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ABSTRACT

3D cell cultures are becoming the new standard for cell-based in vitro research, due to
their higher transferrability toward in vivo biology. The lack of established techniques
for the non-destructive quantification of relevant variables, however, constitutes a
major barrier to the adoption of these technologies, as it increases the resources needed
for the experimentation and reduces its accuracy. In this review, we aim at addressing
this limitation by providing an overview of different non-destructive approaches for
the evaluation of biological features commonly quantified in a number of studies and
applications. In this regard, we will cover cell viability, gene expression, population
distribution, cell morphology and interactions between the cells and the environment.
This analysis is expected to promote the use of the showcased technologies, together
with the further development of these and other monitoring methods for 3D cell
cultures. Overall, an extensive technology shift is required, in order for monolayer
cultures to be superseded, but the potential benefit derived from an increased accuracy
of in vitro studies, justifies the effort and the investment.

Subjects Bioengineering, Cell Biology
Keywords 3D cell culture, Non-destructive technology, in-vitro quantitative analysis

INTRODUCTION

Culturing cells in vitro is a cornerstone of biomedical research, which has been instrumental
for furthering our scientific knowledge and has enabled the more ethical development of
safe and effective drugs. Indeed, the possibility of maintaining cells in the laboratory
has provided researchers with a platform for the study of physiological and pathological
phenomena which was effective and inexpensive, and afforded them a higher level of
control with respect to entire organisms.

In recent years, however, relevant differences between in vitro and in vivo behavior have
emerged (Breslin & ODriscoll, 2013; Waring et al., 2015). These are generally attributed to
the over simplification of 2D cell monolayers, which are unable to capture relevant features
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Table 1 Micro and nano patterning effect on cell cultures.

Application References

Response to multi-cue environments Van Der Putten et al. (2021), Chang ¢ Taniguchi (2021)
Adhesion, proliferation, migration and Han et al. (2021), Kang et al. (2021), Wang et al. (2021b)
Differentiation enhancement Blin (2021), Nagayama & Hanzawa (2022)

Large-scale cell alignment Yu et al. (2021)

of in vivo biology and consequently results in poor translation of laboratory data in clinical
studies (Honek, 2017; Liston & Davis, 2017; Menshykau, 2017; Jo et al., 2018).

The main limitation of 2D cell cultures is that the microenvironment where the cells
are maintained completely disregards the contribution of the physical cues associated with
the physiological extracellular matrix (ECM) on cell behaviour. This limits cell-to-cell
signalling and impacts over their functions. For example Edmondson et al. (2014) showed
that 2D cell culture can affect the expression of cell surface receptors which, in turn, could
alter the response to drugs targeting these receptors (Attwood et al., 2020; Abbas et al.,
2021). Furthermore, a comparison of 2D vs 3D cell cultures led to the identification of
important differences in proliferation and treatment response (Li et al., 2021b) .

A partial solution to these issues involves substituting the flat polystyrene plates with
micro or nano-patterned surfaces. While different techniques and materials can be used
to produce the grooved pattern, and specific motifs tend to be better suited for different
applications, this strategy has been shown to be effective in (i) recapitulating cell response
to multi-cue environments, (ii) enhancing adhesion, proliferation, migration and stem-cell
differentiation, and (iii) enable large scale cell alignment (Table 1).

3D cell culture models represent a more comprehensive solution. These setups integrate
additional features of biological tissues (e.g., tridimensional cell disposition, interaction
among cells and with the surrogate extracellular matrix, non-uniform nutrients availability)
and as such have been shown to reduce the gap between in vitro and in vivo behavior (Duval
et al., 2017; Kapatczyriska et al., 2018; Nunes et al., 2019; Costard et al., 2021; Belfiore et al.,
2021).

The widespread use of these setups and their integration in the drug development
pipeline are however hampered by the techniques used for their analysis. Indeed, methods
that require the fixation or disgregation of the culture can be generally considered a standard
de facto. This inability to monitor 3D cell cultures over time affects the accuracy of the
results, as small differences in initial cell number or structure size cannot be accounted for.
Additionally, a larger number of constructs will be needed, hence increasing the resources
necessary to conduct the experiments.

In an effort to overcome this adoption barrier, in this review paper, we showcase
non-destructive techniques for the analysis and characterization of relevant features
in 3D cell cultures. Each section analyzes a specific kind of assay and a comparative
analysis of non-destructive and destructive techniques will be presented, together with its
perspective evolution in the near future. Additionally, an introductory paragraph, aimed
at describing the main 3D cell culture approaches currently available, and a concluding
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Figure 1 Summary of 3D cell culture models. In (A) the scaffold-based (SB) setups are presented, while
(B) and (C) illustrate scaffold free (SF) and hybrid methods, respectively.
Full-size Gal DOI: 10.7717/peerj.13338/fig-1

section summarizing the status of non-destructive analysis of 3D cell cultures have been
included.

3D CELL CULTURE MODELS

While a comprehensive analysis of 3D cell culture methods is beyond the scope this review,
in this section we provide an overview of the most commonly available methods, to lay
the foundation for the understanding of this work. For a more comprehensive description
of 3D cell culture technologies, the reader is referred to other recently published review
papers such as (Lv et al., 2017; Badekila, Kini ¢ Jaiswal, 2021; Duval et al., 2017).

3D cell cultures are classically divided between scaffold-based (SB), that is relying on an
external support material, and scaffold-free (SF), where cells self-assemble in clusters or
spheroids (Fig. 1). Within these groups, multiple practical protocols are available.

For SB systems, the scaffolds can either be produced independently from cell seeding
(Liverani et al., 2019; Dinescu et al., 2019) or aggregated with cells already included
(Dollinger et al., 2017; Pasini et al., 2021). The former generally grants more flexibility
in scaffold production, allowing for a wider range of materials and technologies to
be used. Non-vital techniques, such as freeze-drying, two- photons polymerization,
and electrospinning enable the fine-tuning of the scaffold’s mechanical properties and
superficial features (Remuzzi et al., 20205 Dinescu et al., 2019; Wang et al., 2021a), which
results in structures that are stable over time and well suited to withstand mechanical
stimulation (Lovecchio et al., 2019).
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Including cells in the scaffold’s liquid phase tends to be associated with their more
uniform distribution throughout the structure, as they can be dispersed within the solution,
rather than having to migrate from the surface. This feature limits the possible scaffold
materials to polymers that become solid through temperature changes or gentle chemical
processes that do not compromise cell viability. The resulting structure, also called hydrogel,
is often less structurally robust and more prone to macroscopic changes in size due to cell
activity (James-Bhasin, Siegel & Nazhat, 2018).

A fundamental advancement in scaffold production is represented by bioplotting, which
relies on fused deposition modeling (FDM) technology to print 3D structures with high
precision and fidelity (Buenzli et al., 2020). In most cases, cells can be directly dispersed
within the ink, thus combining high accuracy in scaffold production techniques with
uniform cell distribution (Ahlfeld et al., 2020).

SF set-ups, on the other hand, rely on cells’ self-aggregation/organization properties to
produce approximately spherical 3D cultures. These are generally smaller than the ones
obtained with SB approaches, with starting populations of about 10 k cells (Shoval et al.,
2017; Gamerith et al., 2017; Ahmad et al., 2017; Skeberdyté et al., 2018) as opposed to 100
k cells (Pasini et al., 2021; Picone et al., 2020; Rivero et al., 2020), but tend to be simple
and, in some cases, well suited for high throughput analyses (Benien ¢ Swami, 2014). The
reduced size of SF cultures has however been shown to be an important drawback of these
systems, as the number of cells that they can support is very low, when compared with those
that compose human tissues (De Pieri, Rochev ¢ Zeugolis, 2021). Furthermore, the lack of
independent support structure results in densely packed cells which can be associated with
the presence of hypoxic cores and macromolecular crowding (De Pieri, Rochev & Zeugolis,
2021), that further reduce the accuracy of these systems.

The ease of production of SF 3D cell cultures, which relies on various methods to prevent
or disrupt cell adhesion to the culturing surface, however, makes them an attractive setup.
Low attachment plates are widely used in this regard (Takagi et al., 2007), as the hydrophilic
polymer coating on their surface prevents cells from attaching and thus enables spheroid
formation. This approach is simple, and generally leads to spheroid formation within
a few hours, but provides little control on the size of each culture and thus tends to
be associated with higher variability. To address this limitation, culture surfaces micro-
patterned with microscopic valleys of defined shape and size can be used. In this case,
cells are generally allowed to adhere to a micro-patterned thermosensitive substrate, to
ensure an approximately uniform cell density within each valley. The temperature of the
structure is then changed, to induce a shape change in the substrate which, in turn, leads
to cell detachment and spheroid formation. An example of this approach is reported in
Kim et al. (2018a), where decreasing the temperature to 4 °C led to a significant increase
in micropattern area which resulted in spheroid formation within minutes. Hanging drops
is another widely used method in which cells are cultured within a suspended drop of
medium and aggregate, due to gravity, to its bottom (Wang et al., 2017; Cho et al., 2020;
Zibaei et al., 2021). This technique was developed at the beginning of the twentieth century
to visualize small live organisms and study their motility (Jain, Jain ¢ Jain, 2020) and then
adapted to the production of spheroids.
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The dichotomy between SB and SF methods, however, is not perfect and numerous
approaches combine elements typical of both methods. Indeed, polymeric mixtures such
as Matrigel can be used when producing spheroids to allow for the aggregation of more
cells and increase repeatability (Badea et al., 2019). At the same time, integrating external
support structures and cells’ self-aggregating properties results in organoids, 3D cultures
integrating multiple cell types that aim at replicating the structure and functionality
of organised tissues (Lu et al., 2019; Asai et al., 2017). Microspheres are another notable
example, as they serve the double purpose of cell culture support and precision delivery
system (Dong et al., 2021). Many different techniques are available for their production
(Zhang et al., 2021), and some of them allow for the inclusion of living cells which have
been shown to be able to survive, proliferate and differentiate within these setups (Zhang
etal., 2018).

This wealth of options for 3D cultures effectively allows to choose the best set-up for
each application, as different models are best suited to replicate specific aspects of the
corresponding in vivo system (Kapatczyriska et al., 2018). At the same time, the lack of a
single established substitute for 2D cultures has contributed to delaying the introduction
of 3D cultures in the drug development pipeline (Kelm et al., 2019).

This work, and the experimental techniques it showcases, are expected to contribute
to the translational value of 3D cell cultures and their general applicability in biomedical
research.

CELL VIABILITY AND PROLIFERATION

The evaluation of cell viability is key to a number of in vitro studies. Indeed, it is used to
test the feasibility of new cell culture methods (Yu et al., 2020; Paez et al., 2020), assess the
efficacy of potential therapeutic treatments (Marrella et al., 2021; Yang et al., 2020), and
generally monitor the health and status of a population of cells (Vitale et al., 2020; Rivero
et al., 2020).

The most common approaches for the evaluation of cell viability are metabolic
membrane structural competence and DNA-content based assays which repeated over
time allow for the quantification of proliferation (Table 2).

Bromodeoxyuridine (BrdU) assay is another established way of quantifying cell
proliferation, through the visualisation of newly synthetised DNA in proliferating cells
(Table 2).

Metabolic methods are a class of assays in which an optical (absorbance or fluorescence)
signal, proportional to the number of living cells, is generated through a chemical
modification of a soluble reagent added to the culture. These methods were initially
developed for 2D cultures and, depending on the reagent’s composition, can preserve cell
viability. One of the main drawbacks of translating this approach to 3D cell cultures is that
it requires the reagent to diffuse through the whole structure. This condition might not be
verified, especially for larger SB cultures, thus the results might be partial or inaccurate. For
this reason, live-dead staining tends to be preferred. This method consists in staining a thin
slice of the culture with both calcein-AM and ethidium homodimer-1. These compounds
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Table 2 Cell viability and proliferation assays.

Assay References

Metabolic Skeberdyte et al. (2020), Rivero et al. (2020),
Hercog et al. (2020)
Fontoura et al. (2020), Huang, Yu & Tang
(2020)

Membrane structural competence Vitale et al. (2020), Paez et al. (2020), Khan et
al. (2020)
Hilderbrand et al. (2020), Ergene et al. (2020),
Buenzli et al. (2020)
Ahlfeld et al. (2020), Marrella et al. (2019),
Yang et al. (2018)

Pepelanova et al. (2018), Raphael et al. (2017),
Ahlfeld et al. (2017)

DNA content Zargarzadeh et al. (2022), Eswaramoorthy et al.
(2021), Santos, Custédio ¢ Mano (2022)
BrdU assay Racané et al. (2021), Alkildani, Jung & Barbeck

(2021), Sevimli et al. (2022)

produce strong fluorescent signals, at different wavelengths, when reacting with alive or
dead cells respectively and can thus be used to quantify their density.

This technique has the advantage of maintaining cell spatial distribution, and thus
allows to study how different positions within the structure affect cell behaviour. On the
other hand, it does not preserve cell viability and requires the sectioning of the culture,
thus making this method poorly suited for the long term monitoring or high throughput
experiments.

Another class of non-viable methods for viability quantification relies on the evaluation
of DNA content using fluorescent probes. These assays are well established, accurate, and
can be used for 3D cell cultures with minimal adjustment with respect to 2D monolayers,
but they require the DNA to be extracted, thus resulting in the impossibility of monitoring
the same culture over time. Additionally, this is an indirect measure, that determines
the number of cells as the ratio of total amount of DNA in the sample and the assumed
quantity of DNA present within each cell. As the latter can vary widely between different cells
(Gillooly, Hein ¢» Damiani, 2015) and with the different phases of the cell cycle (Cooper,
2000), this technique could result in non-negligible errors, especially when comparing
samples where cells have different sizes or where the length of the cell cycle might be
affected.

BrdU assay directly quantifies proliferation through a thymidine analog that, when
added to the culture, is incorporated in the DNA of proliferating cells. The quantification
of the BrdU, however, is based on immunostaining, which requires cells to be fixed and
permeabilized, in order for antibodies to effectively bind their target. While DNA probes
capable of penetrating live cells have been developed (Veetil et al., 2020; Bucevicius, Gilat
& Lukinavicius, 2020), their use is still fairly limited and generally confined within 2D
monolayers.
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Figure 2 Non-destructive methods for viability quantification. (A) Working principle of the LDH as-
say. (B) Representative image of a 3D cell culture obtained with light-sheet microscopy. Image reproduced
from Alladin et al. (2020). (C) Example of 2D conductivity map reconstructed from EIT measurements.
Image extracted from Wu et al. (2018).
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The vital approaches for the quantification of cell viability and proliferation can be
divided in three main classes: (i) chemical, (ii) optical and (iii) electrical.

Chemical assays (Fig. 2A) rely on the quantification of Lactate Dehydrogenase (LDH) in
the culture’s supernatant (Lam et al., 2020; Vormann et al., 2018; Liaudanskaya et al., 2019;
Liaudanskaya et al., 2020). This enzyme, present in all cells, is released in the media upon
membrane damage and is thus an effective indicator of cell death (Kumar, Nagarajan ¢»
Uchil, 2018). For this reason, LDH quantification is particularly suited for the monitoring
of cytotoxicity when testing new pharmacological treatments. Additionally, being a
measurement conducted on the culture’s media, it eliminates any possible interference of
the acquisition on cellular function and easily adapts to high throughput screenings and long
term monitoring. On the flip side, it is an indirect method and it requires a non-negligible
amount of cell death. As such, its scope of application is rather narrow and mainly focused
on drug testing. The estimate of LDH concentration, furthermore, is an average of the
whole culture that cannot capture behaviourally different microenvironments within the
culture.

Optical methods that preserve the culture’s structural integrity address this limitation
(Li et al., 2016; Pan, Onda & Hirano, 2019; Christoffersson et al., 2019; Alladin et al., 2020).
(Fig. 2B). They rely on advanced microscopy technologies (e.g., laser-based confocal,
light-sheet) and fluorescent probes that preserve cell viability (Li et al., 2021¢; Cheng et al.,
2017) to produce a stack of images corresponding to different depths within the culture.
This approach is characterized by high spatial resolution (~100-500 nm Fouquet et al.,
2015) and by the possibility of monitoring more than one variable at the same time. As
an example, Liaudanskaya et al. (2020) combined the study of neural network destruction
due to impact injury with the quantification of changes in collagen fibrillary structure,
while Aguet et al. (2016) analysed how membrane remodeling changes throughout the cell
cycle. The versatility and potential of these methods is, however, associated with lengthy
and complex experimental procedures and with the need of acquiring highly specific,
expensive instrumentation. In addition, the constraints on the maximum axial scan range
of the microscope (i.e., the maximum depth that can be effectively imaged) make these
techniques better suited for smaller SF cultures.
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Electrical measurements represent an effective compromise. Indeed, while their
resolution is not as high as that of the optical methods, they pose fewer limitations
on culture size, and the instruments required for the measurement are not so expensive.
This is partly due to the fact that impedance spectroscopy has been used for a number of
years to monitor viability and growth in cell monolayers (Pérez et al., 2018; Voiculescu, Li
¢ Nordin, 2020). The working principle behind this methods relies on the measurement
of changes over time in electrical current, upon stimulation of the culture with the same
sinusoidal voltage signal (Benson, Cramer ¢ Galla, 2013; Elbrecht, Long ¢ Hickman, 2016;
Srinivasan et al., 2015). Cells are generally grown on conductive electrodes and their well
defined electrical model, that combines resistant and capacitive elements, is used to infer
the status of the culture. As such, the major issue when translating this approach in 3D is
the lack of direct contact between the electrode and the cells. This is commonly addressed
by including the whole culture (e.g., the scaffold or other extracellular components) in
the measurement with the assumption of negligible changes in the electrical properties
of the support structure (Pan et al., 2019; De Leon, Pupovac ¢ McArthur, 20205 Pan ef al.,
2020). An alternative solution has been proposed by Inal et al. (2017), where a SB culture
featuring a conductive polymer scaffold is presented.

Beside impedance spectroscopy, which provides a population-wise quantification of cell
viability, electrical impedance tomography (EIT) has recently been proposed (Wu et al.,
2018; Wu et al., 2019; Yang et al., 2019). This technique has been extensively used for the
non-invasive visualization of internal structures of the human body (Shiraz et al., 2019;
Murphy et al., 2017; Samoré et al., 2017), as it provides a map of the conductivity of one or
more sections of the object of interest (Fig. 2C). While this resolution is not yet available for
3D cell cultures, where a uniform change in electrical properties is generally recovered, EIT
holds great potential for the non-destructive monitoring of viability because changes in the
setup (e.g., increasing the number of electrodes) and/or a more advanced reconstruction
algorithm are expected to resolve this issue.

Several non-destructive approaches are already available for the monitoring of cell
viability and proliferation. However, no method has emerged as overall better than the
others and a case by case evaluation taking into account culture type and study aim is
generally recommended.

GENE EXPRESSION

Gene expression profiles are an established approach for the quantitative evaluation of cell
behaviour and how it changes upon external stimulation (Picone et al., 2020; Ciardulli et
al., 2020) or when environmental conditions are modified (Gamerith et al., 2017; Brady et
al., 2020; Lewis, Green ¢~ Shah, 2018).

As for the evaluation of cell viability, the most common approaches for the quantification
of specific proteins or RNA sequences is associated with the destruction of the
culture. Indeed a prerequisite of techniques such as micro-arrays, RT-PCR or RNA-
sequencing is the lysis of the cells, while flow cytometry requires culture disgregation
and immunohistochemistry/immunofluorescence, its fixation and slicing (Table 3). High
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Table 3 Gene expression assays.

Assay References
Microarray Gamerith et al. (2017), Brady et al. (2020)
RT-PCR Henriksson, Gatenholm & Higg (2017), Zhou et al.

(2017), Lewis, Green ¢ Shah (2018)

He et al. (2020), Henrionnet et al. (2020), Brady et al.
(2020)

Devall et al. (2020), Schneider et al. (2020), Ciardulli et
al. (2020)

RNA sequencing Devall et al. (2020)

Flow cytometry Zhou et al. (2017)

Immunohistochemistry/ Zhou et al. (2017), Henrionnet et al. (2020), Brady et
immunofluorescence al. (2020)

Ciardulli et al. (2020), Schneider et al. (2020)

throughput and transcriptome-wide technologies, are also widely used, but have similar
requirements (Waylen et al., 2020).

The scarcity of RNA and proteins is often responsible for the need to have direct access
to the cells or their content. Fluorescent probes able to enter the cells and bind to specific
RNA sequences have been shown to provide sufficiently strong signals which can also be
measured in entire organisms (Okamoto, 2019; Braselmann et al., 2018; Suseela et al., 2018;
He et al., 2020). This feature suggests the potential transferability of this approach to 3D
cell cultures even though specificity, accuracy and uptake efficiency can still be challenging
and depend on the specific target.

An alternative strategy, that allows for the quantification of specific proteins, relies
on genome editing techniques to couple the production of a fluorescent reporter to
the expression level of a gene of interest (Koch et al., 2018; Di Blasi et al., 2021; Ceroni ¢
Ellis, 2018). This approach is commonly employed in the synthetic biology field (Cortesi
et al., 2017; Bandiera et al., 2016; Xu ¢ Qi, 2019) and is characterized by high precision
and accuracy. Modifying the genome of eukaryote/human cells is however an additional
procedural step, which might not be feasible, or result in side interactions and unexpected
behavioural changes.

Both vital fluorescent probes and gene editing allow for the possibility of monitoring gene
expression changes over time and, preserving the distribution of cells within the culture, they
allow to study how different microenvironments within the culture affect cell behaviour.
They are however affected by the same limitations discussed in the previous section
for optical methods. Indeed, advanced microscopy set-ups (e.g., confocal microscope) are
needed to properly visualize the internal culture’s regions, and limitations on the maximum
axial scan range might preclude the use of this technique for larger SB systems.

In addition, the number of genes that can be monitored at the same time is fairly limited,
both due to the maximum number of fluorophores that can be effectively distinguished
(about five but depends on instrument and application; Kleeman et al., 2018) and the need
to modify each gene independently when a gene editing procedure is required.
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As such, additional improvements are needed to open to the non-destructive large-scale
evaluation of gene expression. A possible strategy to increase the throughput of these
assays with technologies already available, relies on the combination of different readout
methods. This approach has already been proposed for the visualization of complex
structures within 3D plant tissues (Ursache et al., 2018) (Fig. 3), but it could be adapted,
using vital fluorescence- and colorimetric-based methods, to the study of gene expression
in 3D cell cultures. While potentially useful to increase the number of markers that can be
monitored at one time, this approach has limited scalability and is substantially affected by
the same limitations detailed above. As such transcriptome/proteome-wide vital analyses
require significant advances with respect to current technology.

DISPOSITION AND MORPHOLOGY

A key feature of 3D cell cultures, that sets them apart from 2D approaches is the presence
of gradients within the structure (e.g., nutrients, oxygen, waste products, drug levels) which
effectively create multiple microenvironments capable of influencing cell behaviour. Hence
the study of cell disposition within the culture, and how it changes over time acquires great
relevance.

Optical methods are naturally suited for this analysis as they provide direct visualization
of the culture. Common approaches involve staining of different cellular components (e.g.,
nucleus, cytoplasm, specific proteins) and their imaging through different microscopy
techniques (Table 4). These methods were initially developed for tissue slices and as such
require the sectioning of the culture. They are, however, fairly straightforward and a wealth
of resources are available for their optimization and execution. More advanced techniques,
like light-sheet and two-photon microscopy have also been used to study cell disposition
within the culture (Table 4). These methods afford more comprehensive results, as the
whole structure can be taken into account, but are associated with higher costs and the
need for specific instrumentation.

As described in the cell viability and proliferation section, viable fluorophores are
available and can thus be used to monitor cell status and position within the culture. As
an example, Wang et al. (2018) were able to evaluate cell migration over a period of 3 h.
The use of this approach is however limited by the need for a microscope environmental
chamber, to maintain standard culturing conditions, and by the detrimental effect that
long term exposure to the excitation light can have on the fluorophore and the cells.

Computational modeling has been shown to be an alternative approach for the study
of cell distribution within the culture (Table 4). Indeed, multiple set-ups are available for
the simulation of cell migration and the study of how different variables (e.g., cell—cell,
cell-matrix interactions, phenotype) influence it. Among these tools, the computational
scaffold simulator (SALSA) that we recently developed (Cortesi et al., 2020b; Cortesi et al.,
2021a) is particularly relevant, as it is programmable and hence adaptable to different
setups.

While computational models are not measurements techniques, validated mathematical
models have been shown to be able to provide relevant insights on complex biological
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Table 4 Cell disposition assays.

Assay References

Staining Griffith & Swartz (2006), Trappmann et al. (2017), Liverani
etal. (2019)

Shichi et al. (2019), Zoetemelk et al. (2019), Bassi et al.
(2020)

Lamparelli et al. (2021), Pasini et al. (2021)

Light-sheet/two-photon microscopy Accardo et al. (2018), Cong et al. (2019), Pan, Onda &
Hirano (2019)
Christoffersson et al. (2019)

Computational models Celia-Terrassa et al. (2018), Kuzmic et al. (2019)
Cortesi et al. (2020a), Kim et al. (2020)

phenomena (Cortesi et al., 2019; Jin et al., 2017b; Imle et al., 2019), effectively optimize
experimental conditions (Hyndman et al., 2020; Tajsoleiman et al., 2018; Cortesi et al.,
2020b) and predict experimental results (Tripathi et al., 2020; Trac et al., 2019; Celia-
Terrassa et al., 2018). As such, a more extensive integration of these techniques within the
experimental studies is warranted and expected to improve the analysis of 3D cell cultures.

Cell morphology is another key aspect of culturing cells in 3D, as different environments
have been shown to be associated with alternative cell shapes (Randles er al., 2020; Zhang et
al., 20205 Miller, Hu ¢ Barker, 2020) which, in turn, result in radical changes in behaviour
(Leggett et al., 2021; Venturini et al., 2020; Esfahani & Kndoll, 2020).

Imaging techniques are again widely used, as they provide qualitative information
on cell shape and dimension while allowing for the quantification of indices like
eccentricity or aspect ratio (Pasini et al., 2021; Cortesi et al., 2018; Costa-Almeida et al.,
2019). Furthermore, high resolution techniques such as transmission electron microscopy,
allow for the visualization of subcellular features and of how they change when cells are
cultured in 3D (Remuzzi et al., 2020).

Raman imaging has also been shown to be able to retrieve cell shape both in isolated
cells (Jin et al., 2017a) and from within a 3D culture (Baldock et al., 2019) (Fig. 4). This
technique relies on the acquisition of Raman spectra at different points within the sample,
according to a specific grid pattern. Integrating this information allows to effectively map
the whole culture with a micrometric resolution. The need for specific instrumentation
reduces the applicability of this method that however remains very promising, as it has
been shown to be proposed also as a non-destructive technique (Kallepitis et al., 2017).

Computational modeling has also been shown to be useful to study how cells move and
change shape (Ruan ¢ Murphy, 2019; Peng, Vermolen & Weihs, 2021; Van Liedekerke et al.,
20205 Ziebert ¢» Aranson, 2016). These tools provide an accessible alternative to investigate
cell morphology that could be fundamental for the study of this aspect in the short term.

Comprehensively, the measurement of cell disposition and morphology with non-
destructive techniques is possible but still affected by many limitations. While technology
developments are expected to bridge this gap, computational models offer a low cost
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Figure 4 3D Raman map of a cell adhered to a scaffold. Image extracted from Baldock et al. (2019).
Full-size & DOI: 10.7717/peerj.13338/fig-4

versatile alternative which could be used both to replicate experimental behaviours and to
evaluate the effect of changing parameters and environmental conditions.

MATRIX INTERACTION

Another aspect tightly connected with cells disposition within the culture and their
migration abilities is their interaction between the cells and among the cells and the
extracellular matrix (Yamada ¢ Sixt, 2019). This is a key feature of in vivo biology,
connected with changes in gene expression (7Tajik et al., 2016) and behaviour (Liverani
et al., 2019), whose study in the lab has been enabled by 3D cell cultures. As an example,
in vivo-like cell alignment, induced by the surrogate ECM features, was shown to result
in improved tissue regeneration and repair (Lu et al., 2021; Li et al., 2021a). While a
comprehensive analysis of cell-cell and cell-environment interactions is beyond the scope
of this review, the interested reader is referred to Delle Cave et al. (2021) and Bechtel et al.
(2021) for more information.

Multiple techniques are available for the analysis of the interaction between the cells
and their environment. Advanced microscopy setups (transmission/scanning electron
microscopes) grant a resolution high enough to resolve specific features of the material and
how they change due to cell activity (Ahmad et al., 2017; Hermenean et al., 2017; Dinescu
et al., 2019; Lee et al., 2018). These assays are generally coupled with the analysis of the
expression of key genetic markers (Ahmad et al., 2017; Jang et al., 2017; Ma et al., 2017,
Dinescu et al., 2019; Lee et al., 2018), the evaluation of the activity of specific enzymes
(e.g., Alkaline phosphatase) (Ahmad et al., 2017; Hermenean et al., 2017) or the staining of
relevant compounds (Dinescu et al., 2019; Lee et al., 2018).
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As detailed in the previous sections, these methods are largely connected with cell
destructive processing. While the alternative approaches already described maintain
their general validity, other methods specific for the evaluation of changes in matrix
properties have been proposed for the study of artificial bone substitutes (Cortesi et al.,
2021b; Lovecchio et al., 2022; Arunngam et al., 2018). They are based on either EIT or
spectroscopic techniques and aim at quantifying different calcium-based components that
are typical of cell-induced mineralization.

Raman spectroscopy was shown in Arunngam et al. (2018) to be able to measure
hydroxyapatite in microspheres of gelatin hydrogel containing pre-osteoblasts. This data,
compared with the corresponding cell density, allowed for the analysis of intra-culture
variability.

Our works on the topic (Cortesi et al., 2021b; Lovecchio et al., 2022) rely on a different
experimental model that grants better reproducibility and a higher level of control. Indeed,
the amount of minerals produced by the cells is highly dependent on the type of cells
and the experimental protocol employed. To overcome this issue, we used alginate-based
scaffolds that can be polymerised in presence of defined amounts of calcium carbonate
to produce phantoms with highly reproducible mineral content. This difference could be
quantified with either a custom-made spectrometer (Lovecchio et al., 2022) or an EIT system
(Cortesi et al., 2021b) (Fig. 5). The former is a miniaturized system that yields scaffold-wide
measurements and could be potentially integrated within a bioreactor to enable the
automatic monitoring of mineralization. The latter, on the other hand, is procedurally
more complex and time consuming, but it retrieves a bidimensional conductivity map of
a section of the scaffold, which might potentially enable sub-scaffold resolution.

Measuring mineralization in artificial bone substitutes is at the forefront of the study of
the interaction between the cells and their environment, due to the prominent changes in
matrix composition and properties caused by the cells, but this is not the only situation in
which cells have been shown to remodel their environment (Liverani et al., 2017). As such
further analyses, and other technologies, are warranted to enable the monitoring of matrix
properties in different setups and applications.
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CONCLUSION

3D cell cultures hold great potential for the improvement of in vitro experimentation.
Indeed they enable the study of the interaction among the cells and between the cells and
the environment in a controlled yet realistic setting. As such, these methods could be used
to study complex biological phenomena and further our understanding of cell behaviours
normally observed only in vivo, like 3D cell migration or matrix remodelling.

The establishment of these advanced cell culture methods as a standard could also
contribute to the reduction and replacement of animal studies, as the improved accuracy of
in vitro results could decrease the need for in vivo experimentation without compromising
the validity of the analysis (Ingber, 2020). This would result in both a reduction of the drug
development costs, as laboratory studies require less resources than animal ones, and also
in an improvement of the efficacy of the whole drug development pipeline. Indeed, most of
the therapeutic treatments that enter the testing process don’t get approved due to lack of
effectiveness (Takebe, Imai ¢ Ono, 2018; Hay et al., 2014) and thus more accurate in vitro
models, could enable the early identification of ultimately unsuccessful compounds.

Beside de novo drug development, 3D cell culture models could also aid the definition of
new therapeutic indications for drugs already approved. This approach, often called drug
repurposing, is more cost effective, as the safety of the compound has already been proven,
and its large scale production is already available. However, it is affected by the same issues
discussed previously (i.e., high withdrawal rate due to ineffectiveness). As such, the use of
3D cell culture models in the initial phases of screening could be fundamental to further
improve the effectiveness of this approach.

Another key advantage of 3D in vitro cultures is the possibility of creating patient-specific
models that, yielding information on each subject’s response to different treatments/stimuli,
represents an important resource for personalized medicine. This novel treatment paradigm
promises increased response and better prognosis, by taking subject-specific features into
account when defining the therapeutic protocol (Mathur ¢ Sutton, 2017; Goetz & Schork,
2018).

Accurate and realistic experimental models are, however, only part of the equation.
Indeed the techniques used to quantify relevant features are also key, as they determine the
usability of each system and its scope of application. The methods presented in this review
are an important step in this regard, showing how multiple key features can be evaluated
non-destructively. However, not all the proposed techniques have the same relevance,
as some allow to measure more than one variable, potentially at the same time (Fig. 6).
Optical and spectroscopic techniques are the most convenient, spanning three variables
each, while chemical measurements quantifies only one. In Fig. 6 computational modelling
is also associate to the evaluation of a single variable. This is not entirely true, as specialized
models can be used to simulate all the quantities considered within this work (Cortesi et
al., 2020b; Cortesi et al., 2021a; Cortesi et al., 2020a; Kim et al., 2018b; Sun ¢ Hu, 2018; M
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Cortesi & E Giorda, 2022, unpublished data), but this analysis hasn’t been included, as
measurement techniques were preferred whenever available.

Comprehensively, the proposed methods open to the non-destructive monitoring of
3D cell cultures dynamic behaviour and thus offer the unprecedented opportunity of
characterizing complex biological phenomena in controlled yet realistic conditions.
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