules that down-regulate T-bet-mediated
IFN-γ secretion in B cells, such as IL-10 [252], promote humoral responses to blood stage
Plasmodium infection [247]. T cell-derived IL-10 can also act directly on B cells early on
in infection, influencing B cell survival, their interactions with Tfh and ultimately the
formation of germinal centers [253].

There is still much to be learned regarding the factors that regulate the development of
B cell responses to blood stage Plasmodium. The discovery of a novel population of NK1.1 T
cells supporting antibody production from short-lived extrafollicular plasma blasts [254]
demonstrates the complexity in the development and control of humoral responses to blood
stage Plasmodium infections. The main rodent models utilized in investigating humoral
responses to malaria involve the species P. chabaudi and P. yoelii due to their non-lethal
phenotype in many backgrounds of mice, including C57BL/6. However, modelling the role
of antibodies in severe malaria has been accomplished using P. berghei ANKA infections
normally employed for immunopathogenesis studies. One study observed that the pro-
inflammatory mediators that enhance the onset of pathology associated with severe malaria
also affect the development of efficacious humoral immune responses through inhibition
of Tfh cell differentiation and consequently compromised GC reactions [248]. With the
development of B cell tetramers [97] and BCR-transgenic mice [132] to identify malaria-
reactive B cells, mouse models of malaria will be needed for moving forward the analysis
and definition of factors that influence a robust and efficacious humoral response with
the precision required to identify more relevant metrics to signify efficacious candidate
vaccines against malaria that elicit a long-lived protective response.

5.4. The Importance of Innate Immune Cells in Control of iRBCs

Antibody-mediated control of parasites via blocking of invasion is not the only im-
mune mechanism of iRBC control. Ample data have been gathered on human Plasmodium
infections clearly demonstrate functional activity of innate cells against iRBCs. The contri-
bution of innate immune responses to P. falciparum in the Fulani tribe in sub-Saharan Africa
has been attributed to their greater resistance to infection compared with more suscepti-
ble sympatric ethnic groups [255] and innate responses to P. falciparum in CHMI studies
have been associated with subsequent control of both iRBCs and clinical symptoms [256].
In P. falciparum blood stage infection, innate cells of the myeloid lineage [105,257,258],
neutrophils [259,260], natural killer (NK) [28,261–264] and γδ-T cells [265] have all been
shown to neutralize iRBCs. Correlations of innate cell function with parasitemia or clinical
symptoms have suggested the importance of these cells in control of iRBCs. However,
mouse models have played a key role in deciphering how innate cells modulate adaptive
responses and exert protection against the blood stages of Plasmodium in the context of the
global response.

Studies of isolated antigen-presenting cells from human peripheral blood mononuclear
cells (PBMCs) and cell lines derived from human myeloid lineages were initially used
in combination with cultured Plasmodium-iRBCs from P. falciparum lines to investigate
how iRBCs are recognized by the immune system. The biological significance of initial
studies demonstrating a role for Pattern Recognition Receptors (PRRs) such as Toll-Like
Receptors (TLRs) in the recognition of iRBCs, merozoites and products of schizogony such
as GlycosylPhosphatidylInositol (GPI) [266] has only been possible using in vivo mouse
models of malaria. There are several PRRs that recognize Plasmodium-iRBCs and these have
been reviewed by Gowda and Wu [267]. Here we will focus on the contribution of mouse
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models to understanding the significance of GPI-TLR2 recognition and DNA/hemozoin-
TLR9 recognition in the immunology of blood stage infections.

The inflammatory nature of GPI was shown using purified from P. falciparum but it
was the injection of this molecule into mice that demonstrated that GPI-induce inflamma-
tory responses may influence malarial symptoms [268]. Complementary studies blocking
responses to GPI in mice immunized with the glycan portion of this molecule were pro-
tected from P. berghei ANKA-induced experimental cerebral malaria (ECM) [269]. In vitro
macrophage cultures were used to demonstrate a receptor-mediated mechanism for the
effects of P. falciparum-derived GPI [270] and to identify TLR2 in a heterodimer with TLR1
as the principal PRR in GPI recognition [271]. However it was infection of TLR2−/− mice
with the non-lethal P. chabaudi AS line [272] or the non-lethal P. yoelii XNL line [273] that
indicated there was very little impact on control of circulating iRBCs and the pathogenesis
of infection. This is in contrast to a stark pathological role in experimental cerebral malaria
(ECM) where, in agreement with antibody-mediated GPI blocking, TLR2−/− mice were
protected from death from neurological symptoms during P. berghei ANKA infection [274].
GPI-mediated TLR2 signaling may be more pathogenic in this system given the effects of
GPI signaling on endothelial cells [266], and the pathogenic role this may play in areas of
iRBC sequestration and accumulation such as the brain in CM/ECM.

Similarly, mouse models have been instrumental in determining the role of innate
sensing of parasite DNA and hemozoin, an insoluble crystalline by-product of hemoglobin
digestion [275], on the immunology and pathogenesis of acute Plasmodium blood stage
infections. It was initially demonstrated in 2004 that P. falciparum schizont extract contained
a TLR9 ligand [276], classically thought to be unmethylated CpG motifs in pathogen
DNA [277]. However, it has subsequently been shown that Plasmodium-derived DNA
complexed with protein [278] or hemozoin [279] is able to signal through TLR9. The
role of hemozoin in Plasmodium infection is complex: the P. chabaudi model suggests
detrimental effects on splenic DCs that have internalized hemozoin crystals with respect
to limited ability to activate T cell effector function in the spleen [280], possibly due to
the induction of anti-inflammatory cytokines as shown in P. yoelii XNL model [273]. The
consequences of this can be seen in P. yoelii XNL infection of TLR9−/− mice which have
higher parasitemia [273], although control of P. chabaudi AS appears to be less affected [272].
This could be explained by the effects of hemozoin and TLR9 on B cells and antibody
production. With respect to parasite control P. yoelii XNL is more dependent on antibody-
mediated control of iRBCs than P. chabaudi AS [11]. More recent work in the P. yoelii
model suggests that DNA sensing through TLR9 promotes the development of autoreactive
Tbet+ B cells that may produce antibodies that recognize components of uninfected RBCs
contributing to malarial anemia [281]. As for lethal infection and similar to TLR2, TLR9
sensing is a critical pathogenic factor in the development of ECM in the P. berghei ANKA
model [274].

In addition to identifying the significance of PRR recognition of different Plasmod-
ium-derived molecules during Plasmodium infections, mouse models of malaria have been
instrumental in dissecting the relative importance of different cells from the myeloid lineage
in control of iRBCs. Circulating monocytes are able to phagocytose P. falciparum [207,282]
and P. vivax [283] iRBCs in both an opsonic and non-opsonic [284] manner. The P. chabaudi
AS model has been used to demonstrate a significant contribution of monocytes [85] com-
pared to neutrophils [86,87] in control of iRBCs. In agreement with these data, neutrophils
also do not seem to be a dominant cell type involved in the control of iRBCs in non-lethal
P. yoelii XNL infections [106]. However, neutrophils have been shown to play an impor-
tant role in the P. berghei ANKA model where iRBCs are less controlled when neutrophils
cannot make Neutrophil Extracellular Traps (NETs) [285]. Thus, it seems that differences
in the function of myeloid cells may exist amongst rodent parasite species that may be
related to parasite life cycle preferences such as infection of reticulocytes (P. yoelii XNL)
over normocytes (P. chabaudi AS) or differences in inflammatory potential from iRBCs of
different species.
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Along a similar line, mouse models of malaria have been instrumental in understand-
ing the contributions of NK cells and γδ-T cells with regard to control of iRBCs and the
pathogenesis of infection. Both NK cells and γδ-T cells have been shown to be able to target
Plasmodium-iRBCs. NK cells are able to directly recognize iRBCs to produce IFN-γ [286,287]
and have been shown to confer protection in P. falciparum infection via cytokine production
and ADCC that subsequently inhibits P. falciparum growth in RBCs [261,263]. However,
NK activation has been shown to depend on accessory cells of the myeloid lineage [288]
as well as T cells [289]. Infection of humanized mice with P. falciparum confirmed in vitro
observations of contact-dependent NK cells in elimination of iRBCs [28]. Furthermore,
using the non-lethal P. yoelii XNL mouse model of Plasmodium infection it has been shown
in an in vivo setting that iRBCs induce activation of NK cells via synergistic effects of IL-18
and IL-12 to induce the expression of CD25 and IFN-γ production [290].

In acute malaria infection, an increase in the γδ-T cell numbers correlate with pro-
tection from high parasitemia [89,265]. However repeated exposure to malaria has been
shown to lead to a decrease in circulating γδ-T cell numbers, particularly the subset that
expresses the Vδ2+ chain of the γδ TCR [265,291,292]. Although it is not possible to define
the role of the Vδ2+γδ-T cell subset in mice due to the absence of the Vδ2 chain in mice, in
general γδ-T cells produce IL-21 and IFN-γ that may enhance humoral immune response
against blood stage infection [293]. γδ-T cells produce IFN-γ, granzymes and granulysin
that collectively inhibit parasite growth in a contact-dependent manner [88]. γδ-T cells
displaying CD16+ Vδ2+ TCRs are able to respond to opsonized P. falciparum iRBCs through
engagement of CD16 receptors [294] facilitating Vδ2+ T cell effector function with respect
to ADCC cytotoxicity and in removal of iRBCs by phagocytosis [294,295]. CD16+ Vδ2+ T
cells are shown to exhibit some of the features of NK cells and data also suggests they are
more cytolytic than their CD16− Vδ2+ T cell counterparts [294]. In addition, Vδ2+γδ-T cells
appear to induce contact-dependent lysis of iRBCs via granulysin [295].

Mouse models of malaria have been used to assess the relative contributions of NK
cells and γδ-T cells with respect to the control of iRBCs. Despite an evident early expan-
sion of NK cells in the spleen upon infection with P. chabaudi [140] and the contribution
activated NK cells play in ramping up the inflammatory response during P. chabaudi in-
fection [296], NK cells only have a small impact on control of parasitemia during primary
infection [223,297,298]. On the other hand, γδ T cells have been shown to exert significant
control of iRBCs during acute infection with P. chabaudi AS, exceeding that mediated by
antibodies [223]. γδ-T cells can also express M-CSF that protect against recurrence of P.
chabaudi parasitemia in mice at the later stage of the infection [89]. In line with these find-
ings, depletion studies in P. chabaudi adami 556KA-infected mice found a more prominent
role for γδ T cells compared to NK cells in controlling iRBCs [223], a finding supported
by a second study in P. yoelii-infected mice which found no significant role for NK cells in
parasite control [105].

These data illustrate the power of undertaking in vivo experiments in uniform settings
such as in laboratory mice where the contribution of different immune cells can be parsed
out in a way that is not easy to undertake in culture studies or human infection studies,
an exception being controlled human malaria infections [299,300]. As heterogenous innate
cell populations become better defined with advances in technologies such as single-
cell sequencing, mouse models of malaria will be instrumental in defining how cell sub-
populations of innate cells enhance iRBC lysis and phagocytosis in a temporal setting and
in relation to unfolding and established adaptive responses.

6. Immunopathogenesis of Malaria and Clinical Immunity

While sterile immunity preventing Plasmodium infection does not commonly occur,
people living in malaria endemic regions ultimately develop clinical immunity that pro-
tects against symptoms associated with Plasmodium blood-stage infection. Clinical im-
munity to malaria is characterized by reduced parasitemia and attenuated inflammatory
responses [301,302]. As such, people who develop clinical immunity to malaria often carry
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Plasmodium iRBCs asymptomatically with a low-grade pro-inflammatory immune response
that limits blood stage parasite replication.

Based on human studies, clinical immunity has long been thought to center on the
acquisition of strong immunomodulatory mechanisms that fine tune the inflammatory
response necessary for control of the parasite burden while controlling the inflammation-
induced pathology. Clinical symptoms of malaria are driven by Th1 inflammation char-
acterized by IFN-γ, a cytokine known to be important in the development of immune
effector mechanisms including high affinity class-switched anti-parasite antibody [245,303]
and activation of phagocytes [304]. The main, but not only, sources of IFN-γ found in
P. falciparum infection include Th1 cells, cytolytic CD8 T cells, NK cells and γδ T cells [304],
in particular Vδ2+ γδ T cells [265], as high production of pro-inflammatory cytokines by
Vδ2+ γδ T cells has been shown to protect from infection by P. falciparum in children living
in a high transmission setting. Analysis of T cell responses after controlled human malaria
infection (CHMI) with P. falciparum demonstrated that higher blood stage parasitemia was
associated with an expansion of T regulatory (T reg) cells that express CD25 and FoxP3 after
schizogony from the liver [300], suggesting downregulation of the inflammatory response
supports parasite replication in the blood stage.

At the same time, systemic inflammation appears to correlate with the pathogenesis
of malaria. Higher IFN-γ production from γδ T cells diminishes clinical immunity in
response to subsequent infections with P. falciparum [265], presumably due to inflammation-
induced pathogenesis. As such, decreased Vδ2+ T cell numbers, and an upregulation
of immunoregulatory markers such as Tim-3 and CD57 on γδ T cells, is associated with
clinical immunity to malaria [265,291]. Along the same lines, the identification of CD4 T
cells producing both IFN-γ and IL-10, termed Tr1 (Foxp3-ve regulatory) cells, have been
identified in P. falciparum-infected individuals [305] and associated with uncomplicated
disease in children. Indeed, a longitudinal analysis of children from an endemic region
of Mali indicates that a recent exposure to Plasmodium changes the cytokine profile of
a subsequent Plasmodium-infection, specifically upregulation of IL-10 in children with
persistent asymptomatic infection [301]. These data suggest that IL-10 offers protection
from clinical symptoms of malaria. Furthermore, there are multiple correlative studies
suggesting a protective role of transforming growth factor- β (TGF-β) against clinical
symptoms of malaria [306–308]. Collectively, these data support a role for inflammation-
suppressing cytokines in protecting against the pathogenesis of malaria.

Mouse models of non-lethal malaria have been used to confirm the importance of
inflammatory responses in contributing to the control of iRBCs, including the contribution
of CD8 T cells which can recognize P. yoelii XNL-infected erythroblasts that express peptide-
loaded MHC-I on their surface [309] and kill them via Fas-FasL dependent cytotoxicity [310]
and ganulysin-mediated mechanisms of cytotoxicity [48]. A transgenic mouse with Pb-I
CD8+ T cells reactive to the 60s ribosomal protein L6 (RPL6) has provided evidence that
CD8 T cells can be primed in the liver stage and boosted when there is a shared antigen
with blood stage malaria [127,128]. The ability of CD8 T cells to contribute to parasite
control has been replicated in the P. chabaudi AS model [311–313] but ultimately these data
suggest that this contribution is not essential for the control of parasitemia in several mouse
models of malaria blood stage infection [314] and CD8 T cells in cannot confer protection
without the help of CD4 T cells [315].

Given the well-defined pathologies that can be measured in the mouse models of
malaria there have been several studies confirming the importance of immunomodulatory
cytokines such as TGF-β [93] and IL-10 [94,109] against malaria pathogenesis. Nonetheless,
IL-10 and TGF-β are both pleiotropic cytokines with several possible sources. Thus, the
main contribution of studies in mouse models of Plasmodium infection has been the ability
to dissect the roles of these pleiotropic cytokines throughout the course of the infection, as
well as identify the most potent sources of these cytokines mediating clinical immunity to
the blood stages of Plasmodium infection. For example, comparison of the lethal (P. yoelii
XL) and non-lethal (P. yoelii XNL) strains of P. yoelii revealed that early production of TGF-β
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(within 24 h) in lethal infection is associated with delayed IFN-γ and TNF-α production,
leading to uncontrolled parasite growth and 100% fatality [113]. This was in contrast
with a later (day 5 post-infection) production of TGF-β in non-lethal infection which was
associated with reduced parasitemia and resolution of the infection [113]. In a similar vein,
the timing of IL-10 during the progression of malarial disease seems to be crucial for control
of severe immunopathology [316].

With regards to IL-10, the absence of which turns a non-lethal P. chabaudi AS infection
into a lethal one [94], mouse models have been used to determine that this cytokine is
essential in the control of pathogenic TNF-α production [94,109]. Mouse models have
challenged the notion that these immunoregulatory cytokines were produced by classical
CD4+ CD25+ FoxP3+ T reg cells. Early studies comparing lethal P. yoelii XL and nonlethal
P. yoelii XNL infections demonstrated a similar expansion and activation of Treg cells
following infection with these two strains, indicating that the early activation of Treg cells
does not contribute to the virulence [109]. Indeed, studies of TGF-β induction by P. yoelii
indicated that the main producers of TGF-β were in fact CD8+ CD25+ T reg cells.

On the other hand, the main source of IL-10 has been found in both the P. chabaudi [317]
and P. yoelii [109] models to come not from classical T reg cells, but rather from FoxP3-ve
T cells that have been shown to simultaneously-produce IFN-γ [317]. The presence of
IL-10/IFN-γ Tr1 cells has been shown in human infection [318] but it is in mouse models
that the production of IL-10 and IFN-γ in Tr1 cells has been shown to be dependent on IL-27
signaling [317,319]. IL-10 production by Tr1 cells (CD4+ CD25− Foxp3− CD127−) was able
to down-regulate iRBC-induced pro-inflammatory responses [109] resulting in the increased
growth of parasitemia in non-lethal P. yoelii XNL infection. It has been subsequently shown
that the immune regulatory role of IL-10-producing Tr1 may differ between primary
and secondary infection in blood stage Plasmodium infection: IL-10 may exert a more
suppressive effect on the innate immune system, specifically MHC-II expression on APCs,
during primary infection while it suppresses the adaptive system, specifically expansion
of antigen-experienced memory CD4 T cells, in secondary infections [320]. The use of
double IFN-γ-YFP+ and IL-10-GFP+ reporter mice have indicated that following resolution
of primary infection, the stability and potential of CD4+ IFNγ+ IL-10+ T cells to become
memory is limited [320], in part because they exhibit an exhaustion phenotype and are
generally unresponsive at the early stage of secondary infection.

6.1. Organ-Specific Pathologies

Severe cases of malaria are associated with organ dysfunction which can be caused by
sequestration of iRBCs via vascular adhesion [321] and trapping of iRBCs in the capillaries
due to reduced deformability [322–324]. With the advent of luciferase expressing con-
structs, the rodent Plasmodium parasites have been shown to sequester in different organs
in mice [56,118,325,326]. Given the relative inaccessibility of human organs from patients
experiencing severe malaria syndromes, the rodent models of Plasmodium infections have
been instrumental in dissecting immunopathological mechanisms associated with localized
inflammation from sequestered and accumulated iRBCs [45,56,119]. Models of particular
malaria-associated syndromes can be achieved using different combinations of rodent
parasite species and mouse backgrounds (Table 2). Here, we focus on how mouse models
of blood stage malaria have contributed to our understanding of the immunological under-
pinnings of three of the most well-studied sequelae of malaria: Severe Malarial Anemia
(SMA), Cerebral Malaria (CM) and Acute Respiratory Distress Syndrome (ARDS).

6.2. Mechanisms of Inflammation-Induced SMA

SMA in children is defined as a hemoglobin value < 5 g/dL and detectable para-
sitemia in the blood stream [327]. Although Plasmodium replication in RBCs results in
physical destruction of the RBC, SMA is more likely caused by mechanisms that result in
hemolysis [328] and clearance of both uninfected and iRBCs via erythrophagocytosis [329]
in combination with disrupted erythropoiesis in the bone marrow [330]. The relative
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contributions and mechanisms underlying these different contributors to a reduction in
circulating RBCs are difficult to assess in humans without splenic or bone marrow biopsies.
Sequestration/accumulation of iRBCs in the inflamed bone marrow has been shown [331].
However, mouse models of SMA, principally the non-lethal P. chabaudi model, have been
instrumental in demonstrating the underlying mechanisms of anemia and in dissecting the
relative contributions of each.

Early work in using P. chabaudi as a model for SMA established that dyserythropoiesis
in malaria may result from stalling of late erythroid progenitor cells [332] and be related to
bone marrow inflammation, in particular production of the pro-inflammatory cytokines
IL-12 [333] and macrophage migration inhibitory factor (MIF) [334]. A role for type 2
cytokines, specifically IL-4, has also been shown to suppress late erythroid progenitor
cells [335]. Inflammation is likely derived from iRBCs that accumulate in the bone marrow,
but early studies suggested that “malaria toxins”, free GPI anchors that are released during
iRBC schizogeny [336], can directly lead to dyserythropoiesis [337,338]. Hemozoin has also
been shown to induce anemia [339], demonstrating a contribution from parasite products
in the suppression of erythrocyte production. Nonetheless, the density of circulating iRBCs
is not necessarily related to level of anemia in the P. chabaudi model [58] suggesting that
direct parasite destruction of RBCs during replication and release of inflammatory products
during schizogony plays a more minor role in the severity of malarial anemia. Given
the insoluble and persistent nature of hemozoin, the contribution of hemozoin may be
cumulative over time during chronic infection.

Whilst existing data using rodent models of Plasmodium infection point to a direct
suppression in the development of late erythroid progenitor cells via inflammatory cytokine
induction, there may also be an indirect effect via cytokine modulation of erythropoietin
produced by the kidney [340]. Other studies have investigated whether a defect in iron
handling also contributes to suppression of erythropoiesis [341] and how this may be
reversed [342]. Other than production of new RBCs during the process of erythropoiesis,
removal of both infected and uninfected circulating RBCs has been shown to occur in
the liver via erythrophagocytosis in rodent infections [343]. The removal of uninfected
RBCs via autoimmune antibody-dependent mechanisms has been suggested in human
malaria [344], and these include antibodies that recognize band 3, an anion transporter that
mediates RBC flexibility which is the most abundant erythrocyte surface receptor [345],
phosphatidyl serine (PS) that becomes exposed on the surface RBCs [346] and spectrin,
a cytoskeletal molecule important for maintaining the stability and structure of the cell
membrane [347]. Autoantibodies to band-3 can occur naturally but appear to be elevated
in Plasmodium-infected individuals [348,349].

The contribution of anti-band-3 antibodies to malarial anemia is uncertain and may
depend on the infecting species of Plasmodium. However, anti-PS antibodies have been
demonstrated to contribute to RBC removal in the P. yoelii XNL model [350] providing a
mouse model in which to test the significance of this mechanism with respect to malarial
anemia. Plasma cells producing anti-PS antibodies in the P. yoelii model have been identified
as CD11c+ Tbet+ atypical B cells that are induced in response to DNA sensed by TLR9 and
IFN-γ [281]. Work in the P. chabaudi model has been used to show that malaria appears
to prime B cell clones that already exist, producing autoantibodies with a strong IgG
response to band-3 and spectrin [351]. Thus, in addition to defining relative contributions
of autoantibodies in the severity of malarial anemia relative to other mechanisms, mouse
models of malarial anemia allow interrogation of the cellular mechanisms underlying how
autoantibodies arise.

Moving forward, mouse models of blood stage Plasmodium infection will be instrumen-
tal in determining how iRBCs interact in the bone marrow niche [352] and the mechanisms
by which extramedullary erythropoiesis are established in an attempt to remedy dimin-
ished circulating RBCs, particularly in the red pulp of the spleen [353,354]. It will also be
pertinent to determine the degree to which removal of uninfected RBCs by autoantibodies
impacts on the levels of anemia.
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6.3. T Cell-Mediated Breakdown of the Blood-Brain Barrier in Cerebral Malaria

Pediatric cerebral malaria (CM) is almost always fatal when not treated with anti-
malarials, and still has mortality rates between 15% and 20% with treatment [355]. The
initiation of CM is thought to occur as a result of sequestration and adherence of iRBCs
to the brain vasculature leading to disruption of the blood-brain barrier (BBB), a complex
of cells and extracellular structures that regulates the exchange of molecules between the
blood and the central nervous system. BBB disruption occurs upon activation of brain
microvascular endothelial cells. Although markers of vascular activation can be measured
in the bloodstream of individuals with CM [356], the mechanism by which the BBB breaks
down is poorly understood, in part due to the paucity of brain tissue availability from
victims of CM and other control groups for comparison. As such, rodent models of CM
are essential to enable cellular mechanisms of BBB breakdown in CM to be elucidated and
rationally targeted therapeutically.

Infection of C57Bl/6 mice with P. berghei ANKA recapitulates many of the features that
characterize human CM (Table 2) and is a commonly used model described as ECM [357].
Compared to some of the other ECM models, P. berghei ANKA infection of C57BL/6
mice does not rely on extremely high parasitemia to cause disease. Infected mice usually
die between 6 and 10 days after infection [358] with accumulation of iRBCs to the brain
microvasculature [359] and the activation of brain endothelial cells [360,361]. Human
studies suggest that both host and parasite factors mediate the development of CM in
P. falciparum-infected children. As such there is some debate on the utility of the rodent
ECM model, particularly since there are some differences in the expression of parasite
adhesion molecules such as CD36 on human brain microvascular endothelial cells [362,363]
compared with mouse [364]. Furthermore P. berghei ANKA lacks PfEMP-1, a ligand of both
Intercellular Adhesion Molecule-1 (ICAM-1) and Endothelial Protein C Receptor (EPCR)
on brain endothelial cells, and this interaction is thought to facilitate sequestration [365].
P. berghei ANKA iRBC accumulation in organs relies on the expression of the Schizont
Membrane-Associated Cytoadherence protein (SMAC) on the surface of P. berghei ANKA
iRBCs [364]. Nonetheless, there is ample microscopic evidence, particularly using 2-photon
techniques, of iRBC accumulation in brain microvessels with some sequestration of iRBCs
on the endothelial lining [115,366,367]. Experiments with luciferase-expressing P. berghei
ANKA strain clearly show focused accumulation in the brain, particularly in the brain stem
and olfactory bulb [40,368–372].

Inflammation related to sequestered iRBCs is thought to be a central facet of the
pathogenesis of CM, and is necessary for the pathogenesis of ECM. Neuroinflammation
often involves the production of TNF-α but ablation of TNF-α using Etanercept did not
reduce the mortality rate of pediatric CM [373]. Data using the ECM model of CM concurs
with this finding whereby infection of TNF-α deficient mice still die from BBB breakdown in
the same time frame as intact animals [374]. Indeed, ECM has been critical in demonstrating
the importance of lymphotoxin-α (LT-α), rather than TNF-α, in mediating breakdown of
the BBB [374,375].

In addition to TNF-α and LT-α, interferons are a key facet of the neuroinflammatory
response to iRBCs. Plasmodium parasites are known to induce type 1 IFNs (IFN-I) which,
depending on context, have the capacity to both suppress and activate innate and adaptive
immune cells, promote pro-inflammatory cytokine production and enhance parasite clear-
ance. Both IFN-I subtypes a signal through the heterodimeric IFNAR functioning in both an
autocrine and paracrine manner. The binding of IFN-I to IFNAR induces a signal cascade
that initiates the transcription of interferon stimulated genes (ISGs). Host genetic variation
can lead to differences in gene regulatory regions of the IFNAR1 subunit of IFNAR. The
development of cerebral malaria in children has previously been associated with a variant
of IFNAR1 associated with a higher expression of IFNAR1 [376–379]. This suggests that
Type 1 interferon signaling is a pathogenic event [376] and is a finding supported by studies
in ECM [141,380].
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Similarly, there have been associations with polymorphisms in the IFN-γ receptor [381]
and lower levels of plasma IFN-γ [382] with development of CM suggesting that IFN-γ is
protective. This is in agreement with polymorphisms in the IFN-γ gene promoter which
are associated with increased transcription of IFN-γ and protection from CM [382]. The
ECM model relays a different story: IFN-γ has been shown to be necessary for death to
occur [358,383]. IFN-γ derived from CD4 T cells [384] leads to trafficking of pathogenic
CD8 T cells to the brain [358,384] and cross-presentation of merozoite-derived epitopes on
major histocompatibility complex (MHC)-I [360] for recognition by infiltrating parasite-
reactive CD8 T cells and BBB disruption. In ECM, IFN-γ leads to upregulation of adhesion
molecules on brain microvascular endothelial cells enhancing the adhesive properties of
P. berghei ANKA iRBCs [385]. The reason for the apparent difference in the role of IFN-γ
in BBB disruption is unknown, but may be related to the differences exerted on parasite
control mechanisms initiated by IFN-γ in the context of a more chronic setting than that
studied in the ECM model.

One of the significant breakthroughs in our understanding of the immunological
underpinning of CM from the ECM model was the demonstration that CXCR3 [386] and
CCR5 [387]-dependent CD8 T cell infiltration into the brain is necessary for disruption of
the BBB [114]. In mice IFN-γ, including that secreted by NK cells [386], induces production
of CXCR3- and CCR5-responsive chemokines in the neurovascular unit thus facilitating
recruitment of pathogenic CD8 T cells and other immune cells to the Central Nervous
System (CNS) [388]. Whilst initial studies on human autopsy samples indicated a cellular
infiltrate that was largely devoid of CD8 T cells [389,390], suggesting a potential funda-
mental difference in the etiology of BBB breakdown between human CM and mouse ECM,
more in depth studies from pediatric CM victims in Malawi have provided evidence that
CD8 T cells do infiltrate the brain [390,391], and this increase in CD8 T cells is correlated to
density of iRBC sequestration [391]. As such, CD8 T cell involvement in human CM can no
longer be ruled out.

The mechanisms by which CD8 T cells mediate breakdown of the BBB via effects
in the endothelium are still poorly understood but the ECM model has been critical in
elucidating some of the parameters by which this occurs. It has been shown in ECM that
lytic molecules perforin and granzyme B [392,393] are essential components in this process.
Evidence of apoptosis in brain endothelial cells can be observed in autopsy samples of
pediatric CM cases [388,394] as may be expected via the lytic action of incoming primed
CD8 T cell recognition of cross-presenting brain endothelial cells. Although apoptosis can
also be seen in brain sections of P. berghei ANKA in addition to 2-photon microscopy [367],
it is minimal. Furthermore, infected mice do not have a significantly increased cleaved
caspase compared with naïve mice [393]. Whilst other mechanisms of brain microvascular
endothelial cells such as necrosis, ferroptosis and pyroptosis have not been extensively
investigated, these data do suggest that perforin and granzyme are acting through non-cell
death-inducing pathway that disrupts the BBB. In this regard findings in the ECM model
are similar to Theiler’s murine encephalomyelitis in mice, another model of CD8 T cell
dependent disruption of the BBB, where perforin but not FasL is required to mediate
vascular leakage and death [395].

The findings that CD8-derived lytic enzymes might not act via induction of apopto-
sis leads to the idea that they may act to disrupt the BBB via another mechanism. They
may have a role in downregulating tight-junction and adherens-junction proteins which
normally enable endothelial cells to dynamically control the passage of solutes and other
molecules across the BBB [396]. Disassembly and downregulation of junction proteins
on brain microvascular endothelial cells has been observed in both pediatric CM autopsy
samples [397] and in ECM [40,366]. In ECM CD8 T cell-degranulation may induce down-
regulation of junction proteins via release of perforin [393,398] which could augment
expression of vascular activation-induced molecules such as the tyrosine kinase receptor
EphA2 which has been shown to mediate the loss of tight junctions on both human and
mouse brain microvascular endothelial cells [40]. In the Theiler’s murine encephalomyelitis
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model, leakage and downregulation of tight junction proteins occurs before an increase
in apoptosis markers [398]. Thus, the timing of BBB breakdown in ECM and CM relative
to initial Plasmodium infection may be important in the interpretation of ECM studies as
applied to CM.

Given that BBB disfunction is a feature of both CM in humans and ECM in mice, the
rodent model of ECM is a crucial tool in unravelling the most important mechanisms that
lead to fatal pathogenesis. Endothelial cells are only one player in the neurovascular unit
that also includes mural cells (pericytes), astrocytes and microglia [399]. It is hard to dis-
count the potential role of these accessory cells in disassembly of inter-endothelial junction
proteins in CM given that astrocytes and microglia are both activated in ECM [400–402] and
the known role they play in regulation of BBB integrity. Indeed, molecules secreted from
these cells upon activation can be measured in the cerebral spinal fluid of children with
CM [403] and pediatric autopsy samples demonstrate activation of microglia and astrocytes
in fatal CM [404]. The mechanisms by which these accessory cells become activated, and
the mechanisms which control endothelial cell junction protein modulation in CM, remain
to be discovered. Given the difficulty in studying these cells, it is likely that the ECM model
will be instrumental in disentangling the cellular and molecular basis of endothelial cell
junction disassembly.

Identification of immunodominant epitopes from P. berghei ANKA allows for more
in-depth studies on the characteristics of the CD8 T cells that are pathogenic in ECM. In
addition to the glideosome associated protein 50 (GAP50)40–48 epitope in the context of H2-
Db [360], two further immunodominant epitopes in the P. berghei ANKA model have been
identified: bergheilysin protein (Pb2)592–599 and replication protein A1 (F4199–206) [405] both
in the context of MHC Class I H2-Kb. This work has allowed the development of tetramers
to track Plasmodium-reactive CD8 T cells in vivo and opens up the possibility of developing
TCR transgenic animals, such as the PbI transgenic mice that recognize parasite-derived
60S Ribosomal protein L6 (RPL6)[127] in several Plasmodium species, including P. falciparum,
that can be used to investigate the mechanisms by which CD8 T cells might mediate BBB
breakdown. In addition, the ECM model is likely to be important in the identification
of possible avenues for therapeutic targeting, such as possible IL-33 administration to
induce anti-inflammatory cytokine expression and the expansion of anti-inflammatory
macrophage and regulatory T cell populations [406] or IL-15 complex treatment to protect
BBB leak by expanding a population of IL-10 producing NK cells [407].

6.4. Mechanisms of Malaria-Associated Acute Lung Injury (MA-ALI) in Malaria-Associated Acute
Respiratory Distress Syndrome (MA-ARDS)

Pulmonary complications arising from Plasmodium infection can occur with all species
but in particular upon infection with falciparum, vivax and knowlsei species. This is a syn-
drome of severe malaria resulting in up to 40% mortality even with treatment [20]. Though
more common in adults infected with vivax malaria, in children, MA-ARDS can often
present along with cerebral complications [22]. MA-ARDS is characterized by increased
permeability of pulmonary capillary endothelial cells and alveolar epithelial cells, with
Pulmonary Edema (PE), hypoxia [20] and in some cases fibrosis [408–410]. Most data
related to the pathogenesis of MA-ARDS and MA-ALI comes from post-mortem studies
of lung tissue from adult fatalities of Plasmodium infection showing apoptosis of alveolar
cells [21]. However, the immunological mechanisms underlying MA-ARDS and MA-ALI
in Plasmodium patients are relatively understudied and poorly understood.

Pulmonary vascular activation is thought to arise in response to the sequestration
of iRBCs resulting in inflammation in the lung microvasculature [17,21] characterized by
expression of TNF-α [22], Von Willebrand Factor (VWF) and ANGiopoietin-2 (ANG2) [411].
However, sequestration of iRBCs is likely to occur via a different suite of adhesion molecules
upregulated on the pulmonary vasculature compared with the BBB. For example, EPCR
expression which is a key molecule mediating adhesion of iRBCs on brain microvascular
endothelial cells [412] has been found to be significantly downregulated on pulmonary
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vasculature endothelial cells in those who have succumbed to MA-ARDS [22] compared
with those dying of other malaria-related syndromes.

Some studies employ the P. berghei ANKA strain used to study ECM by virtue of
the fact this strain sequesters in the lung [413,414] and the ultrastructure of the infected
lung looks similar to postmortem samples from victims of MA-ARDS [116]. However,
MA-ARDS and MA-ALI are more commonly studied using infection with the NK65 strains
of P. berghei [45]. The advantages of the P. berghei NK65 models are that they do not ap-
pear to result in neurological manifestations of infection and have higher ARDS clinical
scores, than P. berghei ANKA infection [45]. P. berghei NK65 iRBCs accumulate in the lung
vasculature, with an increase in VWF expression [415] as also found in human Plasmod-
ium infections. There are two primary strains of P. berghei NK65 used for studies in the
pathogenesis of MA-ARDS and MA-ALI: the Edinburgh strain (P. berghei NK65E) and the
New York strain (P. berghei NK65NY). Possibly due to slower growth of iRBCs due to the
predilection of P. berghei NK65NY to infect reticulocytes, the P. berghei NK65NY does not
recapitulate MA-ARDS despite sequestering in the lung tissue. However, the Edinburgh
strain results in rapid death of C57BL/6 mice from days 6–10 post-infection and recapitu-
lates features of MA-ARDS seen in humans such as extensive neutrophil infiltration, an
increase in pulmonary VWF expression [415] and an increase in protein concentration
in lungs [45]. P. berghei-NK65E has been used to demonstrate the critical role of VWF in
alveolar leakage [415].

In mice, MA-ARDS and MA-ALI appear to have similarities regarding the underly-
ing pathogenesis of ECM. Studies on MA-ARDS/ALI using P. berghei ANKA infection
have demonstrated that IFN-γ, upregulation of chemokines [416] and functioning CD8
T cells are all necessary for lung sequestration of iRBCs and pulmonary edema [417]. In
addition, pulmonary vascular leak and BBB breakdown are dependent on the presence
of platelets [41]. Unlike the BBB where molecules such as ICAM-1 and EPCR have been
shown to play a key role, sequestration in the lung appears to be more dependent on the
scavenger receptor CD36 [364]. There also appears to be a difference in the importance of
myeloid cells with marked infiltration of neutrophils [418] and monocytes [419] to the lung
which, at least for monocytes, appear to play a key role in controlling iRBC numbers.

The suite of P. berghei strains available to study this syndrome of malaria will be of
some help in the interpretation of pulmonary autopsy samples from patients who have
died of MA-ARDS and MA-ALI, a necessary endeavor given the lack of other tractable
options to study this in Plasmodium-infected humans.

7. Conclusions

In summary this review has highlighted the utility of the rodent models of Plasmodium
infection with regards to understanding the immunology of blood stage malaria. Several
models exist although none completely recapitulate all aspects of malaria. However,
this reflects the heterogeneity of this disease. Choosing the correct model to investigate
specific aspects of this disease is essential in order to be able to extrapolate to human
Plasmodium infections. There is still a plethora of key outstanding questions that remain in
the field of blood stage immunology of malaria (see Outstanding Questions box). With the
advent of genetically-modified rodent Plasmodium strains and an ever-increasing catalog
of genetically-modified and transgenic mice in addition to SPF genetically diverse mice
available through the CC and DO mouse resources, these questions can only be answered
with the employment of mouse models of blood stage malaria. Analysis of spatial aspects
of anti-malarial immune responses can only be studied in the context of infection rather
than employing in vitro studies. The mechanisms at play in immunologically-driven organ-
specific pathogenesis of malaria can only be holistically studied using a whole-organism
approach and in organs that are not readily accessible in humans. For all of these reasons,
the tractable rodent models of malaria described here will be a critical tool with respect
to answering these outstanding questions in the field of blood stage malaria. In turn, the



Vaccines 2022, 10, 1525 24 of 41

information gained will be instrumental in the rational design of novel immunologically-
based therapeutic strategies that are badly needed in the fight against this disease.
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