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ABSTRACT

Major progress in disease genetics has been made
through genome-wide association studies (GWASs).
One of the key tasks for post-GWAS analyses is to
identify causal noncoding variants with regulatory
function. Here, on the basis of >2000 functional fea-
tures, we developed a convolutional neural network
framework for combinatorial, nonlinear modeling of
complex patterns shared by risk variants scattered
among multiple associated loci. When applied for
major psychiatric disorders and autoimmune dis-
eases, neural and immune features, respectively, ex-
hibited high explanatory power while reflecting the
pathophysiology of the relevant disease. The pre-
dicted causal variants were concentrated in active
regulatory regions of relevant cell types and tended
to be in physical contact with transcription factors
while residing in evolutionarily conserved regions
and resulting in expression changes of genes related
to the given disease. We demonstrate some exam-
ples of novel candidate causal variants and associ-
ated genes. Our method is expected to contribute
to the identification and functional interpretation of
potential causal noncoding variants in post-GWAS
analyses.

INTRODUCTION

During the last decade, numerous efforts have been made to
elucidate the genetic mechanisms underlying complex dis-
orders. Major progress was made through genome-wide as-
sociation studies (GWASs). However, developing methods

to pinpoint the DNA variants that actually increase the risk
of the associated disease is a major challenge that GWASs
still face (1). GWASs cannot pinpoint causal disease vari-
ants but can only report linkage disequilibrium (LD) blocks
including many neutral SNPs linked to causal loci. To exac-
erbate the problem, the majority of disease-associated DNA
variations are thought to alter not the gene itself but the reg-
ulation of gene expression (2). Our incomplete knowledge
of noncoding regions limits the functional interpretation of
underlying DNA variants. Fortunately, the wealth of cell-
type-specific human epigenomes help with the identification
of functional noncoding variants (1,3–5).

Deep learning is a powerful approach for learning com-
plex patterns (6) and has been applied in genomics espe-
cially for deciphering the complexity of noncoding DNA se-
quences. For example, a deep-learning model that predicts
regulatory codes for RNA splicing has been developed (7).
As one of the most successful deep learning architectures,
convolutional neural networks (CNNs) have been used to
systematically learn the sequence motifs or regulatory pat-
terns embedded in genomic regions recognized by DNA- or
RNA-binding proteins (8) or in DNase I hypersensitive sites
(DHSs) (9).

In this study, we developed a deep learning frame-
work based on CNNs to discover regulatory variants that
may play a causative role in increasing the risk of the
five major psychiatric disorders and four autoimmune dis-
eases: autism spectrum disorder (ASD), attention deficit-
hyperactivity disorder (ADHD), bipolar disorder (BPD),
major depressive disorder (MDD), schizophrenia (SCZ),
rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE), Crohn’s disease (CD) and ulcerative colitis (UC).
We utilized numerous functional features while combining
them nonlinearly to model complex patterns shared by risk
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variants. We were able to discover novel candidate SNPs
that may actually contribute to disease development.

MATERIALS AND METHODS

Identification of association blocks

In order to make the input data for the CNN model, we first
identified chromosomal association blocks. To this end, we
employed a GWAS dataset for five major psychiatric dis-
orders and four autoimmune diseases (Supplementary Ta-
ble S1) (10,11). The association P values were downloaded
from the Psychiatric Genomic Consortium portal (https://
www.med.unc.edu/pgc/results-and-downloads) for psychi-
atric disorders. As for the autoimmune diseases, the associ-
ation P values were retrieved from the largest meta-analysis
for each disease (12–14). For imputation, we used the EUR
(European ancestry) samples of the 1000 Genomes Project
phase 1 release (version 3) as the reference panel (15). Impu-
tation of summary statistics was performed by using ImpG-
Summary (16). The SNPs that showed the strongest asso-
ciations and were at least 1 Mb apart from one another
were defined as lead SNPs. To identify the lead SNPs, we
sorted all SNPs across the whole genome according to the
observed or imputed P values and picked SNPs from the
top of the list while maintaining a >1 Mb distance from
each of the previously selected ones. We then searched up-
stream and downstream regions flanking each lead SNP
for the 30 most significant SNPs. We then discarded those
with P > 5 × 10−4. In this manner, we identified associ-
ation blocks carrying the lead SNP and their neighboring
SNPs while constraining the maximum number of neigh-
boring SNPs to 30 (Figure 1A). The resulting number of as-
sociation blocks was 340, 391, 474, 405 and 601 in ADHD,
ASD, BPD, MDD and SCZ for psychiatric disorders, and
435, 849, 431 and 383 in RA, SLE, CD and UC for autoim-
mune diseases, respectively (Supplementary Table S2).

Feature set construction

The overall processes for our feature map construction are
illustrated in Supplementary Figure S1. We obtained open
chromatin profiles in 349 different samples as provided in
the form of DHS peaks by the ENCODE Project (17) and
the Roadmap Epigenomics Project (18). A total of 606 his-
tone modification profiles from the Roadmap Epigenomics
Project (18) were obtained as the narrow peak bed files in
124 different biological conditions. The KEGG database
(19) was utilized to incorporate gene functions as features.
Each SNP was mapped to their target gene and its KEGG
pathway when they resided in the gene body or 500 kb up-
stream of the TSS. We ran FIMO (http://meme-suite.org/
doc/fimo.html) (20) to search the TRANSFAC (21) and
JASPAR (22) databases of position weight matrices for 996
transcription factors (TFs). We used the P value thresh-
old of 10−4 for feature mapping. As a result, we com-
piled 2,252 functional features consisting of DHSs, histone
modifications, KEGG pathways, and TF binding sites. Be-
cause using too many features results in overfitting, we fil-
tered features that were shared by only a small number of
SNPs in the association blocks (Supplementary Figure S1).
Specifically, we retained the features that were mapped to

any SNPs in > 95% of the association blocks in each dis-
ease model. The resulting number of features was 714 for
ADHD, 711 for ASD, 730 for BPD, 714 for MDD, 739 for
SCZ, 791 for RA, 741 for SLE, 845 for CD and 834 for UC.

Model design

The developed CNN model consists of hierarchical pat-
tern detectors that learn the regulatory features commonly
present in disease-associated genomic loci. In our model,
we used two convolution layers; (i) the first layer acts as a
local feature extractor at the individual SNP level and (ii)
the second layer combines the detected patterns into more
complex biological features.

Convolution layer 1. The convolution layer 1 takes an in-
put matrix (Xmn) with a size of M × Nas described below:

Xmn =
⎧⎨
⎩

1 if the m-th features is associated with the n-th SNP
(for all 1 ≤ m ≤ Mand 1 ≤ n ≤ N)

0 otherwise
.

M is the number of regulatory features that survived the
filtering step described above, and N is the total number
of candidate SNPs in an association block. With this input
matrix and tunable patterns represented as kernel wk, the
first feature map array (1ck

n) was obtained by the convolu-
tion process,

1ck
n =

M∑
m=1

wk
m Xmn,

where k is the index for 50 filters used in our model (1 ≤ k ≤
K ,K = 50). Each convolution kernel wk is a weight vector
with a length of M. This process is equivalent to performing
a one-dimensional convolution (8) with a moving window
of step size 1 on the list of consecutive N SNPs each having
M channels. As implied in the above formula, K types of pat-
tern detectors were used for each SNP without considering
the effect of neighboring SNPs. After convolving the matrix
Xmn , we added a bias vector, bk, which was expected to make
the model more flexible and allow the model to solve given
problems more effectively. Subsequently, a rectified linear
unit (ReLU) was applied as follows:

hk
n = ReLU(1ck

n + bk),

where ReLU(x) =
{

x if x ≥ 0
0 if x < 0 .

We then stacked the output vector hk
n to compose a ma-

trix Hkn with a size of K × N, which corresponds to scores
measuring how well the features of each SNP match the pat-
terns of the shared weights.

Convolution layer 2. The convolution layer 2 operates on
the output matrix of the previous layer (Hkn). The second
feature map vector (2cn) was obtained as

2cn =
K∑

k=1

w′
k Hkn.

https://www.med.unc.edu/pgc/results-and-downloads
http://meme-suite.org/doc/fimo.html
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Figure 1. Model schematic and performance. (A) CNN framework to detect regulatory patterns shared by risk variants residing in multiple association
blocks centered on lead SNPs. In this example, block #1 carries n SNPs including the lead SNP. We apply k different kernels that learn particular pat-
terns composed of various regulatory features encompassing DHSs, histone modifications, target gene function, and TF binding sites. At this stage, an
autoencoder is used for pre-training. In this manner, the first convolution layer scores n SNPs with k pattern detectors. Afterward, another convolution
layer is applied to combine the k scores, thereby enabling nonlinear combinatorial modeling of regulatory patterns. The output of the second layer serves
as the prediction score for each SNP. The model is trained to maximize the likelihood derived from the block scores that are assigned by max pooling. (B)
Model performance of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Crohn’s disease (CD), ulcerative colitis (UC), attention deficit-
hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BPD), major depressive disorder (MDD) and schizophrenia (SCZ)
measured on the basis of AUC and F1. The red, blue and gray bars are for the original CNN model, linear model with only one convolution layer, and
model with only the lead SNPs. Model training and performance evaluation were carried out on the training, validation, and testing sets (Supplementary
Figure S2 and Supplementary Table S2).
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In this step, only one tunable weight vector was used to
linearly combine the K patterns for high-level feature scor-
ing of each SNP. Then, we added a bias term b′ and scaled
2cn + b′to the 0–1 range by the sigmoid function:

on = sigmoid (2cn + b′),

where sigmoid (x) = 1
1 + e−x

.

on can be regarded as the prediction score of the n-th
SNP. Prediction scores close to 1 indicate that certain com-
mon regulatory patterns are embedded in the features of the
given SNPs. Finally, we applied max-pooling by taking the
maximum of on as

pooling(on) = max({o1, o2, ..., oN}).
This corresponds to the per-block score of the SNP whose

features best match the common patterns shared by differ-
ent association blocks.

Model training

The input data for the model was split into training, valida-
tion, and testing sets (Supplementary Figure S2 and Sup-
plementary Table S2). The validation and testing sets were
used to select the best hyperparameter set and report final
performance levels, respectively. We trained the model pa-
rameters to minimize negative log likelihood (NLL) defined
as follows:

NLL(θ ) = − 1
B

B∑
s=1

(Ys log f (θ )s + (1 − Ys) log(1 − f (θ )s))

where f (θ )s is an output for the sth block in a mini-batch
of size B from the training set (B = 100 was used for all ex-
periments). Each target, Y, serves as the dependent variable
and can be either 1 (for true cases or the blocks that carry
the pattern of SNPs associated with the disease) or 0 (for
false cases or the blocks that are unlikely to carry the pat-
tern of SNPs associated with the disease). For each SNP,
false cases were constructed by shuffling the features. In do-
ing so, it is anticipated that the features of false cases do
not reflect any disease-related common patterns. The shuf-
fling procedure was done separately for each feature group.
We generated false cases that are ten times the true cases.
The NLL was composed of parameters (θ ) including wk

m,
bk, w′

k and b′, which were updated by the standard back-
propagation algorithm with momentum. To prevent over-
fitting, early stopping and pre-training by an autoencoder
were used. More details of the model training processes are
documented in Supplementary Information.

Feature importance analysis

We employed random forest to assess the relative impor-
tance of each feature (23). The input SNPs for training RF
were labeled as positive (prediction score > 0.5) or neg-
ative (prediction score < 0.5) according to our CNN re-
sults. For each feature, we calculated the Mean Decrease

Gini (MDG), which is defined as the average of total de-
crease in Gini impurities in each tree. A greater MDG indi-
cates higher importance of a feature. The empirical P value
of MDG was calculated by 1000 random permutations.
The hypergeometric distribution was used to test whether
disease-related features stood out in terms of the MDG.
Neural and immune features were defined on the basis of
open chromatin or histone marks in normal neuronal cells
or tissues and in immune-related blood tissues (all lymphoid
cells and granulocytes) or cell lines, respecitvely. KEGG
pathways including ‘nervous system’, ‘neurodegenerative
disease’, ‘substance dependence’, ‘inflammatory process’,
‘immune process’, and ‘chemokine signaling pathway’ were
also included. As negative controls, we used irrelevant fea-
tures consisting of open chromatin peaks, histone modifi-
cations, and KEGG pathways related to the digestive and
circulatory system in the same way. In our network analysis,
the neural features with a significant (P < 0.05) MDG were
selected for visualization. RF model building and feature
importance analysis were implemented by using R packages
randomForest and rfPermute (24). Network visualization
of the significant neural features was based on Cytoscape
(v3.5.1) (25).

Functional analyses of predicted variants

Details on the TF binding and allelic imbalance analysis,
evolutionary conservation analysis and target gene function
analysis are provided in Supplementary Information. Addi-
tional dataset not used in the training process was employed
for the analysis of the autoimmune diseases. A total of 100
histone modification profiles in 16 blood tissues or cell lines
were obtained as peak bed files from the BLUEPRINT
epigenome project (www.blueprint-epigenome.eu) (26).

RESULTS

Prediction model and performance

Our CNN model was trained on the feature vectors across
multiple association blocks (Figure 1A and Supplementary
Figure S1). The dependent variable of the model is 1 for true
cases or the blocks that carry the pattern of SNPs associated
with the disease and 0 for false cases or the blocks that do
not carry the pattern of SNPs associated with the disease.
The premise of the model is that there are one or more func-
tional variants in association blocks, and that many of the
variants share certain patterns of regulatory features despite
being scattered in different blocks. Therefore, the associa-
tion blocks identified through GWASs served as true cases.

In analogy, a true case (association block) can be com-
pared to a face image, and SNPs can be compared to eyes,
nose, or mouth. By observing many face images, a CNN
model can learn that a face has eyes, nose, and mouth in
common, and decide whether a given picture is a face or
not. Likewise, if a CNN model is trained with multiple true
cases, it can learn that association blocks carry SNPs with
certain patterns and can decide whether a given region is a
true case.

The number of association blocks used as true cases for
ADHD, ASD, BPD, MDD, SCZ, RA, SLE, CD and UC

http://www.blueprint-epigenome.eu
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was 340, 391, 474, 405, 601, 435, 849, 431 and 383, respec-
tively (Supplementary Table S2). These blocks were par-
titioned into the training set, validation set, and testing
set (Supplementary Table S2). Details of the learning pro-
cesses are summarized in Supplementary Figure S2. Perfor-
mance evaluation was based on the area under the receiver-
operator characteristic curve (AUC) and F1 value (Figure
1B). We modified our model to learn the features of only
the lead SNPs (i.e. the most significant SNPs indexing each
association block) or to learn patterns composed of the lin-
ear combinations of features (by using only one convolu-
tion layer). The lowered performance of the modified mod-
els (gray and blue bars of Figure 1B) indicates that common
regulatory patterns need to be searched for through all vari-
ants in each chromosomal block in a complex, non-linear
fashion. This justified the usage of a CNN model for this
task.

Overall, the lowest performance was achieved for MDD,
probably reflecting that genetic factors play a less signifi-
cant role relative to the other diseases (27). We defined pos-
itive calls as variants that were assigned a prediction score
greater than 0.5. The list of these putatively causal variants
in each disease is provided in Supplementary Table S3.

Biological validation of prediction results

First, true causal variants are expected to have a certain
level of statistical association with the given phenotype. In-
deed, our model assigned higher prediction scores to asso-
ciated variants in the testing set, which is independent of the
training processes (Supplementary Figure S3). In >50% of
the chromosomal blocks with at least one positive call, the
variant with the strongest statistical association (i.e. lead
SNP) was positively predicted (Supplementary Table S2).
Also, there were many cases in which the greatest predic-
tion score was assigned to the lead SNPs (Supplementary
Figure S4). Of importance, our prediction method was able
to single out one of statistically indistinguishable variants
(compare red diamonds and blue circles in Figure 2).

Second, disease-related features are expected to play
an instrumental role when predicting causal variants. For
example, psychiatric disorders should be associated with
brain-related features while autoimmune diseases with
immune-related features. To test this, we employed the ran-
dom forest classifier to assess the contribution of each fea-
ture to the prediction processes. By randomizing each fea-
ture, the explanatory power of the given feature in discrim-
inating positive and negative calls could be estimated. We
used the MDG score for this measure (see Materials and
Methods). With this metric, we observed higher discrimi-
native power for neural features and immune features than
irrelevant features in the psychiatric disorders and autoim-
mune diseases, respectively (Figure 3A).

In addition, some neural features reflected the patho-
physiology of the relevant psychiatric disorder (Figure 3B).
For example, astrocyte (red nodes) and dorsolateral pre-
frontal cortex (green nodes) are often implicated in ASD
(and ADHD) and SCZ (and BPD), respectively. Fetal fea-
tures (blue nodes) were important when characterizing neu-
rodevelopmental disorders such as ASD and SCZ. Simi-
larly, the BLUEPRINT epigenome data for various immune

cell types were used for the analysis of the autoimmune dis-
ease results. Positive calls were more enriched in the reg-
ulatory regions of lymphocyte lineages rather than granu-
locytes. This is in good agreement with the pathophysiol-
ogy of autoimmune diseases (Figure 3C and Supplementary
Figure S5). Moreover, a comprehensive target gene analy-
sis also supported the clinical relevance of our prediction
(Supplementary Figure S6).

We assessed the importance of features also by simply ex-
amining the relative weight ranking of biological features in
each kernel (see Supplementary Information). Neural and
immune features in psychiatric disorder and autoimmune
disease, respectively, showed significantly higher level of im-
portance compared to other features, in a subset of kernels
(Supplementary Figure S7).

Third, causal noncoding variants are likely to lie in the
regulatory regions of relevant tissue types. We first tested
whether positive calls are enriched in regulatory regions de-
rived from independent data. The BLUEPRINT epigenome
data for various immune cell types were useful for this
purpose because they were not used for model training.
The fractions of positive calls for the autoimmune diseases
were significantly higher than negative calls in H3K4me1
and H3K27ac regions from the BLUEPRINT epigenome
data (Figure 4A). Next, to compare disease-relevant tissues
with others, we ordered all available tissue types from the
Epigenome Roadmap project depending on the degree of
positive call enrichment. Expectedly, positive calls were en-
riched in the disease-related tissues for both the psychiatric
disorders and autoimmune diseases (Figure 4B).

Fourth, the mechanisms by which noncoding variants
contribute to disease phenotypes should involve TF binding
changes. For this test, we utilized TF footprint data gener-
ated by base-resolution DHS analyses (28). The positive hits
included a significantly higher fraction of nucleotides that
are in contact with cognate TFs than the negative calls (Fig-
ure 4C). A useful method to test the functionality of regu-
latory variants is to examine allelic imbalance in chromatin
accessibility (29). By examining allelic patterns in footprint
reads, we found that different alleles at positive calls are
more likely to cause distinct regulatory variation (Supple-
mentary Figure S8A). We also tested whether the predicted
putative causal variants tend to affect gene expression lev-
els. When examined using the 1000 Genomes whole-genome
and transcriptome data, positive calls showed higher levels
of expression association, further supporting the function-
ality of the predicted variants at the transcription level (Sup-
plementary Figure S8B).

Finally, true causal variants for major psychiatric dis-
orders are likely to reside in regions that are critical for
brain development and function. Therefore, one can antic-
ipate higher evolutionary conservation, especially among
primates, for regions surrounding the putative causal vari-
ants. Indeed, the odds of positive calls in conserved se-
quences were statistically significant (Figure 4D). This ten-
dency was more distinct with ASD, ADHD and SCZ, in
which aberrations in neural development play a critical role,
as compared to MDD and BPD. Also, the average degree of
sequence conservation was markedly higher for genomic re-
gions centered on positive calls than negative calls (Supple-
mentary Figure S9A). The degree of conservation was less
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Figure 2. Comparison of our prediction scores (red diamonds on the left y-axis) and association statistics (blue circles on the right y-axis) for individual
SNPs in exemplary association blocks. Our functional prediction enables to discern statistically indistinguishable variants.

significant when measured among mammals or vertebrates
(Supplementary Figure S9B).

Additionally, we sought to test how other existing tools
perform in the above biological validations in compari-
son to our CNN results. Among the tools that predict the
pathogenicity of variants, we used CADD (30), PhastCons
(31), and LINSIGHT (32). In contrast to the CNN model,
pathogenic variants defined by CADD, PhastCons, and
LINSIGHT showed weaker or unclear enrichment patterns
in disease-related cell types from the Epigenome Roadmap
project for both psychiatric disorders and autoimmune dis-
eases (Supplementary Figure S10, compare with Figure
4B). We also assessed overlap with TF footprints (Supple-
mentary Figure S11, compare with Figure 4C), allelic im-
balance in chromatin accessibility (Supplementary Figure
S12, compare with Supplementary Figure S8A), and asso-
ciation with gene expression levels (Supplementary Figure
S13, compare with Supplementary Figure S8B). According
to these results, we conclude that the positive calls predicted

by the CNN model are biologically more meaningful than
the pathogenicity calls by the other tools.

Examples of novel candidate causal variants

As shown in Figure 1B, our method was able to detect com-
mon patterns shared by variants other than the lead SNPs
of association blocks. In other words, there must be numer-
ous cases in which the tag SNPs or lead SNPs detected by
the typical GWAS analysis based on statistical association
may not act as causal variants for the disease. For example,
a known GWAS variant of RA (33), rs773125, located on
chromosome 12, has the strongest association with the RA
phenotype (Figure 5A). Previous GWAS studies assigned
this SNP to CDK2 on the basis of physical distance. How-
ever, the nearest gene is not always the actual target gene.
Only a small fraction of distal enhancers target the near-
est transcript (34). Not surprisingly, CDK2 has no clear
role in association with RA. Furthermore, rs773125 is not
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Figure 3. Pathophysiological relevance of prediction outcomes. (A) Results of feature importance analysis. The MDG score (x-axis) and its P value (y-
axis) for individual features with significant (P < 0.05) disease related features highlighted in red (left panel). Enrichment of the significant features in
different categories (neural, immune, circulatory, or digestive) as estimated by the hypergeometric test (right panel). (B) Network of neural features that
were important in each disease model. The small nodes represent neural features that showed a significant (P < 0.05) MDG in the prediction model of the
connected disease. The significant neural features, including those related to fetal brain (blue), astrocytes (red), and dorsolateral prefrontal cortex (green),
were mapped to the relevant disorder (yellow). (C) Enrichment of positive calls for autoimmune diseases for the BLUEPRINT epigenome data for various
immune cell types. Positive calls are more enriched in the regulatory regions of lymphocyte lineages rather than granulocytes. Shown here are regulatory
regions marked by H3K4me1. The H3K27ac data is provided in Supplementary Figure S5.
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Figure 4. Functional relevance of prediction outcomes. (A) Fractions of positive calls and negative calls for autoimmune diseases in H3K4me1 and
H3K27ac regions from the BLUEPRINT epigenome data. (B) Enrichment of positive calls for autoimmune diseases in immune-related cells and psy-
chiatric disorders in brain-related cells from the Epigenome Roadmap project. (C) Proportion of positive (prediction score > 0.5) SNPs and negative
(prediction score < 0.5) SNPs that match TF footprints. (D) The ratio of the odds of positive calls in conserved regions to their odds in non-conserved
regions. For the conserved regions, we searched association blocks for the primate PhastCons score > 0.5. The odds of positive calls were computed as the
ratio of the positive to negative SNPs in the conserved or non-conserved regions. Shown is the odds ratio together with its 95% confidence interval and P
value.

located in active regulatory regions marked by H3K4me1
or H3K27ac in any types of immune-related tissues (Sup-
plementary Figure S14A). Our prediction was negative on
rs773125. Instead, there were two positive SNPs (rs773114
and rs1873914) that showed a lower association with RA.
GM12878 capture Hi-C data (35) located these SNPs in an
enhancer region of RPS26 (Figure 5A). This site was an ac-
tive regulatory region of CD14+ monocyte as well. There
were several studies that implicated RPS26 in autoimmune
diseases as a possible factor that can evoke autoimmunity
(36,37).

We were able to find similar examples in psychiatric
disorders. For example, rs150721234 has the strongest as-
sociation strength with the SCZ phenotype in the LD
block located on chromosome 10 (Figure 5B). This SNP
resides in an intron region of C10orf68, which has no
clear role in association with SCZ. Moreover, rs150721234
is not located in active regulatory regions marked by
H3K4me1 or H3K27ac in any types of brain-related tis-
sues (Supplementary Figure S14B). Our prediction was neg-
ative on rs150721234. Instead, there was a positive SNP
(rs117885390) that showed a lower association strength
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A

B

Figure 5. Examples of novel candidate causal SNPs. (A) Example for autoimmune diseases. Known GWAS SNP rs773125, located on chromosome 12,
has the strongest association with RA. However, this SNP was a negative call from our prediction and not located in active regulatory regions in any
immune-related tissues. The two positive SNPs (rs773114 and rs1873914) were located in an active regulatory region of CD14+ monocyte and connected
to RPS26 according to GM12878 capture Hi-C data (35). (B) Example for psychiatric disorders. rs150721234 has the strongest association strength with
SCZ in the LD block located on chromosome 10. However, this SNP was a negative call from our prediction and not located in active regulatory regions
in any brain-related tissues. Instead, there was a positive SNP (rs117885390) that showed a lower association strength with SCZ. Dorsolateral prefrontal
cortex Hi-C data (38) located this SNP in an enhancer region of ITGB1. This site was an active regulatory region of the dorsolateral prefrontal cortex
tissue.
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with SCZ. Dorsolateral prefrontal cortex Hi-C data (38) lo-
cated this SNP in an enhancer region of ITGB1 (Figure 5B).
This site was an active regulatory region of the dorsolateral
prefrontal cortex. There were several studies showing that
ITGB1 gene has a possible role during the development of
schizophrenia (39, 40). These cases show that our method
may be able to pinpoint functional variants that could be
the actual cause of diseases among all variants associated
with tag SNPs. Furthermore, these examples illustrate that
once candidate variants other than tag SNPs are identified,
one may be able to specify novel target genes that may shed
light on the pathophysiology of the relevant phenotypes.

DISCUSSION

Our prediction model is different from the conventional
architecture of CNNs intended for image processing. For
biological reasons, we perform one-dimensional convolu-
tion while using a vector instead of a matrix for kernels.
Only one-dimensional convolution is applicable for our
purpose because genetic information is encoded in linear
DNA strands. This type of convolution has been applied
for predicting the sequence motifs of DNA- and RNA-
binding proteins (8). While binding motifs are consecutive
nucleotides that can be represented as a positional matrix,
the order of SNPs along the chromosome does not carry
meaningful biological information. This is why only vector
kernels were applicable for our purpose. The power of our
method stems from incorporating feature data that comes
with external annotation. These features were not learned
from DNA sequences ab initio but were incorporated on
the basis of domain knowledge, which probably contributed
to achieving high performance with a relatively small num-
ber of convolution layers. In addition, biological annotation
helped with the validation and interpretation of prediction
results. However, it must be noted that the model is based on
the premise that at least one causal variant exists in the lo-
cus. Therefore, the presence of false positive GWAS signals
may lead to undermine the performance of our approach.

Statistical approaches for fine-mapping are not applica-
ble for rare variants because of limited power. In contrast
to statistical fine-scale mapping, our prediction method is
applicable to rare variants for which statistical association
is difficult to estimate. This is important because the com-
bined effects of rare variants may explain a significant pro-
portion of genetic susceptibility to common diseases or
traits (41–43). Expression quantitative loci with large effects
detected in a human family were enriched with rare regula-
tory variants (44). A burden test for enrichment revealed
a significant excess of rare regulatory variants at both ex-
tremes of gene expression, implicating their potential role
in contributing to disease by driving high or low transcrip-
tion (45). Our method can contribute to the identification
and prioritization of rare variants.
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