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Abstract 

Background:  The recurrent aphthous stomatitis (RAS) frequently affects patient quality of life as a result of long last-
ing and recurrent episodes of burning pain. However, there were temporarily few available effective medical therapies 
currently. Drug target identification was the first step in drug discovery, was usually finding the best interaction mode 
between the potential target candidates and probe small molecules. Therefore, elucidating the molecular mecha-
nism of RAS pathogenesis and exploring the potential molecular targets of medical therapies for RAS was of vital 
importance.

Methods:  Bioinformatics data mining techniques were applied to explore potential novel targets, weighted gene 
co-expression network analysis (WGCNA) was used to construct a co-expression module of the gene chip data from 
GSE37265, and the hub genes were identified by the Molecular Complex Detection (MCODE) plugin.

Results:  A total of 16 co-expression modules were identified, and 30 hub genes in the turquoise module were 
identified. In addition, functional analysis of Hub genes in modules of interest was performed, which indicated that 
such hub genes were mainly involved in pathways related to immune response, virus infection, epithelial cell, signal 
transduction. Two clusters (highly interconnected regions) were determined in the network, with score = 17.647 and 
10, respectively, cluster 1 and cluster 2 are linked by STAT1 and ICAM1, it is speculated that STAT1 may be a primary 
gene of RAS. Finally, genistein, daidzein, kaempferol, resveratrol, rosmarinic acid, triptolide, quercetin and (-)-epigal-
locatechin-3-gallate were selected from the TCMSP database, and both of them is the STAT-1 inhibitor. The results of 
reverse molecular docking suggest that in addition to triptolide, (-)-Epigallocatechin-3-gallate and resveratrol, the 
other 5 compounds (flavonoids) with similar structures may bind to the same position of STAT1 protein with different 
docking score.

Conclusions:  Our study identified STAT1 as the potential biomarkers that might contribute to the diagnosis and 
potential therapeutic target of RAS, and we can also screen RAS therapeutic drugs from STAT-1 inhibitors.
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Background
Recurrent aphthous stomatitis (RAS) is recognized as the 
most common oral mucosal disease [1]. RAS is a pain-
ful (include prodromal burning sensation), well-circum-
scribed, and round-shaped ulceration that is covered by 
a yellow-grayish pseudomembrane and surrounded by 
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an erythematous halo, or become confluent to produce 
larger, plaqueform, irregular lesions throughout the oral 
cavity [2, 3]. The classic presentation of RAS is recur-
rent, self-limiting ulcers that mainly affect nonkerati-
nized oral mucosa (typically located on the buccal, labial 
mucosa, tongue and floor of the mouth). Involvement of 
the heavily keratinized mucosa of the palate and gingiva 
is less common [4]. Since oral disorders frequently have 
detrimental effects on speech, nutrition, physical appear-
ance, self-esteem and social interaction, especially RAS 
frequently affects patient quality of life as a result of long 
lasting and recurrent episodes of burning pain [5].

Although the molecular mechanism of RAS pathogen-
esis is not yet clear, it may involve biological processes 
such as immune response, chronic inflammation, oxida-
tive stress, extracellular matrix, et  al. [5–7]. Therefore, 
elucidating the molecular mechanism of RAS patho-
genesis and exploring the potential molecular targets of 
medical therapies for RAS is of vital importance. With 
the widespread application of gene chips and high-
throughput sequencing technologies, databases related 
to genomes have accumulated a large amount of data [8]. 
Computerization methodologies have been applied into 
the discovery of signature genes as potential biomarkers 
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Fig. 1  A Box plot showing distribution of raw read counts in the GSE37265 dataset, B Pearson’s correlation analysis of samples from the GSE37265 
dataset. C PCA of samples from the GSE37265 dataset. D The diagnostic plot
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of diseases [9]. How to use bioinformatics technology 
to deeply explore the potential value of these data has 
become one of the important directions for studying the 
molecular mechanisms of diseases. The bioinformat-
ics analysis methods can help us study the molecular 
mechanism of diseases and discover potential therapeu-
tic targets from a systematic perspective [8, 9]. Among all 
the bioinformatics analysis methods, the weighted gene 
co-expression network analysis (WGCNA) is a useful 
advanced and comprehensive algorithm approach for the 
analysis of the gene expression patterns of multiple sam-
ples [10]. The unique advantage of WGCNA is the abil-
ity to analyzes gene expression profiling to cluster genes 
and form co-expression modules by similarly behaving 
genes with a common biological relationship or function, 
that reveal the gene networks and signaling pathways and 
identify intramodular hub genes [11]. It has been suc-
cessfully used to study various biological processes, prov-
ing to be quite helpful for the identification of candidate 
biomarkers and potential therapeutic targets [10, 11].

Management of RAS depends upon the frequency and 
severity of the lesions [5]. Most RAS cases can be ade-
quately managed with topical therapy, the current treat-
ment methods include pain relief, anti-inflammatory, and 
promotion of ulcer healing, while mainly include antibi-
otic therapy, hormonal therapy, medicine mouthwash, 
and laser therapy [5–7]. However, there are temporar-
ily few available effective medical therapies to treat RAS 
currently. Traditional Chinese medicine has accumulated 
many natural medicines for the treatment of diseases, 
molecular biology and drug molecular target identifica-
tion techniques have been more and more widely used 

in current Chinese herbal medicine research [12]. Drug 
target identification, which includes many distinct algo-
rithms for finding genes and proteins, is the first step in 
drug discovery, the problem of target identification is 
usually finding the best interaction mode between the 
potential target candidates and probe small molecules 
[13]. Many computer simulation analysis technologies 
have been developed for the confirmation of lead com-
pounds, such as structure-based target discovery meth-
ods (such as pharmacophores, similar binding sites, 
fingerprint-based interaction methods, and molecu-
lar docking), representative databases such as TCMSP, 
Pharmmapper and others, calculate and save a large 
number of target data of natural active chemical compo-
nents [12–14].

In this study, we used a variety of bioinformatics anal-
ysis tools to conduct in-depth data mining on the gene 
chip data of 28 RAS patient samples, and finally deter-
mined that STAT1 may be a key target affecting the RAS 
process and a potential therapeutic target at the same 
time, based on this target, the natural chemical com-
ponents of 8 herbs were screened, which may become 
potential drugs for local treatment of RAS, providing 
new directions for follow-up research.

Methods
Data Collection and Validation of the datasets
The gene expression dataset used for our analysis was 
screened from the Gene Expression Omnibus (GEO) 
database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/), “recurrent 
aphthous stomatitis” was used as the search keyword. A 
dataset, with a GEO tracking number GSE37265 and a 
platform entry number GPL570 provided by Baccaglini 
L et  al., was screened out and download. Sample col-
lection and microarray dataset were performed by the 
Microarray lab 103, Molecular Genetics and Microbiol-
ogy, University of Florida. In this dataset, transcription 
profiles were established from normal tissue from control 
individuals and ulcer and non-ulcer tissue from afflicted 
individuals. The transcriptional profiles were measured 
by Affymetrix Human Genome U133 Plus 2.0 Array.

Differential expression genes (DEGs) analysis
The matrix file was annotated with an official gene sym-
bol using the data table of the microarray platform, the 
“sva” R package was used to conduct batch normaliza-
tion of the original expression data, and a normalized 
gene expression matrix file containing data was obtained 
for DEGs analysis. The “limma” R package was used to 
conduct DEGs analysis. The P-value of genes was calcu-
lated using t test method, and Benjamini and Hochberg’s 
method was used to calculate the adjusted P-value.

Fig. 2  The volcano plot shows the up-regulated and down-regulated 
genes in RAS. The horizontal axis represents the fold change between 
health and RAS. The vertical axis represents the P value of t test for the 
differences between health and RAS

http://www.ncbi.nlm.nih.gov/geo/
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Construct the miRNA‑gene interaction network
MicroRNA (miRNA) are identified to play a key role in 
regulating development in mammalian organisms. The 
analysis of miRNA and protein coding genes were studied 
based on the TarBase (http://​www.​micro​rna.​gr/​tarba​se), 
the largest available manually curated target database, 
indexed targets derived from high throughput experi-
ments, provides millions of high quality manually curated 
experimentally validated miRNA-gene interactions[15].

Construct the signaling information network
The regulation of gene and protein expression in organ-
isms is inseparable from the extensive participation of 
chemicals such as signaling molecule, the signaling infor-
mation network was constructed based on the SIGNOR 
2.0 (https://​signor.​uniro​ma2.​it/), a public repository that 
stores manually-annotated causal relationships between 
proteins and other biologically relevant entities (chemi-
cals, phenotypes, complexes, etc.) that participate in sig-
nal transduction relationship, represented graphically as 
a signed directed graph[16].

Weighted gene Co‑Expression network analysis 
and co‑expression network construction
The weighted gene correlation network analysis was per-
formed to construct a co-expression network via R (3.6.2) 
WGCNA package, a typical system biology algorithm. 
First, we performed cluster analysis of the samples to 
detect the outliers by the hclust function [10, 11].

Gene Set Enrichment Analysis (GSEA) of gene modules
The constructed modules were consisted of a number of 
genes and functional enrichment analysis was then per-
formed on the DEGs in those modules. To obtain the 
biological functions and signaling pathways involved in 
those modules, DEGs in modules were subjected to gene 
ontology (GO) analysis and (KEGG) pathway analysis 
using the GSEA software (GSEA version 4.0.3) [17]. After 
multiple test calibration, we used “adjusted P < 0.002” 
and “FDR < 0.05” as the threshold value to identify the 
enriched terms, and the top 10 most important terms 
were screened.

PPI network
A PPI network was constructed to evaluate the inter-
actions between genes, which helps us to explore 
novel molecular mechanism. Modules of interest were 

Fig. 3  The heatmap shows the top 50 differential gene expression (P < 0.05) between health and RAS. A The heatmap of top 50 most significant 
down-regulated genes; B The heatmap of top 50 most significant upregulated genes

http://www.microrna.gr/tarbase
https://signor.uniroma2.it/
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visualized using STRING 11.0 (https://​string-​db.​org/), an 
online database to search the interaction among different 
proteins [18]. The common genes in the preserved mod-
ules that were obtained from WGCNA, and the DEGs 
with significant consistency, were selected to construct 
a PPI network, visualized using Cytoscape 3.7.2 software 
[19]. In the PPI network, a node represents a gene; the 
undirected link between two nodes is an edge, denoting 
the interaction between two genes; and the degree of a 
node corresponds to the number of interactions of a gene 
with other genes in the network, and only experimentally 
validated interactions with a combined score of more 
than 0.9 were selected as significant. Using node degree 
and interaction score as the key topological parameters, 
the maximally connected genes were informally referred 
to as hub genes.

Identification and validation of hub genes
The intra-module connectivity of a gene is equal to the 
sum of the degree of correlation between this gene and 
other genes in that module. The top 30 genes with the 
highest intra-module connectivity were selected as hub 
genes. After screening out the interested modules, the 
weighted gene co-expression network was constructed 
using Cytoscape, and the hub genes were identified by 
the Molecular Complex Detection (MCODE) plugin. 
Gene regulatory network could help us accurately screen 
candidate genes that were potentially involved in the 
regulation of target genes, and could use the function of 
known genes to predict unknown gene function.

Screening of active ingredients of natural medicines acting 
on hub genes
TCMSP is a pharmacology platform of Chinese herbal 
medicines that focus on the exploration of the active 

Fig. 4  The miRNA-gene interaction network of RAS

https://string-db.org/
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ingredients and targets, which had collected 499 herbs, 
with a total of 12,144 chemicals, as well as pharmacoki-
netic properties for natural compounds [20]. The drug-
target were obtained from two sources: (1) experimental 
validated drug-target pairs were retrieved from HIT data-
base (2) the SysDT model constructed was used to pre-
dict the potential targets of a compound [20]. In order to 
obtain the related ingredients based on the TCMSP data-
base, we selected the search category as "targets name" 
and the keyword setting as "signal transducer and activa-
tor of transcription 1-alpha/beta " to search, DL ≥ 0.1 as 
the filter condition.

Predict potential targets
PharmMapper[21] is designed to identify potential tar-
get candidates for the given probe small molecules using 
pharmacophore mapping approach. Upload Query File:.
Mol2, parameter set: Generate Conformers: Yes; Maxi-
mum Generated Conformations: 300; Select Targets 
Set: Druggable Pharmacophore Models (v2017, 16,159); 
Number of Reserved Matched Targets (Max 1,000): 500. 
After submitting and waiting for the calculation to be 
completed, the results are saved in csv file format.

Reverse molecular docking verification
Molecular docking was performed by AutoDock Vina 
[22]. All visualizations of biomolecules were conducted 
by PyMol Software [23].

Statistical tests
By convention in biology, P ≤ 0.05 is considered the cut-
off for statistical significance.

Results
Validation of the datasets
We normalized the raw data of GSE37265 before analysis, 
the box plot showing distribution of raw read counts in 
the dataset (Fig. 1A). To further validate the intra-group 
data repeatability, we employed the Pearson’s correlation 
test and principal component analysis (PCA). The color 
reflects the intensity of the correlation, when 0 < cor-
relation < 1, there exists a positive correlation. When 
−  1 < correlation < 0, there exists a negative correlation, 
the larger the absolute value of a number the stronger the 
correlation, which showed that there were strong corre-
lations among the samples in the health group and RAS 
group in the GSE37265 dataset (Fig.  1A). Based on the 
PCA, the intra-group data repeatability for GSE37265 
dataset was acceptable. In the PCA diagram, principal 
component 1 (PC1) and principal component 2 (PC2) 
are used as the X-axis and Y-axis, respectively, to draw 
the scatter diagram, where each point represents a sam-
ple, the farther the two samples are from each other, the 
greater the difference is between the two samples in gene 
expression patterns. The distances between per samples 
in the control group and the recurrent aphthous stoma-
titis group were acceptable in the dimension of principal 
component-1 (PC1) (Fig.  1B). The diagnostic plot sum-
marizing the standard deviation versus mean measures 
of reads in the samples for each gene, which showed the 
dependence between counts and variance was accept-
able. The plot of density against log2 of read counts dis-
plays the relative distribution of different counts in the 
health group and RAS group.

Differentially expressed genes (DEGS) between RAS 
and healthy control
The recurrent aphthous stomatitis samples from cohort 
GSE37265 were analyzed using R software and its exten-
sion packages. The gene expression matrix was obtained 
after data preprocessing (included 12,548 genes). A total 
of 187 DEGs were identified with the threshold at |log2 
(fold-change) | > 2 and P < 0.05, which consisted of 125 
down-regulated genes and 18 up-regulated genes, and 
the volcano plot of all probesets is shown in Fig. 2. The 50 
most significant down-regulated genes and up-regulated 

Table 1  The top 20 genes of miRNA-gene interaction network 
of RAS

Id Label Degree Betweenness Expression

6648 SOD2 156 53,322.71 − 2.45583

6515 SLC2A3 95 23,070.28 − 2.24469

7837 PXDN 85 19,402.04 − 2.22854

5743 PTGS2 85 17,813.26 − 3.55500

3659 IRF1 73 18,693.35 − 2.20671

1282 COL4A1 73 13,650.85 − 2.32325

4277 MICB 70 12,782.87 − 2.23157

3576 CXCL8 67 13,077.81 − 4.33586

10,964 IFI44L 62 8806.11 − 3.49043

5806 PTX3 61 11,559.62 − 3.03014

3624 INHBA 59 12,948.04 − 2.57143

3437 IFIT3 54 5974.13 − 2.93725

26,585 GREM1 53 13,463.77 − 2.47693

29,887 SNX10 49 10,198.16 − 2.62950

6772 STAT1 48 7937.42 − 2.06146

4599 MX1 44 6582.67 − 2.03886

684 BST2 41 5885.18 − 3.04879

3569 IL6 40 2793.91 − 3.67836

5327 PLAT 38 8060.72 − 2.85614

6347 CCL2 38 3233.80 − 3.07236
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genes were visualized using a heatmap (Fig. 3). Red rep-
resents increased expression, whereas blue represents 
decreased expression. The most up-regulated genes 
included DAPL1, TSPAN8, ELOVL4, KRT31, WNK4, 
CTTNBP2, CALB2, GYS2, ETNK2, KRTAP3-2, whereas 
MMP1, CXCL11, MMP3, DEFB4A, CXCL10, CXCL9, 
CXCL1, KRT24, CXCL6, S100A7, MMP10, CXCL8, 
SLC6A14, CCL8, MMP12 were the most down-regulated 
genes in the RAS samples.

Construct miRNA‑gene interaction network
As shown in the Fig.  4, we constructed a miRNA-gene 
interaction network of DEGs based on TarBase, Table 1 
lists the top 20 high-level genes according to their inter-
action degrees, which reveals that SOD2, SLC2A3, 
PXDN, PTGS2, IRF1, COL4A1, MICB, CXCL8, etc. may 
play an important role in the miRNA regulatory network.

Construct the signaling information network based 
on SIGNOR
As shown in the Fig.  5, we constructed the signaling 
information network of DEGs based on SIGNOR2.0, 
Table 2 lists the top 20 high-level genes according to their 
interaction degrees, which reveals that STAT1, IL6, LYN, 
PTGS2, IL1B, IFNG, HCK, CXCL8, CCL2, CXCR4, etc. 
participated extensively in the regulation of chemical 
signaling substances in this network.

WGCNA Co‑Expression Network and Construction 
of coexpression modules
We performed network topology analysis to determine 
candidate power values for relative, balanced scale inde-
pendence, and mean connectivity in the WGCNA. As a 
result, the 6208 DEGs (adjust P values < 0.05) of the RAS 
samples were used to construct co-expression modules 

Fig. 5  The signaling information network based on SIGNOR
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using the WGCNA algorithms. Subsequently, hierarchi-
cal clustering analysis was performed with the flashClust 
function and the results are presented in Fig.  6A. The 
soft-power threshold β was determined by the function 
“sft$powerEstimate”, as shown in Fig.  6B, a power value 
of 6 was the lowest power for which scale independ-
ence was below 0.8, and this was selected to produce a 
hierarchical clustering tree of the 6208 genes. Finally, 
16 modules were identified based on average hierarchi-
cal clustering and dynamic tree clipping, each module 
had different color and genes. All the modules were sig-
nificantly independent of each other, eigengene module 
values were calculated in each module and a clustering 
tree is presented in Fig. 6C. Among all the modules, the 
turquoise module had the highest number of hub genes. 
Then, gene modules were detected based on the TOM 
matrix, Interactions between the 16 modules were then 
analyzed (Fig.  6D). In addition, the eigengene dendro-
gram and heatmap were used to quantify module similar-
ity by eigengene correlation (Fig. 6E).

Define the DEGs in co‑expression modules
Interestingly, we found that almost all of the differen-
tially expressed genes, especially the key nodes in the 
above two networks analysis are involved in the Tur-
quoise module, including SOD2, STAT1, PTGS2, IL-6, 
etc. Therefore, we use the R software to obtain the DEGs 

(log2 (fold-change) | > 1.5 and P < 0.05) of the Turquoise 
module, there are 254 DEGs among the 677 co-expressed 
genes in the Turquoise module.

GSEA enrich analysis
The Fig. 7 showed the result of GSEA enrichment analy-
sis based on Go (biological process). As shown in Fig. 8, 
The pathways for the DEGs in the Turquoise modules 
mainly focus on immune response, virus infection, epi-
thelial cell, signal transduction, which the pathways that 
are highly related to RAS mainly include positive regu-
lation of GTPase activity, T cell activation involved in 
immune response, epithelial cell differentiation, positive 
regulation of organelle organization, cell substrate adhe-
sion, regulation of defense response to virus by host, 
regulation of calcium mediated signaling, interleukin 1 
production, etc. A total of 56 core targets were enriched, 
including ICAM1, CCR7, IL1B, PLEK, CCL4, NCKAP1L, 
GPR65, ZC3H12A, P2RY6, CCL8, RGS1, CCL2, ARH-
GAP9, ADAP2, RGS18, ITGAL, LCP1, LILRB1, STAT1, 
MSN, CORO1A participates in more than 2 GO path-
ways, and the ICAM1 with the highest frequency which 
participates in 5 pathways.

The Fig.  9 showed the result of GSEA enrichment 
analysis based on based on KEGG. The pathways for the 
DEGs in the Turquoise modules that are highly related 
to recurrent RAS mainly include cell adhesion mol-
ecules cams, cytosolic DNA sensing pathway, natural 
killer cell mediated cytotoxicity, type I diabetes melli-
tus, nod like receptor signaling pathway, hematopoietic 
cell lineage, graft versus host disease, leukocyte transen-
dothelial migration, JAK/STAT signaling pathway, TOLL 
like receptor signaling pathway, etc. A total of 55 key 
genes were enriched, including IL1B, IL6, CD86, HLA-
B, ICAM1, ITGAL, HLA-DMA, HLA-F, HLA-DMB, 
GZMB, CD2, CCL4, CXCL10, IRF7, IL18, CXCL8, IL7R, 
CD14, CSF3R, STAT1 participates in more than 2 path-
ways, and the IL1B and IL6 target with the highest fre-
quency participates in 6 pathways.

Identification and Validation of Hub Genes
After merging the DEGs involved in the relevant path-
ways of the Turquoise module through the GSEA enrich-
ment analysis, we constructed the protein–protein 
interaction (PPI) network of enriched DEGs based on 
the String database (Fig.  10). Table  3 lists the network 
parameters of top 20 DEGs, such as HLA-B, IRF7, HLA-
F, IFIT3, OASL, CXCL8, OAS2, MX1, ISG15, RSAD2, 
IRF1, etc.

As show in Fig.  11, the MCODE module determines 
two clusters (highly interconnected regions) in the net-
work, with score = 17.647 and 10, respectively. Clusters in 
a protein–protein interaction network are often protein 

Table 2  The top 20 genes of signaling information network of 
RAS

Id Label Degree Betweenness Expression

6772 STAT1 48 22,698.35 − 2.06146

3569 IL6 27 8361.34 − 3.67836

4067 LYN 26 8816.84 − 2.37319

5743 PTGS2 25 7101.68 − 3.55500

3553 IL1B 25 5464.20 − 3.32514

3458 IFNG 22 5069.17 − 2.72686

3055 HCK 13 6563.89 − 2.36321

3576 CXCL8 11 3444.47 − 4.33586

6347 CCL2 11 1569.33 − 3.07236

7852 CXCR4 10 3602.66 − 2.03314

5031 P2RY6 8 1444.38 − 2.05379

6648 SOD2 6 2492.00 − 2.45583

3394 IRF8 6 1676.00 − 2.35421

1880 GPR183 6 743.57 − 2.23414

3659 IRF1 5 2754.00 − 2.20671

4314 MMP3 5 1947.00 − 6.14321

3059 HCLS1 5 1258.00 − 2.28786

4585 MUC4 5 1204.32 − 2.07303

3665 IRF7 5 843.00 − 2.11757

53831 GPR84 5 602.76 − 2.15514



Page 9 of 22Cao et al. BMC Oral Health          (2021) 21:524 	

complexes and parts of pathways, which mean different 
things in different types of networks. Interestingly, clus-
ter 1 and cluster 2 are linked by STAT1 and ICAM1. Cur-
rent studies have shown that ICAM1 is a downstream 

gene of STAT1, and activation of STAT1 induces the 
expression of ICAM1 [25]. Based on the scoring param-
eters in Table  4, simultaneously combine the compre-
hensive analysis of signaling information network and 

Fig. 6  The result of WGCNA analysis. A Sample clustering to detect outliers; B Analysis of network topology for a set of soft‐thresholding powers. 
Scale independence and mean connectivity of various soft-thresholding values (β). The left picture displays the scale free fit index (y‐axis) as 
a function of the soft‐thresholding power (x‐axis). The right picture shows the mean connectivity (degree, y‐axis) as a function of the soft‐ 
thresholding power (x‐axis); C clustering dendrograms of genes, with dissimilarity based on topological overlap, together with assigned module 
colors. Cluster dendrogram of all filtered genes enriched based on the dissimilarity measure and the cluster module colors; D the heatmap plot 
describes the Topological Overlap Matrix (TOM) among DEGs in the analysis; E The eigengene dendrogram and heatmap identify groups of 
correlated eigengenes termed meta modules
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miRNA-gene interaction network we constructed before, 
it is speculated that STAT1 may be a key gene affecting 
the process of RAS.

Screening of potential natural compounds
Finally, eight natural components were finally screened 
to have high affinity with STAT1 based on the TCMSP 
database, including genistein, daidzein, kaempferol, 
resveratrol, rosmarinic acid, triptolide, quercetin and 
(-)-epigallocatechin-3-gallate. Table 4 shows the pharma-
cokinetic characteristics of above ingredients.

Predict potential targets based on Pharmmapper 
and enrichment analysis
We predicted the potential targets of the above 8 com-
pounds based on Pharmmapper. The Table  5 lists the 
intersection of predicted targets and DEGs of RAS, and 
Fig. 12 indicates that the potential targets of these com-
pounds affecting RAS are very similar, and it also sug-
gests that these compounds may affect the process of 
RAS through multiple targets.

Figure  13 shows the results of the KEGG enrichment 
analysis on the predicted targets of these compounds, 
suggesting that the potential targets of these compounds 
to affect the RAS process are mainly concentrated in a 
variety of viral infection-related immune pathways, TNF 
pathways, cell adhesion and other biological pathways.

Confirm the target of RAS based on reverse docking 
technology
As shown in Fig.  14, the results of reverse molecular 
docking suggest that different compounds may bind to 
different parts of the STAT1 protein, while compounds 
with similar molecular structures bind to similar posi-
tions of the STAT1 protein. The higher the docking score, 
the stronger the binding force to the protein. Accord-
ing to the docking score, it is sorted from high to low: 
triptolide (−  9.1  kcal/mol), (-)-epigallocatechin-3-gal-
late (−  8.1  kcal/mol), rosmarinic acid (−  7.3  kcal/mol), 
quercetin (−  7.3  kcal/mol), genistein (−  7.1  kcal/mol), 
daidzein (−  6.9  kcal/mol), kaempferol (−  6.9  kcal/mol), 
resveratrol (− 5.6 kcal/mol).

Fig. 7  The result of GSEA enrichment analysis based on Go (biological process)
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Fig. 8  The Go (biological process) pathways highly related to RAS
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Fig. 9  The result of GSEA enrichment analysis based on KEGG
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Discuss
In this article, we initially screened 12,548 differen-
tially expressed genes in ulcer tissues and normal tis-
sues of RAS patients through differentially analysis, and 
finally included 187 genes in the study according to the 
screening criteria. After we constructed the miRNA-
gene interaction network and signaling information 
network of these genes, we determined the candidate 
key node targets. Then we applied WGCNA to cluster 
analysis of all genes and found that the key node targets 
we were interested in were all in the same module, so 
we carried out a further enrichment analysis for the dif-
ferential genes in this module, and further screened out 
the hub genes. Then, functional analysis of hub genes in 
modules of interest was performed, which indicated that 

such hub genes were mainly involved in pathways related 
to immune response, virus infection, epithelial cell, sig-
nal transduction. The PPI network was identified, and 
two modules linked through STAT1 were identified. It 
was finally determined that multiple biological pathways 
mediated by STAT1 may affect the process of RAS dis-
ease. It is speculated that STAT1 may become a potential 
target of RAS treatment. Finally, the molecular reverse 
docking technology was used to screen out several com-
pounds that may act on the STAT1 protein. Several of 
these compounds have been confirmed as inhibitors of 
the STAT1 protein, and they are expected to become 
potential therapeutic drugs for RAS.

Many factors have already been implicated in the 
promotion and/or exacerbation of RAS. However, the 

Fig. 9  continued
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principal etiology of RAS still remains unclear. Consid-
erable research attention has been devoted to elucidating 
the causes of RAS, several factors have been proposed as 
possible causative agents. The potential etiopathogenic 
agents include local and systemic conditions, positive 
family history, trauma in individuals who are genetically 
susceptible to RAS (certain genetically specific HLAs 

have been identified in RAS patients), nutritional factors 
(such as deficiency of folate and B-complex vitamins), 
immunologic factors, psychosocial stress, and allergy to 
dietary constituents, local trauma, nutritional deficiency, 
food hypersensitivity, smoking cessation, and psychologi-
cal stress, and infectious microbial factors, etc. [2, 3, 6].

Fig. 10  The protein–protein interaction (PPI) network of enriched DEGs



Page 15 of 22Cao et al. BMC Oral Health          (2021) 21:524 	

For the past 20  years, extensive research has focused 
predominantly on immunologic factors, but it is evident 
that there is no unifying theory of the immunopathogen-
esis of RAS [3]. Larger parts of the study on the cause 
of RAS, which demonstrated a connection shared by a 
small number of immune-mediated respons as well as the 
development of RAS, are made up of the cytotoxic action 
of T lymphocytes as well as monocytes on the oral epi-
thelium, immune complex vasculitis, antibody dependent 
cell-mediated cytotoxicity, in addition to the drawbacks 
in lymphocyte subpopulations. Various immune reac-
tions have led todamages which were brought about 
from the deposition of immune complexes in the oral 
epithelium. However, the trigger for these responses is 
still less explicit [2, 4, 7]. Researches have revealed a RAS 
severity’s relevance to abnormal scales of CD4+ and 

CD8+ cells, changes of the CD4+ :CD8+ rate, in virtue 
of elevating the levels of interleukin 2, interferon gamma, 
coupled with tumor necrosing factor-α (TNF-α) mRNA 
in RAS lesions [3–6]. Peripheral blood mononuclear cells 
of RAS patients have been revealed oriented with secrete 
great deal of TNF-α, which symbolizes the indispensable 
role of TNF in the aspect of RAS pathogenesis. In con-
sequence, TNF-α-mediated endothelial cell adhesion and 
neutrophil chemotaxis are working as an initiator of the 
cascade of inflammatory procedures which is resulting in 
ulceration [5]. A large majority of the TNF-α is made to 
respond to excitation of toll-like receptors (TLRs), which 
is a series of functional membrane receptors in relevance 
to and safeguarding for epithelial barrier featured by 
not only pro- but also anti-inflammatory properties [4]. 

Table 3  The parameters of node in the PPI network

EPC, Edge Percolated Component; MNC, Maximum Neighborhood Component; DMNC, Density of Maximum Neighborhood Component, EcCentricity, Closeness, 
Betweenness, and Stress

Node Degree DMNC EPC Closeness Betweenness Stress Clustering 
coefficient

HLA-B 26 0.80384 51.600 54.68333 960.1928 4462 0.51385

IRF7 26 0.77479 51.902 56.48333 909.1212 5070 0.49538

HLA-F 23 0.80384 51.638 52.41667 222.4021 2268 0.65613

IFIT3 23 0.81353 51.946 53.65000 316.7897 2992 0.66403

OASL 23 0.76995 51.767 52.58333 155.9646 1834 0.62846

CXCL8 23 0.59562 49.514 54.95000 1155.311 4654 0.48617

OAS2 22 0.79905 51.740 51.91667 124.6154 1626 0.66234

MX1 22 0.83561 51.744 53.15000 229.5482 2374 0.69264

ISG15 22 0.83561 51.509 53.15000 229.5482 2374 0.69264

RSAD2 22 0.86481 51.910 48.93333 280.9047 2708 0.66234

IRF1 21 0.85350 51.580 53.48333 231.3252 2974 0.71905

PSMB8 21 0.78567 51.550 50.73333 725.2455 3582 0.66190

MX2 20 0.92117 51.595 52.15000 166.9635 1952 0.78947

CXCL1 20 0.83742 49.030 48.90000 448.4261 2204 0.60526

IRF8 19 0.84429 51.163 49.66667 71.51968 1218 0.73684

STAT1 19 0.45368 49.415 56.78333 3186.268 16,486 0.19883

CXCL10 19 0.74378 48.905 52.70000 828.0069 5742 0.64912

C3AR1 19 0.75048 48.447 49.28333 510.6841 1548 0.65497

IFI35 18 0.99902 51.134 46.76667 16.85864 158 0.88889

IFITM2 17 1.07668 51.137 46.26667 0.740030 16 0.97794

IFITM1 17 1.07668 50.947 46.26667 0.740030 16 0.97794

IFITM3 17 1.07668 51.047 46.26667 0.740030 16 0.97794

ISG20 17 1.07668 50.755 46.26667 0.740030 16 0.97794

ICAM1 17 0.81806 49.857 53.95000 1480.959 9140 0.34559

CCL4 17 0.87430 48.431 47.06667 79.97945 364 0.79412

CXCR4 17 0.95127 48.669 50.70000 588.8160 3532 0.77941

CCR1 17 0.88240 48.938 46.43333 61.21627 226 0.80147

FPR1 16 0.95127 48.054 46.10000 82.02197 356 0.88333

CCR7 16 1.05156 48.012 46.10000 237.2305 1468 0.87500

CXCL9 15 1.05156 47.915 45.43333 0.000000 0 1.00000
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Fig. 11  The Clusters of PPI network determined by MCODE module
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Since levels of serum immunoglobulins and natural killer 
cells exert essential role in normal limited range in RAS 
patients, attention has been paid to a dysregulated, local, 
cellmediated immune response of benefit to accumula-
tion of subsets of T cells [6]. The local immune response 
leads to final tissue resession manifesting as RAS.

We used the MCODE module in crytoscape 3.7.3 to 
identify two core Cluster modules in the enriched dif-
ferential expression genes. As shown in Fig.  11, Cluster 
1 and Cluster 2 was linked by STAT1 and ICAM1, while 
ICAM1 was a downstream protein of STAT1, the phos-
phorylation degree of STAT1 could affect the expression 
of ICAM1 protein [26]. It was not difficult to find that 
the initial factors that affect the pathogenesis of RAS is 
mainly concentrated in interferon pathways, including 
interferon regulatory factor (IRF), interferon gene pro-
moters and interferon stimulation response genes (ISG), 

or involve viruses Infection causes an anti-viral protein 
such as IFITMs, OAS2 or OASL, which was also acti-
vated by the interferon pathway. In addition, Cluster1 
also included RAS patient-specific expression gene such 
as HLA-B or HLA-F. While Cluster 2 mainly contained 
chemokines and their receptors. We believe that the 
interferon route activated the chemokine and its recep-
tor through the STAT1 protein, the crosstalk between 
the matrix metalloprotease system and the chemokine 
network had been proved, and chemokines and their 
receptors may regulate the activity of matrix metallopro-
teinases [28, 29], which may affect the synthesis and deg-
radation of oral epithelial collagen, and finally exhibited 
in the form of ulcers. According to previous studies and 
the DEGs in this chip, many types of matrix metallopro-
teins (MMPs) or tissue inhibitor of metalloproteinases 
(TIMPs) in RAS have been confirmed to be differentially 

Table 4  The pharmacokinetic characteristics of potential natural compounds for RAS treatment

MW, molecular weight; AlogP, the critical for measuring hydrophobicity of molecule; Hdon and Hacc, the measures of the hydrogen-bonding ability of a molecule 
expressed in terms of number of possible hydrogen-bond donors and acceptors, respectively; OB, Oral bioavailability; Caco-2, the ingredients’ transport rates (nm/s) 
in Caco-2 monolayers to represent the intestinal epithelial permeability; BBB, blood–brain barrier; DL, drug-likeness, a qualitative concept used in drug design for 
an estimate on how “drug-like” a prospective compound is; FASA-, fractional water accessible surface area of all atoms with negative partial charge, can be used as 
drug-likeness evaluation for drug-like molecules; TPSA, a physico chemical property describing the polarity of molecules; RBN, description for molecular flexibility, the 
number of bonds which allow free rotation around themselves, and roughly proportional to molecular size for many “drug-like” compounds

Molecule name MW AlogP Hdon Hacc OB (%) Caco-2 BBB DL FASA- TPSA RBN

Genistein 270.25 2.07 3 5 17.93 0.43 − 0.40 0.21 0.00 90.90 1

Daidzein 254.25 2.33 2 4 19.44 0.59 − 0.22 0.19 0.00 70.67 1

Kaempferol 286.25 1.77 4 6 41.88 0.26 − 0.55 0.24 0.00 111.1 1

Resveratrol 228.26 3.01 3 3 19.07 0.80 − 0.01 0.11 0.49 60.69 2

Rosmarinic acid 360.34 2.69 5 8 1.38 − 0.54 − 1.24 0.35 0.47 144.5 7

Triptolide 360.44 0.87 1 6 51.29 0.25 − 0.19 0.68 0.28 84.12 1

Quercetin 302.25 1.50 5 7 46.43 0.05 − 0.77 0.28 0.38 131.4 1

(-)-Epigallocatechin-3-gallate 458.40 2.89 8 11 55.09 − 0.57 − 1.70 0.77 0.37 197.4 4

Table 5  The predicted targets of RAS treatment for each compound

Molecule Gene

Genistein STAT1/ICAM1/VCAM1/SOD2/CRYAB/C3/SELE

Daidzein STAT1/ICAM1/VCAM1/SOD2/IL6/C3/CAMK4/CSF2RB/HCK/HLA-B/HLA-E/IFNGR1/INHBA/LTF/MSN/NT5C3A/PANK1/
THBS1/TPK1

Quercetin STAT1/ICAM1/VCAM1/SELE/CYP1B1/NQO1/IRF1/CAMK4/CSF2RB/HCK/HLA-B/HLA-E/HLA-G/HMGCS1/IFNGR1/LTF/LYZ/
MMP1/MMP9/NPR3/NT5C3A/PANK1/THBS1/TLR1/MMP3/IL6

Kaempferol STAT1/ICAM1/VCAM1/SELE/CYP1B1/C3/CD74/GZMB/HLA-E/IFNGR1/IL10RA/LTF/MS4A1/MSN/THBS1/THBS2/TPK1/
WARS1

Resveratrol IL6/STAT1/ICAM1/SELE/VCAM1/SOD2/CYP1B1/NQO1/BIRC3/C1R/C3/CSF2RB/HCK/HLA-E/ME1/MSN/NPR3/SAMHD1/
TLR1

(-)-Epigallocatechin-3-gallate IL6/MMP3/STAT1/TLR4/BTK/C3/CAMK4/FAP/GCH1/GLUL/GZMB/GZMK/HCK/HLA-B/HLA-E/HMGCS1/IFNGR1/KLF10/LTF/
MMP1/MSN/NT5C3A/PANK1/PLA2G2A/THBS1/TRIM21/WARS1

Rosmarinic Acid STAT1/IDO1/ALOX12/ANXA1/BTK/CD38/HCK/HLA-E/LAP3/LYZ/MS4A1/NT5C3A/RGS18/SOD2/TPK1/TRIM21

Triptolide STAT1/CXCR4/BIRC3/CCR7/ALOX12/ANXA1/BTK/CAMK4/GBP1/HLA-E/HMGCS1/LAP3/LTF/MS4A1/MSN/PLA2G2A/
RGS18/SOD2/TPK1/TRIM21/WARS1
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expressed compared with normal tissues [30–32]. In 
addition, ICAM1 can also mediate synthesis and decom-
position of collagen, which also requires STAT1 media-
tion. Therefore, inhibition of STAT1 may cut off some 
abnormalities in the interferon pathway and inhibit 
chemokines activity, which in turn affects the related 
activities of matrix metalloproteinases and affects the 
synthesis or decomposition of collagen in the oral cavity, 
and may also be one of the mechanisms of RAS.

In addition, the latest research had confirmed that 
the levels of Galectin and IL-6 in the serum or saliva of 
patients with periodontitis have changed significantly [33, 
34], suggesting that these factors may be closely related 
to oral diseases. Interestingly, the Galectin pathway may 
also mediate the progression of RAS disease, which may 
be another biological pathway completely different from 
STAT1 mediated pathway. In this study, the expression of 
Galectin-1, Galectin-2 and Galectin-3 in the ulcer tissues 
of RAS patients also changed significantly. Among them, 

Fig. 12  The intersection of the potential targets of 8 compounds
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Galectin-1 was closely related to excessive inflammation, 
mainly through regulating T cells, B cells, macrophages 
and granulocytes and other immune cells to promote 
immune tolerance and down-regulate innate and adap-
tive immune responses [35]; Galectin-3 not only affected 
the synthesis of type I collagen, but also affected the 
activity of TIMPs and MMPs [36]. The most noteworthy 
thing was that the expression of IL-6 in the ulcer tissue 
of RAS patients had changed significantly. IL-6 was the 
key node gene in the signaling information network and 

miRNA-gene interaction network we constructed before. 
The enrichment analysis also showed that IL-6 partici-
pated in multiple biological pathways. At the same time, 
IL-6 was also one of the key factors to activate STAT1 
[37], and the role of IL-6-related biological pathways 
mediated by STAT1 in the progression of RAS was also 
worthy of further in-depth study.

Finally, we have also confirmed that STAT1 protein 
is one of the potential therapeutic targets of RAS, and 
this target can be used to screen potential therapeutic 

Fig. 13  The result of KEGG enrichment
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compounds. Finally, genistein, daidzein, kaempferol, 
resveratrol, rosmarinic acid, triptolide, quercetin and 
(-)-epigallocatechin-3-gallate were selceted from the 
TCMSP databse, and both of them is the STAT-1 inhibi-
tor [38–42]. Interestingly, some of those ingredients, 
such as rosmarinic acid, quercetin, (-)-Epigallocatechin-
3-gallate, resveratrol, etc., have already been made into 
topical formulations for the treatment of oral ulcers, such 
as quercetin, (-)-Epigallocatechin-3-gallate, resveratrol 
[43–45]. The results of reverse molecular docking suggest 

that in addition to triptolide, (-)-Epigallocatechin-3-gal-
late and resveratrol, the other 5 compounds (flavonoids) 
with similar structures bind to STAT1 at almost the same 
position, that is, this position may be It is the key position 
for flavonoids to inhibit stat1 protein.

Fig. 14  Interaction between STAT1 and inhibitors (genistein, daidzein, kaempferol, resveratrol, rosmarinic acid, triptolide, quercetin, and (-)-epigallo
catechin-3-gallate)
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Conclusions
We identified potential biomarkers that might con-
tribute to the diagnosis and treatment of RAS based 
on WGCNA, it was speculated that STAT1 is one of 
the potential therapeutic targets. The results of reverse 
molecular docking suggested that we can screen RAS 
therapeutic drugs from STAT-1 inhibitors.
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