
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​​​​t​p​:​/​/​c​r​e​​a​​​t​i​
v​e​​c​​o​​m​​m​​o​n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​​

Baheti et al. BMC Oral Health           (2025) 25:28 
https://doi.org/10.1186/s12903-024-05409-w

BMC Oral Health

*Correspondence:
Xiaotao Chen
xiaotaochen@163.com

Full list of author information is available at the end of the article

Abstract
Background  The progression and severity of periodontitis (PD) are associated with the release of extracellular 
vesicles by periodontal tissue cells. However, the precise mechanisms through which exosome-related genes (ERGs) 
influence PD remain unclear. This study aimed to investigate the role and potential mechanisms of key exosome-
related genes in PD using transcriptome profiling at the single-cell level.

Methods  The current study cited GSE16134, GSE10334, GSE171213 datasets and 19,643 ERGs. Initially, differential 
expression analysis, three machine learning (ML) models, gene expression analysis and receiver operating 
characteristic (ROC) analysis were proceeded to identify core genes. Subsequently, a core gene-based artificial neural 
network (ANN) model was built to evaluate the predictive power of core genes for PD. Gene set enrichment analysis 
(GSEA) and immunoinfiltration analysis were conducted based on core genes. To pinpoint key cell types influencing 
the progression of periodontal at the single-cell level, a series of single-cell analyses covering pseudo-time series 
analysis were accomplished. The expression verification of core genes was performed through quantitative reverse 
transcription polymerase chain reaction (qRT-PCR).

Results  CKAP2, IGLL5, MZB1, CXCL6, and AADACL2 served as core genes diagnosing PD. Four core gene were 
elevated in the PD group in addition to down-regulated AADACL2. The core gene-based-ANN model had AUC values 
of 0.909 in GSE16134 dataset, which exceeded AUC of each core gene, highlighting the accurately and credibly 
predictive performance of ANN model. GSEA revealed that ribosome was co-enriched by 5 core genes, manifesting 
the expression of these genes might be critical for protein structure or function. Immunoinfiltration analysis found 
that CKAP2, IGLL5, MZB1, and CXCL6 exhibited positive correlations with most discrepant immune cells/discrepant 
stromal cells, which were highly infiltrated in PD. B cells and T cells holding crucial parts in PD were identified as 
key cell types. Pseudo-time series analysis revealed that the expression of IGLL5 and MZB1 increased during T cell 
differentiation, increased and then decreased during B cell differentiation. The qRT-PCR proved the mRNA expression 
levels of CKAP2 and MZB1 were increased in the blood of PD patients compared to controls. But the mRNA expression 
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Introduction
Periodontitis (PD) is considered to be one of the most 
prevalent diseases in humans [1] and ranks as the sixth 
most common global disease [2]. There is a noticeable 
upward trend in the prevalence of PD worldwide, with 
a 57.3% increase from 1990 to 2010 [3]. PD stands as 
the primary cause of adult tooth loss globally, impact-
ing nutrient intake, quality of life, and self-esteem while 
also resulting in significant socio-economic implications 
and wastage of medical resources [4]. Dental calculus on 
the root surface and subgingival plaque are identified as 
crucial local factors contributing to the occurrence and 
progression of PD [5]. Furthermore, endotoxins pro-
duced by periodontal pathogens have been closely linked 
to systemic diseases. Research indicates that PD interacts 
with several systemic conditions including stroke, athero-
sclerosis, chronic kidney disease, cardiovascular disease, 
respiratory infections, and type 2 diabetes [6, 7]. There-
fore, the treatment of PD is important for the prevention 
of these diseases. In addition, the loss of alveolar bone 
caused by periodontal pathogenic bacteria through host 
immune inflammation is usually difficult to repair natu-
rally. How to address the inflammatory destruction and 
absorption of alveolar bone and promote reconstruction 
and repair is a challenge in the treatment of PD [8, 9].

In recent years, tissue engineering technology has 
focused on periodontal tissue regeneration. By means 
of various exogenous implantation of stem cells, new 
bone tissue can be generated in areas with existing bone 
defects to replace damaged tissues, thereby inhibiting 
progressive absorption of periodontal bone tissue and 
restoring healthy function of periodontal tissues [10]. 
Some studies have found that cell-to-cell communication 
greatly influences bone tissue repair. Exosomes can serve 
as mediators for intercellular communication and have 
been applied in bone tissue engineering [11]. Exosomes 
(EXOs) as important mediators of paracrine effects retain 
almost all advantages of source cells. Compared to stem 
cell therapy, EXOs have lower immunogenicity and bet-
ter biocompatibility, resulting in lower post-transplanta-
tion immune-related adverse reactions [12–14], allowing 
them to mimic source cells to some extent and exert 
functions in modulating microenvironment. And the 
composition of the contents of EXOs from different types 
of cells is different, even for the same type of cells, their 
secreted EXOs can have a high degree of heterogeneity 

due to the different environments they are in. Exosomes 
carry various bioactive molecules such as miRNA, pro-
teins, and growth factors. These molecules can regulate 
inflammation response and immune response in sur-
rounding tissues, thereby affecting the development and 
severity of PD. ERG plays a pivotal role in regulating the 
exosome-mediated effects of these processes, rendering 
it a potential target for pharmacological interventions or 
therapies aimed at enhancing bone tissue repair or con-
trolling periodontitis. Hence, it is imperative to investi-
gate the mechanism underlying ERG’s involvement in 
periodontitis progression by examining its specific altera-
tion pattern during disease development and its impact 
on inflammation and immune response.However, the 
potential mechanisms of exosome-related genes in PD 
have not been fully elucidated.

This study employed a comprehensive array of bioin-
formatics approaches to elucidate the diagnostic signifi-
cance of ERGs in PD. Furthermore, it investigated the 
molecular mechanisms, immune microenvironment, 
regulatory networks, and associated pharmacological 
agents pertaining to key genes influencing periodontitis. 
Additionally, single-cell analysis was utilized to pinpoint 
critical cell types that play pivotal roles in PD. These find-
ings offer novel insights for therapeutic strategies target-
ing periodontitis.

Materials and methods
Data collection
Two PD-related transcriptome datasets, GSE16134 and 
GSE10334, from the GPL570 annotation platform were 
garnered from the Gene Expression Omnibus (GEO, 
http://​www.ncb​i.nlm.n​ih.g​ov/geo/) database. ​S​p​e​c​i​f​i​c​a​l​l​y​, 
the GSE16134 dataset encompassed microarray sequenc-
ing of from gingival tissue specimens from 120 patients 
with PD (NPD affected site (PD group): NUnaffected site (control) = 241: 
69). The GSE10334 dataset embraced microarray 
sequencing data of gingival tissue specimens from 90 
patients with PD (NPD affected site: NUnaffected site = 183: 
64). Single cell RNA sequencing (scRNA-seq) data-
set GSE171213 (platform: GPL24676), collected from 
the GEO database as well, comprised high-throughput 
sequencing data of periodontal tissue samples from 5 
patients with chronic PD and 4 healthy controls. A total 
of 19,643 exosome-related genes (ERGs) associated with 
blood sources were acquired from the exoRbase database 

levels of AADACL2 was decreased in the PD patients compared to controls. This is consistent with the trend in the 
amount of expression in the dataset.
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(http://www.exorbase.org/) (Table S1). In order to clearly 
demonstrate the complex research process of this study, 
we constructed a flowchart (Additional file 1) which had 
outlined the key aspects of the process from data collec-
tion to analysis of results.

Identification and functional analysis of candidate genes
The differentially expressed genes (DEGs) in the PD and 
control samples of the GSE16134 dataset were pinpointed 
through differential expression analysis with the R pack-
age ‘limma’ (Ver. 3.54.0) [15] (|Log2fold-change (FC)| > 2, 
p < 0.05). A volcano plot and a expression heatmap illus-
trating the over-expressed and down-regulated DEGs, 
sorted in accordance with the value of log2FC, were cre-
ated applying R packages ‘ggplot2’ (Ver. 3.4.4) [16] and 
‘ComplexHeatmap’ (Ver. 2.15.1) [17]. Next, candidate 
genes associated with exosome in PD were identified by 
intersecting DEGs with 19,643 ERGs through the R pack-
age ‘ggvenn’ (Ver. 0.1.9) [18]. To probe into the functional 
roles of candidate genes, Gene Ontology (GO) terms 
covering biological processes (BPs), molecular functions 
(MFs), and cellular components (CCs) as well as Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
enriched by candidate genes were noted via the R pack-
age ‘clusterProfiler’ (Ver. 4.7.1.003) [19] based on the GO 
(https://geneontology.org/) and KEGG ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​k​
e​g​g​.​j​p​/​​​​​) databases (p < 0.05). Besides, the interactions of 
candidate genes at the protein level were investigated by 
establishing a protein-protein interaction (PPI) network 
with the help of the Search Tool for the Retrieval of Inter-
acting Genes (STRING, https://string-db.org) database 
(Confidence level > 0.4).

Screening for core genes
In GSE16134 dataset, in sum of 3 machine learning (ML) 
model-based screening was proceeded to identify fea-
ture genes from candidate genes. Least absolute shrink-
age and selection operator (LASSO) regression model 
was constructed by the R package ‘glmnet’ (Ver. 4.1-6) 
[20]. Candidate genes whose regression coefficients were 
not penalised to 0 when the model lambda value was at 
its minimum were deemed as LASSO-featured genes. 
Boruta algorithm with default parameters was performed 
with the help of the R package ‘Boruta’ (Ver. 8.0.0) [21], 
where candidate genes with low correlation were itera-
tively removed, and candidate genes with Z-values 
greater than the maximum Z-value of the shaded feature 
were identified as Boruta-featured genes. Additionally, 
the R package ‘caret’ (Ver. 6.0–93) [22] was proceeded to 
build a Support Vector Machine-Recursive Feature Elimi-
nation (SVM-RFE) model, which retained SVM-RFE-
featured genes by removing features with the smallest 
scores in each iteration. Finally, the PD features that were 
retained in all 3 models were identified as the feature 

genes. In GSE16134 and GSE10334 datasets, discrepan-
cies in the expression of feature genes between PD and 
control samples of the 2 datasets were assessed through 
Wilcoxon rank-sum test (p < 0.05). Feature genes with 
significantly discrepant expression and consistent expres-
sion trends in the PD and control samples of the 2 data-
sets were considered as candidate core genes. Receiver 
operating characteristic (ROC) analysis were subse-
quently proceeded to select core genes from candidate 
core genes. ROC curves corresponding to each feature 
genes were drawn through the R package ‘pROC’ (Ver. 
1.18.5) [23] in the 2 datasets, and candidate core genes 
with area under curve (AUC) values above 0.7 within 
both datasets were selected as core genes.

Artificial neural network (ANN) modeling
Furthermore, an ANN, a type of ML model, was created 
to evaluate the predictive power of core genes for PD in 
GSE16134 dataset. First, each core gene was assigned an 
expression value of ‘0’ or ‘1’ based on its median expres-
sion, generating the high expression group and low 
expression group. The expression matrix was input into 
R package ‘neuralnet’ (Ver. 1.44.2) [24] to construct an 
ANN network in the GSE16134 dataset. Plotted ROC 
curves using the R package ‘pROC’ (Ver. 1.18.5) to assess 
the overall predictive power of the ANN model in the 
training set GSE16134 and validation set GSE10334.

Gene set enrichment analysis (GSEA)
To explore the potential functions played by the core 
genes in PD, GSEA was employed to clarify the KEGG 
pathways involved by core genes through referring to the 
c2.cp.kegg.v2023.2.Hs.symbols.gmt gene set, which was 
cited from the Molecular Signatures Database (MSigDB, 
https:/​/dsigdb​.tanlab​.org​/DSigDBv1.0/). Concretely, 
Spearman correlation analysis was conducted between 
the core genes and the remaining genes within the 
GSE16134 dataset using the R package ‘psych’ (Ver. 2.2.9) 
[25] to obtain correlation coefficients. These coefficients 
were sorted in descending order, and ranked genes were 
subsequently analyzed using the ‘GSEA’ function within 
the R package ‘clusterProfiler’ (|Normalized Enrichment 
Score (NES)| > 1, p < 0.05).

Immune infiltration analysis and drug prediction
To investigate the discrepancies between the immune 
microenvironment in periodontal samples from PD inva-
sion and healthy periodontal samples of PD patients, 
the abundance of 28 immune cells [26] and 2 types of 
stromal cells (fibroblasts and endothelial cells) [27] was 
assessed in PD and control samples of the GSE16134 
dataset adopting single-sample GSEA (ssGSEA) algo-
rithm in ‘GSVA’ package (Ver. 1.42.0) [28]. Discrepan-
cies in immune cell infiltration between PD and controls 
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were also compared by Wilcoxon rank-sum test, gaining 
discrepant immune cells and discrepant stromal cells 
(p < 0.05). The correlation between core genes and dis-
crepant immune cells/stromal cells was explored through 
Spearman correlation analysis (|cor| > 0.3, p < 0.05). To 
develop latent therapeutics for PD, potential therapeutic 
compounds targeting core genes were obtained in the 
Drug Signatures Database (DSigDB, http://ctdbase.org/) 
and a drug-biomarker network was synthesized by means 
of Cytoscape software (Ver. 3.7.0) [29].

Establishment of core gene-related networks
The GeneMANIA platform (http://genemania.org/), was 
leveraged to construct a gene-gene interaction (GGI) 
network, which aided in elucidating the functional link-
ages between genes that maintained similar functions 
to the core genes. In order to understand the underly-
ing regulatory mechanism of the role of core genes in 
PD. The upstream transcription factors (TFs) and miR-
NAs targeting core genes were predicted by the miRNet 
database (https:/​/www.mi​rnet.ca​/miR​Net/home.xhtml), 
and then the Cytoscape software was used to integrate 
the TFs and miRNAs, creating a TF-mRNA-miRNA net-
work. In-depth characterisation of the RBP-RNA interac-
tome will contribute to a better understanding of disease 
pathogenesis. Here, therefore, RBPs interacting with core 
genes were predicted using the ENCORI database ​(​​​h​t​t​p​
s​:​/​/​s​t​a​r​b​a​s​e​.​s​y​s​u​.​e​d​u​.​c​n​/​​​​​) and the core gene-RBP ​r​e​g​u​l​a​t​
o​r​y network was visualised through Cytoscape software.

Tissue gene expression analysis and gene pathway analysis
The expression levels of the core genes in different tis-
sue types of the human body were analysed by the GTEx, 
BioGPS, and SAGE platforms in the GeneCards data-
base (https://www.genecards.org/), which helped to 
shed light on the pathogenesis of PD. In order to further 
investigate the association between the core genes and 
their enriched top 1 KEGG pathway. Based on all PD 
affected samples from the GSE16134 dataset, Pearson 
correlation analysis was conducted via the ‘cor’ function 
in the R package (Ver. 4.2.2) to estimate the correlations 
between each core gene and their enriched top 1 path-
way. The correlations between core genes and the genes 
in top 1 pathway were explored through Spearman cor-
relation analysis via the ‘cor’ function. Scatter plots and 
bubble plots were drawn through R packages ‘ggstatsplot’ 
(Ver. 0.11.0) [30] and ‘ggplot’ (Ver. 3.4.4) [31] to show the 
results.

ScRNA-seq data preprocessing and cell annotation
To pinpoint key cell types influencing the progression 
of PD in patients at the single-cell level, the scRNA-seq 
dataset, GSE171213, were opted for a comprehensive 
series of single-cell analyses. In order to normalise the 

raw data of the GSE171213 dataset, low-quality cells and 
features were eliminated by quality control (QC) through 
the ‘CreateSeuratObject’ function of the R package 
‘Seurat’ (Ver. 5.0.1) [32]. The percentage of mitochondrial 
genes in a single cell was calculated by the Percentage-
FeatureSet function. Specifically, cells with more than 
20% mitochondrial genes and more than 5% erythroid 
genes were filtered. Cells with the number of RNA fea-
tures detected in a single cell ranging from 100–6000, 
with a total number of RNA molecules less than 10,000 
and with a percentage of mitochondrial genes less than 
20% were retained. After the data were normalized by the 
‘NormalizeData’ and ‘FindVariableFeatures’ functions, 
the first 2,500 highly variable genes (HVGs) were singled 
out with the help of the ‘FindVariableFeatures’ function. 
A scatter plot showing the standardized variance of these 
HVGs was created by the ‘LabelPoints’ function. The 
data were further standardized by ‘ScaleData’ function 
to ensure that the cells analysed belonged to different 
cell clusters. In compliance with the compliance with the 
first 2,500 HVGs, principal component analysis (PCA) 
was proceeded through the ‘RunPCA’ function to ensure 
consistency in the distribution of cells across samples and 
check for any obvious outliers. Subsequently, the optimal 
principal components (PCs) were ascertained through 
the ‘JackStrawPlot’ function (p < 0.05), and the results 
were displayed by an elbowplot mapped via ‘EIbowPlot’ 
function. Unsupervised cluster analysis was performed 
utilizing Uniform Manifold Approximation and Projec-
tion (UMAP) by ‘NormalizeData’ and ‘FindVariableFea-
tures’ functions with a set resolution parameter of 1 to 
identify cell clusters. The marker genes corresponding 
to each cluster were gained via ‘FindAllMarkers’ func-
tion. Differentially expressed marker genes (DEMGs) 
in discrepant cell clusters were identified by Wilcoxon 
rank-sum test (|log2FC|>1, adj.p < 0.05). Cell types were 
obtained by annotating different cell clusters via R pack-
age ‘SingleR’ (Ver. 2.0.0) [32] in accordance with the 
expression of marker genes. A histogram was utilized to 
graphically represent the percentage of cell types in both 
PD and control groups.

Identification of key cell types and analysis of expression 
levels of core genes in cell types
The proportion of cell types in PD and control groups 
of GSE171213 dataset was estimated, and differences in 
proportion of each cell type between two groups were 
compared adopting the chi-square test, gaining dis-
crepant cell types. Discrepant cell types that had been 
reported to hold a key part in PD were deemed as key cell 
types (p < 0.05). The expression of core genes in cell types 
was examined, as well as in cell types of PD and controls.

http://ctdbase.org/
http://genemania.org/
https://www.mirnet.ca/miRNet/home.xhtml
https://starbase.sysu.edu.cn/
https://starbase.sysu.edu.cn/
https://www.genecards.org/
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Secondary clustering of key cell types and pseudo-time 
series analysis
To further explore the heterogeneity of the key cell types, 
these key cell types were clustered by UMAP for second-
ary dimensionality reduction clustering in the dataset 
GSE171213, acquiring molecular subtypes correspond-
ing to key cell types. In order to study the differentiation 
trajectories of key cell types and the expression dynamics 
of core genes during their differentiation, pseudo-time 
series analysis was proceeded by the R package ‘Monocle 
3’ (Ver. 1.0.0) [33] based on molecular subtypes corre-
sponding to key cell types.

Expression verification of core genes
The expression of core genes was verified in 6 PD sam-
ples and 6 control samples by quantitative reverse tran-
scription polymerase chain reaction (qRT-PCR). These 
samples collected with the approval of the patients and 
the Ethics Committee of People’s Hospital of Xinjiang 
Uygur Autonomous Region, China. All participants were 
given informed consent. This study gets the approval of 
the People’s Hospital of Xinjiang Uygur Autonomous 
Region, China ethics committee (approval number: 
KY20240312022). Total RNA was extracted from blood 
using Trizol reagent (Thermo Scientific Ambion, China). 
SureScript-First-strand-cDNA-synthesis-kit (Servicebio, 
Wuhan, China) was used to reverse mRNA transcription 
into cDNA. Reverse transcription-quantitative real-time 
polymerase chain reaction (RT-qPCR) was performed 
on the mRNA expression levels of CKAP2, MZB1, 
AADACL2, IGLL5, and CXCL6. The amplification reac-
tion conditions were as follows: predenaturation at 95 °C 
for 60  s, followed by 40 cycles of denaturation at 95  °C 
for 20  s, 55  °C for 20  s, and 72  °C for 30  s. The relative 
expression levels of mRNA were calculated by the 2−ΔΔCT 
method with the internal reference values of GAPDH. 
The primer sequences used in the experiment were dis-
played in (Table S2).

Statistical analysis
In this study, we conducted bioinformatics analyses 
applying R software (Ver. 4.2.2). Inter-group discrepan-
cies were evaluated with the Wilcoxon rank-sum test, 
identifying statistical significance at p-values below 0.05.

Results
The biological functions of candidate genes might be 
related to immune responses and inflammatory processes
Differential expression analysis of the GSE16134 micro-
array sequencing data yielded a number of 23 DEGs 
between PD and controls, characterized by 21 over-
expressed and 2 down-regulated DEGs in PD (Fig.  1A-
B). They were overlapped with 19,643 ERGs, obtaining 9 
candidate genes associated with exosome and PD, namely 

CKAP2, IGLL5, MZB1, SPAG4, TNFRSF17, IRF4, 
CXCL6, AADACL2, and DSC1 (Fig. 1C). These 9 candi-
date genes mainly participated in 103 GO-BPs, 13 GO-
CCs and 5 GO-MFs. The first 5 entries of BP, CC, and MF 
were presented in Fig. 1D. Of note, IGLL5I and CXCL6 
were involved in identical BPs such as defense response 
to bacterium, leukocyte mediated immunity and humoral 
immune response. The identical BPs enriched by IGLL5 
and MZB1 encompassed regulation of B cell activation 
and B cell activation (Table S3). In total, 8 KEGG path-
ways were identified for the candidate genes. Five of 
them were enriched by CXCL6, including IL-17 signaling 
pathway, TNF signaling pathway and rheumatoid arthri-
tis, pertussis, viral protein interaction with cytokine and 
cytokine receptor. Cytokine-cytokine receptor interac-
tion was co-enriched by TNFRSF17 and CXCL6. In addi-
tion, the pathways enriched for TNFRSF17 and IRF4 
were intestinal immune network for IgA production and 
Th17 cell differentiation, respectively (Fig. 1E, Table S4). 
Summarily, the biological functions of candidate genes 
might be related to immune responses and inflamma-
tory processes, such as cytokine signalling, immune cell 
activation, antibody production, and defence responses 
to infectious agents. A PPI network of 9 candidate genes 
was synthesised, the network demonstrated protein-level 
interactions of 4 candidate genes in addition to the dis-
crete proteins encoded by 5 genes, forming 6 interac-
tion pairs. MZB1, as an internal gene, maintained a close 
association with IRF4, TNFRSF17, and IGLL5 (Fig. 1F).

The core gene-based-ANN model could distinguish PD 
from controls accurately
The precision of LASSO model achieved the highest 
when minimum Lambda value was 0.08445074 and 5 
LASSO-featured genes whose regression coefficients 
were not 0 were retained (CKAP2, IGLL5, MZB1, 
CXCL6, and AADACL2) (Fig. 2A). Boruta analysis found 
that the Z-values of all candidate genes exceeded the 
maximum Z-value of the shaded feature, so these 9 genes 
served as Boruta-featured genes (PCXCL6, CKAP2, 
IGLL5, SPAG4, IRF4, MZB1, AADACL2, DSC1, and 
TNFRSF17) (Fig.  2B). Similarly, through the iterative 
screening of the SVM-RFE model, none of the 9 candi-
date genes were eliminated, transforming into SVM-
RFE-featured genes (Fig.  2C). Hence, CKAP2, IGLL5, 
MZB1, CXCL6, and AADACL2, noted as feature genes, 
were unquestionably deemed as PD features (Fig.  2D). 
Gene expression analysis manifested that CKAP2, IGLL5, 
MZB1 and CXCL6 were elevated in the PD group in addi-
tion to down-regulated AADACL2 and they kept fully 
consistent expression trends in GSE16134 and GSE10334 
datasets (p < 0.0001). As a result, all 5 feature genes could 
be passed as candidate core genes (Fig. 2E, Fig.S1A). ROC 
analysis ascertained candidate core genes as core genes 
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Fig. 1  Differential expression analysis. (A) Volcano map of differentially expressed genes (Red dots represent up-regulated genes, blue dots represent 
down-regulated genes; The 10 genes with the most significant up-down-regulation differences showed gene names). (B) Heat map of differentially 
expressed genes (The picture consists of two parts: The upper part is the expression density heat map of down-regulated top10 genes on the sample, 
showing the five quantiles and the average Lines of value; The next part is the heat map of down-regulated top10 genes on the sample). The data in 
this Fig. 1A, B were obtained by differential expression analysis of the dataset GSE16134. (C) Identification of candidate genes. (D) GO enrichment results 
(Gray dots represent genes, yellow dots represent different pathway names, and different color lines represent pathways enriched by genes).This figure 
was obtained by GO enrichment analysis of differentially expressed genes (E) KEGG enrichment results (Gray dots represent genes, yellow dots represent 
different pathway names, and different color lines represent pathways enriched by genes). This figure was obtained by KEGG enrichment analysis of dif-
ferentially expressed genes. (F) PPI network diagram
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Fig. 2  Machine learning screens for core genes. (A). LASSO coefficient spectrum and Cross-validation of LASSO regression analysis. (B) Boruta algorithm 
identifies candidate core genes. (C) SVM-RFE screening candidate biomarkers. (D) The intersection of three algorithms is used to obtain the feature gene. 
(E) Expression of key feature genes in GSE16134 data sets. The ordinate is gene expression, blue is Control group, red is RIF group; ns is not significant; 
*, P.value < 0.05; **, P. value < 0.01; ***, P. value < 0.001; ****, P. value < 0.0001). (F) ROC curves of core genes in the GSE16134 datasets. (G) Artificial neural 
network diagram of core genes in training set. (H) ROC curve of artificial neural network in training set (GSE16134 datasets) and validation set (GSE10334 
datasets) (AUC is the area under the ROC curve, and the closer the value of AUC is to 1, the better the prediction performance of the model)

 



Page 8 of 19Baheti et al. BMC Oral Health           (2025) 25:28 

because of their AUCs of greater than 0.80 in GSE16134 
and GSE10334 datasets (Fig. 2F, Fig.S1B). The core gene-
based-ANN model was developed in GSE16134 data-
sets, it could specifically distinguish between PD and 
control samples (Fig. 2G), the AUCs of the model in the 
GSE16134 and GSE10334 datasets were 0.909 and 0.870 
correspondingly, which exceeded AUC of each core gene, 
highlighting that the predictive performance of ANN 
model was accurate and credible (Fig. 2H).

Identification of core gene function
GSEA revealed 66, 56, 54, 75, and 60 KEGG pathways 
involved by CKAP2, IGLL5, MZB1, AADACL2, and 

CXCL6 5 core genes respectively. In top 5 pathways, 
CKAP2, IGLL5, and AADACL2 might play a role in a 
selfsame process like intestinal immune network for IgA 
production. In addition to IGLL5, the remaining 4 core 
genes might also be involved in cell adhesion molecules 
(CAMs). Ribosome was co-enriched by 5 core genes, 
manifesting the expression of these genes might be criti-
cal for protein structure or function (Fig. 3A-E, Table S5).

Fig. 3  GSEA analysis. (A) CKAP2 enrichment results. (B) IGLL5 enrichment results. (C) MZB1 enrichment results. (D) AADACL2 enrichment results (E) 
CXCL6 enrichment results. This figure was obtained by GSEA analysis of key genes (CKAP2, IGLL5, MZB1, AADACL2, CXCL6)
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CKAP2, IGLL5, MZB1, and CXCL6 exhibited positive 
correlations with most discrepant immune cells/discrepant 
stromal cells
In addition to 1 adaptive immune cell (memory B cell), 
3 types of innate immune cells (T helper Type 2 (Th2) 
cells, CD56bright natural killer (NK) cells, and CD56dim 
NK cells), totally 24 kinds of immune cells (discrepant 
immune cells) and 2 stromal cells (discrepant stromal 
cells) varied in abundance in the PD and control samples 
of the GSE16134 dataset. Among these, 23 kinds of dis-
crepant immune cells and 2 kinds of discrepant stromal 
cells accounted for a relatively high proportion in PD 
except effector memeory CD4 T cells (p < 0.05) (Fig. 4A). 

AADACL2 showed a negative correlation with the 
majority of discrepant immune cells/discrepant stromal 
cells, whereas CKAP2, IGLL5, MZB1, and CXCL6 exhib-
ited positive correlations with most discrepant immune 
cells/discrepant stromal cells (|cor| > 0.3, p < 0.05) Acti-
vated B cells exhibited the strongest positive associa-
tion and the strongest negative association with MZB1 
(cor = 0.89, p < 0.05) and AADACL2 (cor = -0.50, p < 0.05) 
(Fig.  4B). By means of DSigDB, in sum of 13, 2 and 23 
drugs interacting with MZB1, CKAP2 and CXCL6, 
respectively were predicted. IGLL5 and AADACL2 were 
not predicted to corresponding drugs. As a consequence, 
the drug-biomarker network was constituted of MZB1, 

Fig. 4  Immune infiltration analysis and drug prediction network construction. (A) The difference of immune infiltrating cells in different tissue samples of 
the training set. This figure was evaluated in GSE16134 datasets using single-sample gene set enrichment analysis, and then obtained using the Wilcoxon 
test. (B) Correlation analysis between core genes and differential immune cells. (C) Key gene-drug interaction network
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CKAP2, CXCL6 and their corresponding drugs. Of 
note, doxorubicin (DXR) could interact with CKAP2 and 
CXCL6 (Fig. 4C).

Multiple genes, miRNAs, TFs, and RBPs, could interact with 
core genes
A search of the GeneMANIA database uncovered 20 
genes with biological functions akin to our core genes, 
the majority of which exhibited intricate interactions. 
Notably, CXCL6 and CXCL1 were identified for their 
potential analogous roles, particularly in cytokine activ-
ity (Fig. 5A). A TF-mRNA-miRNA network constituting 
of 5 core genes, 67 miRNAs, and 40 TFs was established 
to reveal the regulatory mechanisms underlying core 
gene function. hsa-mir-185-5p, MYC, CNOT3, TP53 
and TRIM28 might regulate the expression of MZB1 and 
CKAP2. The expression of CKAP2 and CXCL6 might 
also be affected by hsa-mir-129-2-3p, hsa-mir-130a-3p, 
hsa-mir-27a-3p, hsa-mir 106a-5p, hsa-mir-941 and 
SOX2 (Fig.  5B). We further revealed the RBPs interact-
ing with core genes with the help of ENCORI database, 
and a total of 131 RBPs were predicted, which interacted 
with their respective targeted core genes, forming 144 
interaction pairs. As presented in the gene-RBP regula-
tory network, the same RBP could interact with differ-
ent core genes, e.g. RBM4 could interact with MZB1 and 

CKAP2, RBPMS could interact with CKAP2 and CXCL6 
(Fig. 5C).

Core genes actively expressed in most of the tissues
The expression levels of the core genes in different tis-
sue types of the human body were examined through 
databases. According to the GTEx database, the 
core genes actively expressed in most of the tissues. 
CKAP2 expressed in all the tissues (Fig.  6A). IGLL5 
and AADACL2 are highly expressed in lymph node, 
small intestine, spleen, adrenal gland, etc. (Fig.  6B-C). 
MZB1 highly expressed in skin tissue. MZB1 primar-
ily expressed in skin tissue, and CXCL6 was mainly 
expressed in spleen and lung tissues (Fig.  6D-E). These 
5 core genes were positively correlated with the co-
enriched top 1 pathway, ribosome (Fig.  6F). CKAP2, 
IGLL5 and MZB1 exhibited negative associations with 
genes in ribosome, yet AADACL2 was positively corre-
lated with these genes (Fig. 6G).

B cells and T cells holding crucial parts in PD progress were 
identified as key cell types
Post-QC, a single-cell dataset encompassing 24,540 
features across 22,126 cells was obtained. Violin plots 
illustrated the distribution changes in nFeature_RNA, 
nCount_RNA, and percent.mt pre- and post-QC (Fig.

Fig. 5  The GeneMANIA Network. (A) GeneMANIA database analysis network diagram (The big circle in the middle is the key gene, and the small circle on 
the outside is the gene related to the key gene. The network lines on the right represent each other from top to bottom Action, co-expression, prediction, 
co-localization, genetic interaction, pathway, shared protein domain). (B) Molecular regulatory network of core genes (Rose red is the key gene; Yellow is 
miRNA; Blue is TF). (C) Key gene -RBP regulatory network (Pink is the key gene; Blue is RBP)
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S2 A-B). The top 30 HVGs were identified based on 
standardized variance (Fig.S2C). PCA confirmed the 
consistency of cell distributions across the GSE171213 
dataset samples, indicating no distinct niche samples, 
with the dataset integrating well within the initial 30 
PCs (Fig.S2D). The elbow plot demonstrated stabiliza-
tion of standard deviation for these components, lead-
ing to the selection of the first 30 PCs for subsequent 
analysis (Fig. 7A). Utilizing the standard UMAP analysis 
in Seurat, 26 cell clusters were discerned and annotated 
into 11 distinct cell types B cells, chondrocytes, dendritic 
cells (DCs), endothelial cells, epithelial cells, monocytes, 
myelocytes, neutrophils, natural killer (NK) cells, T 
cells, tissue stem cells] according to marker gene expres-
sion (Fig. 7B-E). The percentage of endothelial cells and 

epithelial cells was much higher, yet the percentage of 
NK cells and myelocytes was much lower in PD samples 
compared to controls (Fig.S2 F-G). In addition to chon-
drocytes, other 10 cell types were identified as discrepant 
cell types between PD and control groups of GSE171213 
dataset (Table 1).

Pseudo-time series analysis revealed the dynamic 
expression of core genes in B cells and T cells
B cells and T cells served as key cell types as a result of 
their crucial parts in PD progress [34–36]. AADACL2 
was not detected in the GSE171213 dataset expression 
matrix. By observing the expression of core genes in 
various cell types, it was not difficult to find that MZB1 
and IGLL5 actively expressed in B cells, CKAP2 highly 

Fig. 6  Core genes actively expressed in most of the tissues. (A-E) Expression of CKAP2, IGLL5, MZB1, CXCL6 and AADACL2 in normal human tissues from 
GTEx, BioGPS, and SAGE. (F) Correlation analysis of key gene (CKAP2, IGLL5, MZB1, CXCL6 and AADACL2) and its enrichment TOP1 pathway score. (G) 
Correlation analysis of key gene (CKAP2) and its enrichment TOP1 pathway
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expressed in T cells, and CXCL6 mainly expressed in epi-
thelial cells and chondrocytes (Fig.  8A). In cell types of 
PD and controls, the expression of CKAP2 was lower in 
T cells in the PD group, while the expression of CXCL6 

was higher in B cells in the PD group (Fig. 8B). Second-
ary clustering of B cells and T cells resulted in 13 and 9 
molecular subtypes of T cells and B cells, respectively 
(Fig.  8C-D). Pseudo-time series analysis revealed that T 

Fig. 7  B cells and T cells holding crucial parts in PD progress were identified as key cell types. (A) Single cell data dimension reduction cluster principal 
component lithotripsy map. (B) UMAP dimension reduction. (C) Heat maps of specific high-expression genes in different cell types. (D) Bubble map of 
maker gene expression in 11 cell types. (E) Cell type annotation diagram, different colors distinguish different subgroups of cell types. This figure was 
obtained by analysis in the GSE171213 single-cell dataset
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and B cells underwent differentiation through distinct 
stages, with T cells showing 9 stages and B cells showing 
5 stages. Stage 1 were the beginning stage of their dif-
ferentiation, yet stage 1 and stage 4 were the end stage 
of T cell and B cell differentiation, respectively (Fig. 8E-
F). During the development of T cells, the expression of 
CKAP2 elevated significantly and then decreased, while 
the expression of IGLL5 and MZB1 increased suddenly 
from a stable state (Fig. 8G). During B cell differentiation, 
the expression of CKAP2 decreased and then levelled off, 
whereas the expression of IGLL5 and MZB1 increased 
and then decreased, but was higher than at the begin-
ning. The expression of CXCL6 was unaltered in T cells 
and in the progression of B cell development (Fig. 8G).

Table 1  Differences in abundance of each cell type in different 
groups of samples
Celltype P Value Statistic
Endothelial_cells 7.14E-260 1185.88147
NK_cell 4.17E-101 455.6903502
Epithelial_cells 7.43E-51 224.9750395
Tissue_stem_cells 3.95E-28 120.934683
Myelocyte 1.10E-25 109.7683071
Monocyte 5.18E-10 38.60708134
Neutrophils 6.27E-10 38.23418814
T_cells 2.67E-08 30.93291488
B_cell 1.02E-06 23.88797076
DC 0.001272592 10.38186276
Chondrocytes 0.164637021 1.931110326

Fig. 8  The mRNA expression level of CKAP2, MZB1, AADACL2, IGLL5, and CXCL6. (A) Distribution of core genes in different cell types. (B) Distribution of 
core genes in different groups of samples. (C) The results of different subclusters of T cells. (D) The clustering results of different subpopulations of B cells. 
(E-F) T cell and B cell pseudo time series analysis. (G-F) Expression trends of core genes in T cells and B cell at different developmental stages.This figure 
was obtained from pseudo-time series analysis in the GSE171213 dataset
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The mRNA expression level of CKAP2, MZB1, AADACL2, 
IGLL5, and CXCL6
The mRNA expression levels of CKAP2 and MZB1 were 
increased in the blood of PD patients compared to con-
trols (p < 0.05) (Fig.  9A-B). And the mRNA expression 
levels of AADACL2 was decreased in the PD patients 
compared to controls (p < 0.05) (Fig.  9C). The mRNA 
expression level of IGLL5 and CXCL6 were increased 
in PD patients, but there were no statistical significance 
(p > 0.05) (Fig. 9D-E).

Discussion
PD is characterized by the colonization of diverse micro-
organisms that form biofilms on tooth surfaces. This con-
dition adversely impacts the gums, alveolar bone, and 
periodontal ligament, ultimately resulting in tooth loss 
and systemic inflammation [37]. Notably, the progres-
sion of PD typically occurs with minimal external clini-
cal manifestations; consequently, treatment is frequently 
postponed until advanced stages of the disease [38]. Fur-
thermore, studies have demonstrated that PD is linked 
to a range of comorbidities, including diabetes melli-
tus [39], cardiovascular disorders [40], and rheumatoid 
arthritis [41]. Exosomes play a critical role in immune 
responses, viral pathogenicity, pregnancy-related pro-
cesses, cardiovascular conditions, central nervous system 
disorders, and cancer progression. Through exosomes, 

proteins, metabolites, and nucleic acids are conveyed 
to target cells—effectively modulating their biological 
responses. This exosome-mediated interaction can either 
promote or inhibit disease progression; furthermore, the 
response to treatment may be influenced by comprehen-
sive analyses of exosomal components. Therefore, inves-
tigating the roles of genes associated with exosomes in 
the progression of PD and their underlying mechanisms 
is imperative [42]. This study identified five core genes, 
CKAP2, IGLL5, MZB1, AADACL2, and CXCL6, through 
machine learning and expression validation. It further 
analyzed the molecular mechanisms, immune microen-
vironment, molecular regulatory networks, and related 
drugs of these core genes affecting PD. This provides new 
references for the prevention and treatment of PD.

MZB1 (Marginal Zone B- and B1-cell-specific pro-
tein) is a protein-coding gene recognized in the Human 
Gene Database of GeneCards® as being ‘associated with 
IgM heavy and light chains. It facilitates the assembly and 
secretion of IgM, thereby contributing to the functional 
diversification of peripheral B cells through integrin acti-
vation [43]. Additionally, it functions as a hormone-reg-
ulated adipocytokine/pro-inflammatory cytokine linked 
to chronic inflammation, influencing cellular expansion. 
The MZB1 gene is implicated in several pathways: it posi-
tively regulates immunoglobulin biosynthesis, promotes 
apoptotic processes, enhances cellular proliferation, and 

Fig. 9  The mRNA expression level of CKAP2, MZB1, AADACL2, IGLL5, and CXCL6. The expression validation results were obtained by RT-qPCR on 6 PD 
samples and 6 controls
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modulates B cell proliferation via integrin activation. Fur-
thermore, MZB1 belongs to the family of endoplasmic 
reticulum (ER) chaperone proteins that regulate both 
surface expression and secretion of IgM [44–46]. MZB1 
also seems to play a crucial role in the regulation of mito-
chondrial function, cell apoptosis, and calcium homeo-
stasis [47, 48].Through the comprehensive integration 
and validation of transcriptomic and proteomic data, 
alongside immunohistochemical analyses, we propose 
that MZB1 is a protein integral to B cell development and 
antibody production. Its upregulation in PD indicates 
potential immune dysregulation in this context, suggest-
ing that MZB1 may serve as a promising biomarker for 
PD [49].

Some researchers have indicated that CKAP2 may 
influence tumor development through the inflammation-
associated NF-κB signaling pathway [50]. Moreover, 
the NF-κB system is pivotal in orchestrating inflamma-
tory responses, adaptive immunity, cell differentiation 
and proliferation, as well as the survival of multicellular 
organisms [51]. Consequently, it is reasonable to hypoth-
esize that CKAP2 modulates the canonical inflamma-
tory NF-κB signaling pathway to enhance inflammation, 
which in turn affects the onset and progression of PD. 
however, further investigation is warranted.

Chemokines represent a distinct class of cytokines 
that facilitate the migration of specific immune cells to 
inflamed tissues, thereby playing an essential role in mod-
ulating the immune response. Dysregulation within the 
chemokine signaling pathway can have detrimental con-
sequences, contributing to the pathogenesis of inflam-
matory diseases and cancer. C-X-C motif chemokine 
ligand 5 (CXCL5) and C-X-C motif chemokine ligand 6 
(CXCL6) are notable members of this family, involved in 
various inflammatory conditions through their capacity 
to amplify immune regulatory mechanisms. Emerging 
evidence suggests that early inflammatory events—such 
as leukocyte proliferation and acute phase reactant pro-
duction—can lead to heightened chemokine synthesis. 
Furthermore, research indicates that chemokines may 
exert regulatory influences on PD and bone remodeling 
under both physiological and pathological states [52]. 
Nevertheless, the precise relationship between CXCL5 
and PD remains inadequately elucidated.

With the progression of PD severity, CXCL6-mediated 
neutrophil recruitment could synergistically enhance the 
recruitment pathway initiated by IL-8 [53]. Sixue Gao 
[54] conducted a comprehensive bioinformatics analysis 
revealing a significant association between CXCL5 and 
CXCL6 and the pathogenesis of PD. Subsequent immu-
nohistochemical studies further substantiated the criti-
cal role of CXCL5 in PD development, indicating that 
both CXCL5 and CXCL6 may serve as valuable diag-
nostic biomarkers for this condition. Research suggests 

their predictive potential; moreover, integrating CXCL5 
and CXCL6 with additional biomarkers may improve the 
accuracy of PD prediction.

This study data analysis has revealed significant reduc-
tions in the expression levels of specific genes, among 
which AADACL2 is a crucial protein associated with 
desmosomes, a vital cell-cell adhesion system. Esra et al. 
[55] conducted genomic studies on tissue samples from 
patients suffering from extensive aggressive PD (GAgP) 
and healthy controls to investigate molecular biomark-
ers relevant to PD. This was achieved through gene 
expression microarray analysis combined with network 
and pathway analyses to elucidate gene expression pat-
terns. The most prominently upregulated genes included 
MZB1, TNFRSF17, PNOC, FCRL5, LAX1, BMS1P20, 
Igll5, MMP7, SPAG4, and MEI1; conversely, the most sig-
nificantly downregulated genes were LOR, LAMB4, and 
AADACL2. Notably, the downregulation of AADACL2 
aligns with our findings. However, there remains a lack of 
research exploring the relationship between AADACL2 
and PD necessitating further investigation.

Immune cell infiltration represents a critical char-
acteristic that can elucidate the defense mechanisms 
associated with various diseases. The extent of immune 
infiltration serves as a valuable reference for investigating 
the degree of immune cell presence in specific pathologi-
cal conditions. The analysis of the correlation between 
core genes and immune cell populations in this study 
reveals that MZB1 exhibits the most pronounced positive 
correlation with activated B cells, whereas AADACL2 
demonstrates the most significant negative correlation 
with these same cells. B lymphocytes (B cells) are part of 
the humoral component of the adaptive immune system 
and are specifically responsible for secreting antibodies. 
B cells can also present antigens and secrete cytokines. 
In mammals, B cells mature in the bone marrow, and the 
B cell receptors (BCRs) mature on their cell membranes, 
allowing B cells to bind to specific antigens and initiate an 
antibody response [56, 57]. Low levels of memory B cells 
in healthy periodontal tissue in vivo seem to be important 
for preventing bone loss due to subclinical inflammation. 
On the other hand, they can also exacerbate alveolar bone 
loss in a RANKL receptor activator (RANKL)-dependent 
manner and affect the severity of periodontitis [58]. PD is 
characterized by the concurrent loss of bone tissue, bac-
terial invasion, and host defense mechanisms. Research 
has demonstrated that specific pathogens play a role in 
forming a beneficial probiotic biofilm that actively con-
tributes to the pathogenesis of PD [1]. This multifacto-
rial condition is influenced not only by microbial factors 
but also by environmental variables and host character-
istics, particularly immune defenses. Notably, leukocyte 
infiltration—especially B cell infiltration—is correlated 
with the severity of PD; indeed, distinct subpopulations 
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of infiltrating B cells are associated with inflammatory 
responses and bone resorption. During the inflamma-
tory phase, neutrophils release a variety of inflamma-
tory mediators, such as reactive oxygen species (ROS), to 
eliminate pathogens while potentially inducing damage 
to surrounding tissues [59]. In this phase, macrophages 
predominantly exhibit a pro-inflammatory phenotype 
(M1 type) and secrete pro-inflammatory factors like 
tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-
1β). The expression of genes associated with the inflam-
matory response is up-regulated.

During the regression phase, macrophages initiated 
polarization towards the anti-inflammatory phenotype 
known as M2 type. Consequently, M2 macrophages 
secreted crucial anti-inflammatory factors such as inter-
leukin-10 (IL-10) and transforming growth factor-β 
(TGF-β), thereby facilitating the reparative process of 
periodontal tissue [60, 61].

The above studies suggest that B cells play an impor-
tant role in the development of PD. And MZB1 and 
AADACL2 were significantly correlated. This further 
suggests that MZB1 and AADACL2 may also influence 
the development of PD to some extent.

A recent study revealed elevated expression levels of 
MZB1 in nasal polyp tissues (CRSwNP) compared to 
healthy controls. Single-cell transcriptomic analyses and 
epitope mapping indicate an aberrantly high expression 
of the MZB1 gene within a specific B cell population 
present in polyp tissues. Furthermore, ex vivo stimulation 
with MZB1 significantly upregulates IgE mRNA expres-
sion, suggesting that MZB1 is predominantly expressed 
in plasma cells and mature B cells located within the 
nasal mucosa. Therefore, we propose that MZB1 may 
facilitate IgE production by B cells in middle periodon-
tal tissues during periods of inflammation related to PD 
[55]. However, there remains a lack of literature indicat-
ing any negative correlation between AADACL2 and B 
cells. Thus further investigation into this relationship is 
warranted.

Exosomes derived from the host play a significant role 
in the pathogenesis of PD. Periodontal ligament fibro-
blasts (PDLFs) represent the primary cell population 
interacting with pathogenic microorganisms during the 
initial stages of PD. Upon stimulation by lipopolysac-
charide, PDLF-derived exosomes enhance the expres-
sion of IL-6 and TNF-α in osteocytes while concurrently 
reducing collagen type I, bone morphogenetic proteins, 
and alkaline phosphatase activity, leading to increased 
bone resorption and destruction within the alveolar 
bone [62]. Under conditions of circulating tensile stress, 
PDLF-derived exosomes can inhibit the NF-κB (nuclear 
factor kappa-B) signaling pathway to downregulate 
IL-1β expression in lipopolysaccharide-stimulated mac-
rophages, thereby impeding disease progression [63]. 

Periodontal ligament stem cells (PDLSCs), which are spe-
cialized mesenchymal stem cells capable of self-renewal 
when exposed to an inflammatory microenvironment, 
also contribute significantly to this process [64]. Exo-
somes secreted by PDLSCs upon lipopolysaccharide 
stimulation exhibit elevated levels of miR-155-5p and 
its downstream target Sirtuin-1; these molecules collec-
tively modulate Th17 cell populations downward while 
promoting regulatory T cell (Treg) numbers. This regu-
lation occurs through a network involving T17/Treg/
miR-155-5p/Sirtuin-1 that effectively suppresses cellular 
inflammation and delays disease progression [65]. Molec-
ular regulation results revealed that hsa-mir-185-5p, 
MYC, CNOT3, TP53, and TRIM28 potentially modu-
late the expression of MZB1 and CKAP2. Furthermore, 
it has been discovered that hsa-mir-185-5p and hsa-miR-
130a-3 are associated with periodontitis-related inflam-
mation [66]. Stimulation of inflammatory factors can 
alter the expression levels of these miRNAs, subsequently 
impacting the expression of core genes and promoting 
inflammation, immune cell recruitment, tissue repair, 
and ultimately influencing periodontitis development 
[67]. CXCL6 and CKAP2 suggest that doxorubicin is a 
potential treatment for oral mucositis by regulating intra-
cellular signal transduction molecules associated with 
cell proliferation, apoptosis or inflammation.

This study employed a comprehensive array of bio-
informatics methodologies to elucidate the diagnostic 
significance of ERGs in PD. Five promising therapeutic 
targets (CKAP2, IGLL5, MZB1, AADACL2, CXCL6) 
were identified for potential intervention in PD treat-
ment. Additionally, an examination of the molecular 
mechanisms, immune microenvironment, molecular 
regulatory networks, and associated pharmacological 
agents influencing the progression of PD was conducted 
for core genes, thereby offering novel insights into thera-
peutic strategies for this condition. However, the cur-
rent study still has limitations. Firstly, in terms of sample 
selection, it is challenging to determine whether the iden-
tified exosome-related genes represent characteristics of 
the inflammatory activity phase or the regression phase 
due to a lack of distinction between different inflamma-
tory states. Secondly, there may be heterogeneity among 
the samples. The current experiments are limited to PCR, 
making it difficult for us to ascertain if these exosome-
related genes can serve as effective intervention targets 
and thus limiting the generalizability and practical appli-
cation value of the study results. In light of this, future 
research should focus on several aspects for improve-
ment. On one hand, a more refined sample grouping 
method should be employed to independently analyze 
samples from both the inflammatory phase and regres-
sion phase in order to determine specific representa-
tion of exosome-related genes during different periods. 
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On the other hand, further experimental verification is 
necessary for identified exosome-related genes includ-
ing functional experiments (such as gene knockout and 
overexpression experiments), cell model experiments, 
and animal model experiments in order to establish 
more accurate gene function and mechanisms of action. 
Additionally, deeper bioinformatics analysis is needed by 
integrating state-of-the-art algorithms and databases to 
reevaluate gene relationships and their association with 
diseases so as to provide a more valuable foundation for 
disease diagnosis, treatment, and prevention.
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