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Checkpoint blockade immunotherapy reshapes the
high-dimensional phenotypic heterogeneity of
murine intratumoural neoantigen-specific CD8+

T cells
M. Fehlings 1, Y. Simoni1, H.L. Penny1, E. Becht1, C.Y. Loh1, M.M. Gubin2, J.P. Ward2, S.C. Wong 1,

R.D. Schreiber2 & E.W. Newell 1

The analysis of neoantigen-specific CD8+ T cells in tumour-bearing individuals is challenging

due to the small pool of tumour antigen-specific T cells. Here we show that mass cytometry

with multiplex combinatorial tetramer staining can identify and characterize neoantigen-

specific CD8+ T cells in mice bearing T3 methylcholanthrene-induced sarcomas that are

susceptible to checkpoint blockade immunotherapy. Among 81 candidate antigens tested, we

identify T cells restricted to two known neoantigens simultaneously in tumours, spleens and

lymph nodes in tumour-bearing mice. High-dimensional phenotypic profiling reveals that

antigen-specific, tumour-infiltrating T cells are highly heterogeneous. We further show that

neoantigen-specific T cells display a different phenotypic profile in mice treated with anti-

CTLA-4 or anti-PD-1 immunotherapy, whereas their peripheral counterparts are not affected

by the treatments. Our results provide insights into the nature of neoantigen-specific T cells

and the effects of checkpoint blockade immunotherapy.
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The importance of CD8+ cytotoxic T lymphocytes in anti-
tumour responses is well established but has come under
intense scrutiny given advances in our understanding of

the basic principles governing spontaneous anti-tumour respon-
ses in mice and the successes of various cancer immunotherapy
trials in humans. To combat outgrowth of tumours, CD8+ T cells
detect tumour antigens that are displayed in the context of major
histocompatibility complex class I (MHC-I) molecules on the
surface of transformed cells. In addition to tumour-associated
self-antigens and cancer germline antigens, tumour-specific
mutant antigens (neoantigens), arising from carcinogen expo-
sure or other causes of genomic mutations, represent a
third major class of antigens that are expressed by cancer cells
(reviewed in refs 1,2). Studies in mice showed that tumour
neoantigens can be rapidly identified using genomic and bioin-
formatic approaches3,4 and can be used in personalized vaccines
to effectively eliminate growing cancers in mice5,6. Subsequent
human studies revealed that tumour-specific immune responses
can also be boosted or induced using similar neoantigen-based
cancer vaccine approaches7,8. Previously we (M.M.G, J.P.W. and
R.D.S.) used immunogenomic approaches to identify two
immunodominant neoantigens, mutant Lama4 (mLama4) and
mutant Alg8 (mAlg8), in T3 methylcholanthrene (MCA)-induced
sarcoma cells. We showed that these epitopes render mice bearing
progressively growing tumours susceptible to tumour rejection
following treatment with anti-CTLA-4 and/or anti-PD-1. This
study demonstrated that neoantigens are the favoured targets of
T cells reinvigorated by checkpoint blockade therapy, that vac-
cines generated with immunodominant neoantigens are as
effective as checkpoint blockade in inducing therapeutic tumour
rejection, and that tumour neoantigen-specific T cells display
distinct transcriptomic signatures that reflect the type of immu-
notherapy applied to the tumour-bearing host (i.e., control
monoclonal antibody (mAb) (exhausted CD8+ T cells), anti-PD-1
(change in T-cell metabolism), anti-CTLA-4 (increased priming/
proliferation) or the combination of anti-PD-1 and anti-CTLA-4
(increased effector function))5.

In humans, CTLA-4 blockade results in an enhanced
neoantigen-specific T-cell response9 and broadened melanoma
antigen repertoire10. Other studies demonstrated a correlation
between the benefits of checkpoint blockade immunotherapy and
the mutational burden in patients with melanoma and non-small
cell lung cancer11–13, and showed that patients with tumours
enriched for clonal neoantigens have increased sensitivity to anti-
PD-1/anti-CTLA-4 immunotherapy14. As a result, neoantigens
are currently considered promising targets for personalized can-
cer immunotherapy1.

Although in silico pipelines exist that are capable of success-
fully predicting non-synonymous mutations that can give rise to
tumour-specific neoantigens2,15, it is not clear how accurate these
methods are, given that T-cell epitope usage can be influenced by
many factors16. Mass cytometry (a.k.a. cytometry by time of
flight, CyTOF 17–19) in conjunction with peptide-MHC tetramer
staining5,15,20–22 has been shown to facilitate broad MHC-I epi-
tope mapping, with a theoretical possibility of simultaneously
assessing >1,000 T-cell antigen specificities with high sensitivity
for rare antigen-specific T cells and concurrent in-depth char-
acterization of these cells at the single-cell level23.

Here we employ the full capacity of mass cytometry through
the use of combinatorial tetramer staining together with cellular
barcoding and high dimensional cellular phenotypic analysis to
assess T cells targeting 81 different candidate tumour antigens in
mice bearing a progressively growing MCA-induced sarcoma that
is susceptible to checkpoint blockade immunotherapy5. This
allows us to identify neoantigen-specific CD8+ T cells and to
characterize such cells simultaneously in tumours, spleens,

draining- and non-draining lymph nodes from tumour-bearing
hosts. By using high-performance dimensional reduction meth-
odology24–27, we further profile neoantigen-specific, tumour-
infiltrating CD8+ T cells and assess the effects of anti-CTLA-4
and anti-PD-1 therapy on these cells and their peripheral
counterparts.

Results
Identification of neoantigen-specific T cells. To identify
neoantigen-specific CD8+ T cells in tumours as well as in per-
ipheral tissues (i.e., spleens, draining and non-draining lymph
nodes) of MCA sarcoma-bearing mice by mass cytometry, we set
up a three metal combinatorial tetramer staining approach as
described previously23. In addition to the dominant d42m1-T3
MCA-induced sarcoma mutant tumour epitopes mLama4 and
mAlg8, we (M.M.G., J.P.W. and R.D.S.) previously reported to be
expressed in T3, we included another set of 79 H-2Kb-restricted
predicted tumour epitope candidates (Fig. 1a and Supplementary
Table 1)5. Single-cell suspensions from tumours, spleens, draining
and non-draining lymph nodes were obtained 12 days (the time
point previously reported for peak values of antigen-specific
tumour-infiltrating lymphocytes (TILs) before tumour rejection5)
after tumour cell inoculation and probed simultaneously for all 81
potential T-cell specificities, while staining with 28 different
antibodies for the further identification and characterization of
CD8+ T cells (Supplementary Fig. 1B and Supplementary
Table 2). Subsequent cellular barcoding facilitated the simulta-
neous acquisition of the cells derived from each tissue
compartment28.

For the identification of antigen-specific, tetramer triple-
positive cells, we gated on live immune cells (cisplatin–, DNA+

CD45+), excluded B cells (CD19+) and selected TCR-beta+,
CD90+, CD8+ and CD4– cells (Supplementary Fig. 1A), and used
an automated combinatorial peptide-MHC gating strategy23,
which was further confirmed by manual standard biaxial gating
(Fig. 1b). Antigen specificity was defined by a standardized cutoff
of >0.15 % of total CD8+ T cells.

Consistent with previously published data5, we identified
substantial numbers of CD8+ T cells restricted to two prevailing
mutant tumour epitopes, mLama4 (10.2± 3.2% as the
mean± SEM of five experiments) and mAlg8 (9.9± 3.8% as the
mean± SEM of five experiments), infiltrating the tumours of
tumour-bearing mice. In addition, we were able to detect CD8+

T cells reacting with tetramers specific for both epitopes in
spleens (mLama4: 0.8± 0.2%; mAlg8 0.6± 0.2% as the
mean± SEM of five experiments), draining lymph nodes
(mLama4: 1± 0.2%; mAlg8 0.3± 0.1% as the mean± SEM of
five experiments), as well as non-draining lymph nodes
(mLama4: 0.4± 0.1%; mAlg8 0.2± 0.03% as the mean± SEM of
five experiments) from the same group of animals. We did not
track CD8+ T cells restricted to any of the other 79 potential
tumour H-2Kb-restricted mutant epitope candidates (Fig. 1a) or
controls (SIINFEKL) consistently across the different types of
tissues. Moreover, none of the predicted epitope candidates was
found in spleens or lymph nodes from wild-type non-tumour-
bearing animals.

We next interrogated the phenotypes of T cells from each
tissue by summarizing the expression profiles of molecules
associated with CD8+ T-cell differentiation (CD62L and CD44)29

activation/stimulation (ICOS)30, recruitment/trafficking (CXCR-3)31

and exhaustion/dysfunction (Tim-3 and PD-1)32,33. We observed
numerous phenotypic variations in the CD8+ T-cell populations
across tissues, which validated our antibody staining. For
instance, CD44 is upregulated on antigen-experienced cells
after activation34 and we detected the highest frequencies of
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CD44-positive cells in tumours. In contrast, we found higher
numbers of T cells expressing CD62L and CXCR3 in the
periphery, the latter which has recently been shown to be
required for CD8+ T-cell trafficking towards melanomas in vivo35

(Fig. 1c). In contrast to their peripheral counterparts, large
numbers of tetramer positive cells infiltrating the tumours also

expressed PD-1 and Tim-3, and these markers could only be
identified on a very low percentage of antigen-specific T cells in
the periphery of tumour-bearing animals (Fig. 1c, d). These data
demonstrate that mass cytometry together with a combinatorial
tetramer staining approach can be used to comprehensively
screen for and to phenotypically characterize CD8+ T cells
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targeting a broad range of predicted epitope candidates
simultaneously across multiple tissues.

Effects of anti-CTLA-4 immunotherapy on T-cell frequencies.
Administration of anti-CTLA-4 antibodies was demonstrated to
result in a CD8+ T-cell-dependent tumour rejection and treat-
ment doubled the numbers of mLama4- and mAlg8-specific
T cells infiltrating the tumours of MCA sarcoma-bearing mice5.
This prompted us to assess whether CTLA-4 blocking also affects
the magnitude of those antigen-specific CD8+ T cells in spleens,
draining and non-draining lymph nodes of tumour-bearing mice.
Moreover, as anti-CTLA-4 treatment has recently been shown to
broaden the T-cell repertoire in melanoma patients10, we wanted
to assess whether CTLA-4-blocking primes and gives rise to
T-cell responses against predicted antigen candidates that are not
present in untreated tumour-bearing animals.

We detected a significant increase in the magnitude of
mLama4- (~2-fold) and mAlg8- (~1.5-fold) specific T-cell
responses in tumours from mice that received anti-CTLA-4
mAbs (Fig. 1e). The frequencies of T cells restricted to these
immunodominant antigens found in the peripheral compart-
ments, however, remained unaltered and we did not observe
significant differences in frequencies of such T cells in the spleens
or lymph nodes of tumour-bearing mice undergoing immu-
notherapy (Fig. 1e). Among all epitopes tested, we were not able
to identify novel antigen-specificities (>0.15%) both in tumours
or in the peripheral circulation of anti-CTLA-4-treated mice that
were not also seen in isotype mAb-treated mice. These results
suggest that anti-CTLA-4 treatment induces increased prolifera-
tion of neoantigen-specific T cells selectively in the tumour.

In-depth profiling of antigen-specific TILs. We next inter-
rogated phenotypic alterations of mLama4- and mAlg8-specific
T cells that were related to anti-CTLA-4 treatment. Although
phenotypic and functional changes of antigen-specific TILs in
response to immunotherapy have previously been described, it
was either by assessing the expression of single marker molecules
or by assessing gene expression profiles of sorted cell popula-
tions5. Being able to simultaneously interrogate 28 relevant sur-
face molecules at the single-cell level by using the remaining
antibodies of the tetramer staining panel, we were able to deeply
profile these cells and analysed their phenotypes by applying the
t-distributed stochastic neighbour embedding (t-SNE) algo-
rithm24–26. By mapping cells with similar phenotypes to nearby
points into a two-dimensional space, t-SNE disentangles distinct
cellular subsets and reduces the high dimensionality of the mass
cytometry data into two dimensions, while retaining the overall
cellular relationships. We combined the data acquired for
mLama4- and mAlg8-specific TILs from tumour-bearing mice
undergoing anti-CTLA-4 treatment together with data acquired
from isotype mAb-treated mice to produce an overall map of all

observed phenotypic profiles of tumour-specific TILs. Using these
criteria and the resulting two-dimensional t-SNE dot plot, we
were able to visually detect several distinct cell clusters of all
possible phenotypes observed from tumour-specific T cells
derived from tumours (Fig. 2a). The phenotypes of these clusters,
in terms of median expression levels of each marker assessed,
were summarized as heat plots for each cluster (Fig. 2a). Based on
these plots, we delineated ten different phenotypic clusters of
antigen-specific T cells that are composed of cells specific for
either neoantigen derived from anti-CTLA-4 treated and isotype
control treated tumour bearing subjects (Fig. 2a).

Based on the clusters of cells identified using t-SNE analysis, a
gating strategy using standard biaxial plots was devised. This
allowed us to construct working definitions for each of these cell
clusters (Fig. 2b). By plotting PD-1 vs. KLRG-1 we were able to
identify clusters three (C3), four (C4) and five (C5) according to
their high PD-1 and their absence of KLRG-1 expression.
Although all three clusters were also positive for Sca-1, C3 was
negative for Tim-3, and C4 as well as C5 could further be
distinguished according to their expression intensities for Tim-3
and CD39. Cluster 6 (C6) and 10 (C10) constituted KLRG-1-
positive cells and could further be subdivided based on their Sca-1
and Tim-3 expression profiles. PD-1 and KLRG-1-negative cells
were delineated into cluster one (C1) and two (C2), as well as
clusters seven (C7), eight (C8) and nine (C9) according to their
Sca-1 and Tim-3 expression levels. Clusters C1 and C2 were Sca-1
negative but exhibited differential CD27 expression, whereas C7,
C8 and C9 expressed Sca-1 but showed differential expression
levels of Tim-3 and CD160, respectively (Fig. 2b).

Elevated expression levels of PD-1, Lag-3 and Tim-3 on
mLama4 and mAlg8-specific TILs cells have previously been
linked to a dysfunctional phenotype that is accompanied by
severe functional deficits of these cells5. According to the
expression intensities of these markers found on the cells within
the clusters segregated by t-SNE, clusters C3, C4 and C5 appeared
to comprise such dysfunctional T cells albeit to varying degrees,
whereas cluster C2 did not express any of the signature markers
(Fig. 2c). Notably, we also observed high expression levels of
GITR—a molecule that has been shown to be involved in tumour
immunity36,37—on all cells that were restricted to clusters C3, C4,
and C5.

These results collectively demonstrate that t-SNE is able to
segregate antigen-specific TILs derived from anti-CTLA-4 treated
and control mice into several distinct clusters, thus revealing a
remarkable variation in the phenotypes of these neoantigen-
specific TILs.

Antigen-specific TILs constitute a heterogeneous population.
To characterize the phenotypes of the antigen-specific TILs, we
focused first on data from tumour-bearing mice that did not
undergo CTLA-4 blockade. From this analysis, we observed that

Fig. 1 Analysis of neoantigen-specific T cells in tumours and periphery. a Screening for CD8+ T cells targeting 81 potential mutant peptide–MHC complexes
by a combinatorial peptide–MHC tetramer staining approach identified significant numbers of CD8+ T cells restricted to two major mutant epitopes,
mutant Lama4 (mLama4) and mutant Alg8 (mAlg8), simultaneously in tumours, spleens, draining lymph nodes and non-draining lymph nodes of tumour-
bearing mice. Data are average frequencies from at least three independent experiments. b Representative example for a triple-coded tetramer staining
from the draining lymph nodes to identify antigen-specific CD8+ T cells. T cells specific for mLama4 were identified by tetramers labelled with Gd-157,
Tb-159 Di and Yb-173 elements (0.89%), whereas mAlg8-positive cells were identified by tetramers labelled with Dy-163, Tm-169 and Yb-173 elements
(0.23%). c Representative example for phenotypes of tetramer-positive (mLama4 and mAlg8) and tetramer-negative (Tetneg) CD8+ T cells from tumours,
spleens and lymph nodes of tumour-bearing mice. d Percentages of mLama-4 and mAlg8-specific CD8+ T cells expressing PD-1 and Tim-3 in tumours,
spleen, draining lymph nodes (dLN) and non-draining lymph nodes (ndLN). Data are means± SEM of five independent experiments. *p< 0.05 by t-test
corrected for multiple comparisons with Holm–Sidak procedure. e Frequencies of mLama4-specific CD8+ T and mAlg8-specific CD8+ T cells from tumours,
spleen, draining and non-draining lymph nodes of tumour-bearing mice treated with anti-CTLA-4 or isotype control mAbs. Data are means± SEM of at
least five independent experiments. *p< 0.05 by t-test corrected for multiple comparisons with Holm–Sidak procedure

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00627-z

4 NATURE COMMUNICATIONS |8:  562 |DOI: 10.1038/s41467-017-00627-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


T cells specific for either antigen could be subdivided into several
clusters thus representing a heterogeneous cell population
amongst T cells that were restricted to a single tumour epitope
(Fig. 3a). Among the 10 different clusters identified by t-SNE as
described above, the majority of T cells from untreated tumour
bearing mice could be found within clusters C1–C6 (black circled,
with a frequency >10% for either one of the two antigen speci-
ficities), whereas lesser cells specific for either epitope were found
to be distributed across clusters C7–C10 (grey circled). In parti-
cular, whereas the majority of mLama4-specific T cells could be
detected within C1–C3, we found the highest frequencies of
mAlg8-specific T cells to be present in C3–C6. To validate the

existence of different phenotypic clusters among tumour-specific
T cells that were disentangled from the high dimensional data set
by using the t-SNE algorithm, we further designed a flow cyto-
metry panel that allowed us to delineate the predominant T-cell
clusters (C1–C6) at comparable frequencies (Supplementary
Fig. 2A) in untreated tumour-bearing mice according to the
sorting strategy described in Fig. 2b. Owing to limitations in the
number of markers available for these stainings, we were not able
to clearly separate cluster four (C4) from cluster five (C5) and
therefore combined the two clusters to be able to compare these
stainings with the data obtained from the high-dimensional mass
cytometry staining approach. Likewise, t-SNE was able to
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segregate these clusters on a two-dimensional map albeit to a
lesser degree due to the complexity restrictions associated with
the flow cyometry staining panel (Supplementary Fig. 2B).
Notably, by applying these stainings on tumours from individual
mice, we further eliminated the possibility that the heterogeneity
observed resulted from the pooling of several tumours required
for the analysis by the mass cytometer.

Although T cells restricted to mLama4 or mAlg8 partly
overlapped, they did not entirely cluster together. We noted
remarkable differences in the cluster frequencies corresponding to
the different antigen specificities. A higher percentage of
mLama4-specific T cells were found within clusters C1, C2 and
C3, which are represented by a KLRG-1−, PD-1− phenotype (C1
and C2), as well as KLRG-1−, PD-1+ cells (C3). In contrast, higher
percentages of mAlg8-specifc cells could be detected in clusters
C4, C5 and C6, which are characterized by cells expressing both
Tim-3 and PD-1 (C4 and C5), as well as cells that expressed
KLRG-1 (C6) (Fig. 3a). Based on these definitions, we found these
differences in phenotypic patterns between both antigen specifi-
cities observed to be consistent across independent experiments
(Fig. 3b).

CTLA-4 blocking in tumour-bearing mice resulted in higher
frequencies of mLama4- and mAlg8-specific T cells. To assess
whether phenotypically different antigen-specific TILs derived
from untreated tumour bearing mice differed in proliferation, we
evaluated Ki-67 expression in cells derived from the distinct
clusters by conventional flow cytometry. In addition, we
evaluated the capacities of these cells to express granzyme B to
assess their functional status. We found that approximately half
of the cells present in each of the clusters were positive for Ki-67.
However, we did not observe significant differences in the
proliferation levels of these cells amongst the clusters (Fig. 3c). In
contrast, whereas the majority of the clusters were characterized
by a low expression of granzyme B, we detected significantly
higher expression levels within cluster four and five as compared
to the other clusters (Fig. 3c).

In conclusion, antigen-specific TILs constituted a heteroge-
neous cell population and T cells restricted to distinct mutant
tumour epitopes exhibited unique phenotypic with different
functional characteristics.

CTLA-4 blocking drives T cells towards a similar phenotype.
Next, we studied the phenotypes of neoantigen-specific T cells
derived from tumour-bearing mice that underwent anti-CTLA-4
checkpoint blockade immunotherapy. This analysis was striking
in that cells occupying regions C1–C5 were mostly absent in
tumours from these treated mice. Instead, the majority of the
neoantigen-specific T cells were found in clusters C7–C10 and the
frequency distributions were similar for both antigen specificities
(Fig. 3d). Despite differential expression levels of markers asso-
ciated with dysfunction, cells within clusters C3–C5 corresponded
to cells with a PD-1+ GITR+ phenotype (refer to Fig. 2a). CTLA-4
blocking greatly reduced the frequencies of cells in clusters
C3–C5 and thus nearly eliminated the cells expressing markers
associated with T-cell dysfunction (e.g., PD-1 and Tim-3)
(Fig. 3d). By using standard biaxial gating, we further confirmed
that anti-CTLA-4 treatment resulted in increased numbers of
mLama4- and mAlg8-specific TILs that display low PD-1 and low
GITR expression levels (Fig. 3e). In addition, these cells exhibited
a high expression of Sca-1.

We (M.M.G., J.P.W. and R.D.S.) have previously shown that
besides CTLA-4 blocking, anti-PD-1 treatment rendered
neoantigen-specific T cells capable of tumour rejection. To assess
whether this also comes along with such a massive phenotypic
alteration, we performed our high-dimensional profiling

approach on mLama4-specific TILs from mice that underwent
anti-PD-1 treatment or remained untreated (isotype control).
Likewise, we observed a dramatic shift of different tumour-
specific T-cell clusters towards a new position on a two-
dimensional t-SNE plot. Similar to changes induced by CTLA-4
blocking, we detected several alterations in the expression
patterns of the different marker molecules assessed, in particular
a substantial reduced expression of markers that are associated
with a dysfunctional T-cell phenotype as well as an upregulation
of Sca-1 (Supplementary Fig 3A).

The appearance of distinct clusters with comparable frequen-
cies amongst mLama4- and mAlg8-specific T cells following anti-
CTLA-4 mAbs therapy suggested that treatment induced
neoantigen-specific TILs to acquire a similar phenotypic profile
that also lacks the expression of markers associated with
dysfunction. Indeed, when we compared the phenotypic char-
acteristics of these cells with and without anti-CTLA-4 treatment
across different experiments, we were able to detect higher
frequencies of T cells exhibiting a PD-1− and GITR− phenotype
regardless of their epitope restrictions (Fig. 3f). According to their
phenotypic profiles, C7–10 can be classified as clusters composed
of cells that express high levels of Sca-1 and low levels of PD-1
(refer to Fig. 2a). Compared with cells derived from isotype
control mAb-treated tumour-bearing mice, we observed higher
numbers of those cells with comparable percentages amongst the
two antigen specificities (Fig. 3f). In addition, cells in C10 are
associated with high KLRG-1 expression and a higher number of
mLama4- and mAlg8-specific T cells with similar frequencies
could be detected as compared with their isotype control mAb-
treated counterparts. We found that KLRG-1 expression is also
associated with C6 and we found cells displaying C6-like
characteristics among T cells specific for mAlg8 after immu-
notherapy at comparable levels to the frequencies of mAlg8-
specific T cells derived from isotype control treated tumour
bearing animals.

These data show that cancer immunotherapy in this mouse
model induced dramatic phenotypic alterations of neoantigen-
specific T cells. Moreover, T cells with different epitope usage
acquired a similar phenotype that lacked surface molecules
associated with T-cell dysfunction.

Immunotherapy affects TILs but not peripheral T cells. To
determine whether the phenotypic alterations of mLama4- and
mAlg8-specific TILs also occurred in the periphery of anti-CTLA-
4-treated tumour-bearing mice, we used data derived from per-
ipheral CD8+ T cells to broadly analyse the resultant changes in
the dominant neoantigen-specific CD8+ T-cell population from
the two treatment groups using the aforementioned t-SNE-based
dimensionality reduction approach. Owing to low frequencies of
antigen-specific T cells found in each of these peripheral tissues
assessed and to allow for comparisons of the phenotypes of bulk
CD8+ T cells infiltrating the tumours, we also included tetramer-
negative CD8+ T cells for this analysis. Notably, although the
majority of tetramer-negative CD8+ T cells isolated from tumours
were phenotypically distinct from their antigen-specific counter-
parts, we detected a partial overlap between tetramer-positive and
negative cells on the two-dimensional t-SNE plot. We categorized
a total of four clusters that showed different percentages of all
TILs, and that could further be characterized according to the
differential expression profiles of the marker molecules assessed
(Supplementary Fig. 4A–C).

In contrast to mLama4- and mAlg8-specific TILs, very little
phenotypic alterations were observed when comparing
neoantigen-specific cells derived from peripheral tissues of isotype
vs. anti-CLTA-4 mAb-treated mice. Whereas phenotypic changes
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in antigen-specific TILs from mice treated with anti-CTLA-4
mAbs were reflected by a remarkable shift in their positions
occupied on the two-dimensional t-SNE plot (Fig. 4a), we did not
detect substantial differences in the cluster regions occupied by

lymph node- or spleen-derived T cells specific for either antigen
when cells were obtained from mice that underwent anti-CTLA-4
treatment (Fig. 4a and Supplementary Fig. 5). Likewise, whereas
we detected a remarkable change in the position of tumour-
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infiltrating mLama4-reactive cells in mice that underwent anti-
PD-1 therapy, we did not make such observations in the lymph
nodes from these mice (Supplementary Fig. 3b).

These findings suggest that the major effects of immunother-
apy on T-cell phenotypes were restricted to neoantigen-specific
T cells infiltrating the tumour. To further objectively compare the
phenotypic profiles of tumour specific cells derived from tumour
vs. periphery with and without anti-CTLA4 treatment across
separate experiments, we averaged the median expression
intensities from independent experiments (n= 5) for each of
the non-lineage molecules assessed and calculated z-scores for
each phenotypic marker and averaged them for each T-cell
specificity as previously described23. We represented the data as
heat plots to meaningfully assess differences in phenotypic
profiles of mLama4- and mAlg8-reactive cells in the distinct
tissues of mice treated with either isotype control or anti-CTLA-4
mAbs. Within the tumours of treated animals, CTLA-4 blockade
gave rise to a significantly altered expression of markers
associated with dysfunction (PD-1, Lag-3 and CD160), activation
(CD25, GITR and CD38), as well as co-stimulation and
development (CD27 and CD127) on mLama4-specific T cells.
Similar findings were obtained when we interrogated the marker
expression of mAlg8-restricted T cells across the different tissues
(Fig. 4b). From these heat plots, it was also apparent that the
phenotypes of peripheral CD8+ T cells specific for either antigen,
unlike neoantigen-specific TILs, were not influenced by anti-
CTLA-4 immunotherapy, as no differences were observed in the
expression of any of the marker molecules assessed simulta-
neously in the spleens and draining and non-draining lymph
nodes. Likewise, we did not observe remarkable or statistically
significant differences in the phenotypes of tetramer negative cells
found within the tumours in response to anti-CTLA-4 treatment
(Fig. 4b).

Collectively, we show that checkpoint blockade immunother-
apy in this mouse model did not profoundly influence the
phenotypic profiles of peripheral neoantigen-specific CD8+

T cells but predominantly affected marker expression of
antigen-experienced T cells present in the tumour. Although
resulting from a short-term transplant model, these data suggest
that neoantigen-specific TILs may be generally more susceptible
to immunotherapy than their peripheral counterparts.

Discussion
Accumulating data suggest that neoantigens are relevant targets
for personalized anti-cancer therapies. Here we used mass cyto-
metry analysis in combination with a multiplex combinatorial
tetramer staining approach23 to screen for CD8+ T cells targeting
a broad range of antigen candidates across tissues from mice
bearing progressively growing MCA-induced sarcomas that are
susceptible to checkpoint blockade immunotherapy.

Similar to our (M.M.G., J.P.W. and R.D.S.) previous findings5,
we found that neoantigen-specific TILs had a higher frequency of
cells that co-expressed PD-1 and Tim-3 than tetramer-negative
CD8+ TILs. In addition, these cells also had higher expression
levels of the PD-1 and Tim-3 markers, which is in line with a
previous independent report using a MC38 colorectal cancer
model where antigen-specific TILs displayed a more
exhausted-like phenotype than bulk CD8+ TILs6. In contrast to a
recent CT-26 tumour study, where also lymph node-derived
tumour antigen-specific T cells showed upregulated PD-1
expression38, we only observed small numbers of PD-1-positive
antigen-specific T cells in the peripheral compartments,
suggesting that these cells are not being exposed to continual
antigen exposure39 or were disarmed by the suppressive tumour
microenvironment40.

We detected several tumour-infiltrating T cells that were not
specific for mLama4, mAlg8 or any other epitope tested here.
Interestingly, we found that their phenotypic profiles overlapped
only partially with T cells that are restricted to the immunodo-
minant epitopes. Whether these cells may be specific for other
tumour-derived antigens is currently unclear. This highlights the
potential utility of our approach in extending the screen for other
possible antigens being targeted by these cells.

Consistent with previous findings, we detected an increase in
the magnitude of mLama4- and mAlg8-specific TILs following
anti-CTLA-4 immunotherapy, while the peripheral counterparts
were not affected. CTLA-4 blocking has been shown to enhance
priming of responsive T cells41 and in a recent study on blood
samples derived from melanoma patients it was shown that anti-
CTLA-4 immunotherapy can broaden the range of antigens being
targeted by the T-cell repertoire10. We did not detect the
appearance of novel T-cell specificities against any of the epitope
candidates tested here, thus suggesting a CTLA-4-dependent
tumour-specific effect on the two dominant antigen-specific
T cells in this model.

By using t-SNE dimensionality reduction, we provide a detailed
insight into the phenotypes of antigen-specific TILs from mice
treated with checkpoint blockade or control mAbs. The delinea-
tion of 10 clusters in our analysis allowed us to investigate an in-
depth picture of neoantigen-specific CD8+ T cells diversity. We
validated that the manual cluster delineation used here was not
arbitrary, as we detected a similar clustering scheme when we
applied an automated clustering method (see Methods). More-
over, using manual gating we were able to further disentangle
subtle differences between some of the clusters that were not
revealed when applying automated clustering. This approach
enabled us to broadly assess the composition of tumour-specific
T cells and to describe and validate a remarkable degree of
phenotypic heterogeneity within neoantigen-specific T cells in
this model system.

The complexity of antigen-specific T cells has been described
for viral antigens in humans and proposed to be necessary in
order to achieve an adequate flexibility in anti-pathogen
responses19. The detection of different phenotypic patterns
among neoantigen-specific T cells suggests a dissimilar func-
tionality of such T cells in the anti-tumour response. This was
further corroborated by the fact that granzyme B expression was
restricted to certain antigen-specific T-cell clusters. We also
detected a KLRG-1+ fraction among mAlg8-specific T cells that
was absent on mLama4-specific T cells. KLRG-1 on terminal
effector T cells has been shown to be involved in effective anti-
tumour reactions42. Thus, mAlg8-reactive T cells might be more
effective in carrying out distinct functions in anti-tumour
responses as compared with their mLama4 counterparts in
untreated tumour-bearing mice. Interestingly, upon anti-CTLA-4
treatment, a large number of KLRG-1+ cells could be found in
both mLama4- and mAlg8-reactive T cells. The preceding study
detected a similar pattern of Tim-3 and Lag-3 expression among
T cells specific for either mLama4 or mAlg8 antigen5. In contrast,
we detected different expression levels of markers associated with
dysfunction amongst both antigen-specific T cells. These phe-
notypic differences highlight the power of the t-SNE algorithm
combined with high-dimensional mass cytometry to disentangle
cellular subsets25 and supports the hypothesis of a different
functionality between T cells targeting different antigens in the
same tumour. Interestingly, GITR was also associated with all of
the dysfunctional clusters identified. GITR on regulatory T cells
has recently been described as a target for improved anti-tumour
responses in liver cancer43 and a combined treatment consisting
of anti-PD-1 and anti-GITR mAbs gave rise to anti-tumour
immunity in mice by enhancing CD8+ effector T-cell functions44.
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We (M.M.G., J.P.W. and R.D.S.) reported that checkpoint
blockade immunotherapy resulted in a functional re-activation of
mutant tumour antigen-specific T cells and this was accompanied
by successful tumour rejection5. Consistent with this, we did not
detect any of the pre-defined dysfunctional clusters on mLama4-
and mAlg8-specfic T cells after CTLA-4 blocking. We made
similar observations on mLama4-specific TILs in mice that
underwent PD-1 blocking. As we cannot exclude that anti-PD-1
treatment resulted in blocking of this marker and thus
making it inaccessible for the further detection by the mass
cytometry staining, we excluded it from the t-SNE analysis.
Nevertheless, regardless of this PD-1 invisibility by t-SNE we
found that cells with differential expression levels of markers
associated with dysfunction disappeared following anti-PD-1
immunotherapy.

Notably, our results also showed that antigen-specific T cells in
response to anti-CTLA-4 or anti-PD-1 immunotherapy acquire a
similar novel phenotypic diversity. We observed higher
frequencies of Sca-1+ CD8+ cells in mice undergoing treatment.
Sca-1 was reported to be involved in T-cell development, as well
as T-cell activation and proliferation45, and thus may reflect an
activated status of neoantigen-specific T cells following check-
point blocking.

An ability to identify tumour neoantigens is likely to become
an important tool for personalized cancer immunotherapies1.
Evolving genomic and bioinformatics approaches reveal an
underappreciated diversity of potential mutant tumour epitope
candidates. In order to identify therapy-relevant neoantigens and
to understand the effects of immunotherapies on cells targeting
such antigens, we envision the requirement to simultaneously
analyse multiple tissues in a comprehensive approach similar to
that described here. Our results demonstrate a proof of concept
for the feasibility of probing a very large number of MHC-I
restricted neoepitopes in cancer by mass cytometry with the
simultaneous capacity to deeply profile neoantigen-specific T cell
in the context of cancer immunotherapy. Importantly, our data
show that checkpoint blockade immunotherapy resulted
in remarkable phenotypic alterations specifically in neoantigen-
specific TILs that are not observed in peripheral neoantigen-
specific T cells. Hence, the characterization of peripheral
neo-antigen-specific T cells may not always mirror responses
occurring in the tumour, which should be an important con-
sideration for the possible use of peripheral T cell response as
biomarkers of therapeutic outcome.

Methods
Mice. 129S6/SvEvTac (129SVE-M) male mice aged 6–10 weeks were purchased
from InVivos (Singapore) and housed under specific pathogen-free conditions. All
experiments and procedures were approved by the Institutional Animal Care and
Use Committee (130879) of A*STAR (Biopolis, Singapore) in accordance with the
guidelines of the Agri-Food and Veterinary Authority, as well as the National
Advisory Committee for Laboratory Animal Research of Singapore.

Tumour cell transplantation and antibody treatment. MCA-induced sarcomas
were generated as described previously5. Briefly, frozen cells from the subclonal
progressor cell line d42m1-T3 (developed by the R.D. Schreiber laboratory3) where
thawed from frozen stocks and expanded in vitro in RPMI media (Hyclone)
supplemented with 10% hiFCS, 1% L-glutamine, 1% penicillin–streptomycin, 1%
sodium pyruvate, 0.5% sodium bicarbonate and 0.5% 2-mercaptoethanol. Cells
were collected using trypsin (Hyclone), extensively washed in Hank’s balanced salt
solution (Hyclone) and eventually resuspended in endotoxin-free phosphate-buf-
fered saline (PBS; GIBCO) at a final concentration of 6.67 × 106 cells per ml. For
inoculation, 150 μl of this solution were injected subcutaneously into the hind
flanks of naive syngeneic recipient mice. Mice were monitored for tumour growth
every second day. Tumour growth was quantified by caliper measurements and
mice were killed by CO2 asphyxiation before the tumour size exceeded 20 mm. For
antibody therapy, mice were treated intraperitoneally with either 200 μg of anti-
CTLA-4 (murine IgG2b clone 9D9, BioXcell) or anti-PD-1 (murine IgG2a clone
RMP1-14, BioXcell) on days 3, 6 and 9 post-tumour transplant. For controls, mice

received either 200 µg IgG2b (clone MPC-11, BioXcell) or IgG2a (clone 2A3,
BioXcell) isotype control antibodies.

Tissue collection and processing. Twelve days post-tumour transplantation, mice
were killed by CO2 asphyxiation and tumours, spleens, draining lymph nodes and
non-draining lymph nodes were collected. Established solid tumours were excised
from the adjacent tissue, minced and incubated with 1 mgml−1 collagenase D
(Sigma), in complete medium for 1 h at 37 °C to make single-cell suspensions. The
cells were then filtered through a 70 µm strainer (Miltenyi Biotec) and washed
before removing dead cells via a dead cell removal kit (Miltenyi Biotec). Spleens
were crushed, filtered and red blood cell lysis was performed by hypotonic lysis.
Lymph nodes (draining and non-draining) were removed from mice, mashed and
resuspended to obtain single-cell solutions. To remove aggregates, all cells were
subsequently filtered through a 70-μm strainer.

Antibody and streptavidin labelling. Purified antibody clones and providers are
listed in Supplementary Table 1. Recombinant streptavidin was expressed and
refolded in house as previously described23. Maleimide-conjugated DN3 MAXPAR
chelating polymers (Fluidigm) were loaded with heavy metal isotopes according to
the manufacturer’s recommendations. For antibody conjugations, 100 µg of pur-
ified antibodies lacking carrier proteins were coupled at a time with the metal-
polymer structures according to the protocol provided by Fluidigm. For strepta-
vidin conjugations, 50 µg of streptavidin at a time was conjugated to the respective
metal-loaded DN3 polymer and finally diluted to a concentration of 200 µg ml−1

for subsequent tetramerization23,46.

Peptides. Mutant tumour epitopes used in the present study are based on pre-
dicted binding affinities using NetMHC 3.0 with an IC50 of <50 nM, as well as the
MHC class I epitope predictions as reported in ref. 5. All peptides were ordered
from Peptide 2.0, Inc. with a purity of at least 75% and were provided by Bob
Schreiber’s group from the Washington University in St. Louis, School of Medicine
(St. Louis, MO). Epitope sequences used in this study are listed in Fig. 1a and
Supplementary Table 2.

Peptide-MHC loading and tetramerization. Peptide–MHC complexes were
synthesized in house as previously described23. Briefly, recombinant H-2Kb heavy
chains and human β2 microglobulin light chains were isolated from Escherichia coli
derived inclusion bodies and refolded in the presence of a UV-cleavable peptide
(SIINFEJL, Mimotopes) followed by subsequent biotinylation and purification.
Specific peptide-MHC complexes were generated by UV irradiation (15 min,
365 nm) in the presence of single rescue peptides. Peptide exchange reactions were
setup in 96- well plates with 100 µl of 100 µg per ml H2Kb in PBS and 50 µM of
rescue peptides. Exchanged peptide–MHC complexes were stored at 4 °C for a
minimum of 12 h before tetramerization. For the generation of a combinatorial
triple-coded tetramer staining mixture, three out of nine differently metal-labelled
streptavidins were randomly combined at a time by using an automated pipetting
device (TECAN) resulting in a total of 84 possible combinations. For initial
screenings, we set up a second configuration carrying a completely different
combination of metal-tagged streptavidin molecules as internal control. For tet-
ramerization, these mixtures were then incubated with the single exchanged
peptide–MHC complexes in the 96-well plates at a final molar ratio of 1:4 (total
streptavidin:peptide–MHC). Each streptavidin combination was added in four
steps with 10 min incubation at room temperature (RT) to the peptide–MHC
complexes according to their afore determined coding schemes, followed by a final
addition of 10 µM free biotin (Sigma). For each staining configuration the tetra-
merized pMHC complexes were then combined and concentrated by using a 10
kDa (Merck Millipore) cutoff filter. We finally exchanged the buffer into cytometry
buffer (PBS, 2% fetal calf serum, 2 mM EDTA, 0.05% sodium azide) and filtered the
tetramer cocktails before staining the cells with a concentration of ~ 500 nM per
peptide–MHC molecule.

Staining and data acquisition. Staining of samples was carried out as described
previously23,25,27. Briefly, three to five million cells/tissue were transferred into 96-
well plates, washed once with cytometry buffer and incubated for 5 min on ice in
200 µM cisplatin (Sigma) for the discrimination of live and dead cells47. Cells were
washed twice and each sample was stained with 50 µl of tetramer cocktail for 1 h at
RT. Subsequently, cells were washed twice and then incubated with 50 µl of heavy
metal-labelled antibody cocktail (Supplementary Table 1) for 30 min on ice fol-
lowed by fixing the cells in 2% paraformaldehyde (Electron Microscopy Sciences)
in PBS overnight or longer at 4 °C. The cells were then washed once in 1× per-
meabilization buffer (Biolegend) and each sample was then barcoded with a unique
combination of two distinct barcodes consisting of either bromoacetamidobenzyl-
EDTA (Dojindo)-linked metal barcodes (Pd-102, Pd-104, PD106 and PD108, and
Pd-110) or DOTA-maleimide (Macrocyclics)-linked metal barcodes (LN-113) for
30 min on ice25,27. Cells were washed once, incubated in cytometry buffer for 5 min
and subsequently resuspended in 250 nM iridium intercalator (Fluidigm) in 2%
paraformaldehyde/PBS at RT. The cells were washed and the samples from each
tissue were pooled together and adjusted to 0.5 million cells per ml H2O together
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with 1% equilibration beads (EQ Four element calibration beads, Fluidigm) for
acquisition on the mass cytometer27.

Flow cytometry staining. H-2Kb peptide-MHCI complexes with mLama4 or
mAlg8 peptides were prepared by UV-induced ligand exchange as described above
and tetramerized by three additions of streptavidin conjugated to either phycoer-
ythrin or allophycocyanin (Biolegend) to achieve the final molar ratio of 1:4 (total
streptavidin:peptide–MHC). Cells were stained with tetramers and Fc block (anti-
CD16/32, BD Bioscience) in PBS 0.5% BSA at 4 °C for for 1 h at RT. Subsequently,
cells were washed and then stained with fluorescently conjugated antibodies to PD-
1 (29 F.1A12, Biolegend 1/100), KLRG1 (2F1, Biolegend 1/100), CD8 (53–6.7,
Biolegend 1/100), Sca-1 (D7, Biolegend 1/100), TCR-beta (H57-597 Biolegend 1/
100), CD27 (LG.7F9, Biolegend 1/100) and Tim-3 (B8.2C12, Biolegend 1/100), and
Live–dead (Thermo-Fisher—L34957) at 4 °C for 15 min, followed by washing and
incubation in FoxP3 fixation buffer (eBioscience) for 30 min on ice. After washing
in permeabilization buffer (eBioscience), the cells were then stained with Ki-67
(11F6, Biolegend 1/100) and granzyme B (GB7, Biolegend 1/100) antibodies in
permeabilization buffer for 30 min on ice. All flow cytometry experiments were
performed on a FACSCalibur device (BD Biosciences) and analysed using FlowJo.

Data analysis. Mass cytometry data were analysed as previously described25,27,48.
First, the signal of each parameter was normalized based on the equilibration beads
added to each sample49. The zero values of the.fcs files were randomized by an R-
script that uniformly distributes values between minus-one and zero. Each barcode
combination was deconvolved manually followed by gating on live CD8+ T cells
using FlowJo software (Treestar, Inc.). Antigen-specific triple-tetramer-positive
cells were further identified by an automated gating strategy23 and subsequently
validated by manual gating using Flowjo. For the detection of triple-tetramer-
positive cells, we set a cut off at a frequency of 0.15% for all CD8+ T cells, as signals
became random below this threshold. For t-SNE dimensionality reduction, the cell
events of all tissues were down-sampled to a maximum number of 10,000 CD8+

T cells per tissue. t-SNE analysis was carried out by using an R-package27 including
the “flowCore” and “Rtsne” CRAN R packages for an efficient implementation of t-
SNE via the Barnes-Hut approximations)24,26. For automated clustering, we per-
formed k-means clustering of the t-SNE output, using 10 centres and 1,000 random
repeats. The χ2-test was used to assess the correlation between the two grouping
methods.

In R, all data were transformed using the “logicleTransform” function by using
the “flowCore” package (parameters: w= 0.25, t= 16,409, m= 4.5, a= 0). We
calculated the percentages and median intensity values for each marker assessed
and used heat maps to represent marker expression and to identify the
characteristic markers of each cluster. Pie charts and bar graphs shown in this
manuscript were generated using Graphpad Prism software and heat plots were
generated using custom R-scripts.

Statistical analysis. Statistical comparisons for continuous variables between two
groups were done by Student’s t-test with pooled variance and Holm–Sidak pro-
cedure for multiple comparisons, or Fisher’s exact test for categorical variables. For
more than two groups analysis of variance was used followed by Holm–Sidak’s
multiple comparisons test. For a given marker, we computed Z-scores by per-
forming the transformation X significance of X→ (X−m)/s, where X is the
expression of the marker across tetramer-positive cells, m its mean and s its SD23.
Significance of Z-scores was analysed by t-tests followed by Benjamini–Hochberg
multiple test correction using a false discovery rate threshold of 0.2525,27.

Data availability. Data that support the findings of this study are available through
the Flow Repository (http://flowrepository.org/id/FR-FCM-ZY8A). All other data
are available from the authors on reasonable requests.
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