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Abstract: Owing to the emergence and improvement of high-throughput technology and the associ-
ated reduction in costs, next-generation sequencing (NGS) technology has made large-scale sampling
and sequencing possible. With the large volume of data produced, the processing and downstream
analysis of data are important for ensuring meaningful results and interpretation. Problems in data
analysis may be encountered if researchers have little experience in using programming languages,
especially if they are clinicians and beginners in the field. A strategy for solving this problem involves
ensuring easy access to commercial software and tools. Here, we observed the current status of free
web-based tools for microbiome analysis that can help users analyze and handle microbiome data
effortlessly. We limited our search to freely available web-based tools and identified MicrobiomeAna-
lyst, Mian, gcMeta, VAMPS, and Microbiome Toolbox. We also highlighted the various analyses that
each web tool offers, how users can analyze their data using each web tool, and noted some of their
limitations. From the abovementioned list, gcMeta, VAMPS, and Microbiome Toolbox had several
issues that made the analysis more difficult. Over time, as more data are generated and accessed,
more users will analyze microbiome data. Thus, the availability of free and easily accessible web
tools can enable the easy use and analysis of microbiome data, especially for those users with less
experience in using command-line interfaces.

Keywords: 16S rRNA; gut microbiome; next-generation sequencing; microbiome analysis;
web-based tool

1. Introduction

During the past decade, much attention has been focused on archaea, bacteria, and
fungi that form the microbiome owing to the effect they have on health and the environ-
ment [1]. A microbiome denotes a set of microorganisms residing in a specific biological
niche and includes their genomic content and metabolic products [2,3]. Microbiomes are
either host-associated (microorganisms living in organisms, such as humans, other animals,
and plants), or free-living (microbial groups found in water and soil) [3]. There has been a
sudden shift in our understanding of the crucial role of microbes; from the environment
to the human body, it is now widely accepted that microbial communities are the critical
components of their ecosystems, aside from the classical view of these entities as mainly
infectious pathogens; therefore, the disruption of these communities can be detrimental [4].

“Next-generation sequencing” (NGS) technologies were introduced nearly two decades
ago; they transformed biomedical research, resulting in an increase in the sequencing data
output [5,6]. With the emergence and dramatic improvement in high-throughput tech-
nology and the extreme reduction in the associated costs, NGS technology has made
large-scale sampling and sequencing possible, even for individual laboratories. Among the
high-throughput sequences obtained is the 16S rRNA gene sequences, which explore the mi-
crobial diversity that is relevant to multiple disciplines, ranging from biology and medicine
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to ecology and environmental sciences. This is because it has been used as a biomarker
for archaea and bacteria owing to its conserved regions and relatively short length, which
allows for easy sequencing [7]. Multi-omic technology has also promoted collaborative
efforts toward a grand vision across the international research community, as demonstrated
by the Earth Microbiome Project (EMP) and Human Microbiome Project (HMP) [8–10]. The
information collected on the human microbiome in recent years is dominated by the data
generated through large-scale ventures to characterize the human microbiome, namely the
European Metagenomics of the Human Intestinal Tract (MetaHIT) and the NIH-funded Hu-
man Microbiome Project (HMP) [11,12]. The data generated through these projects are high
in volume and have helped to introduce various interpretations based on a broad range of
sources. There has been an increased interest in the human gut microbiome. Until recently,
the available literature was insufficient regarding the human gut microbiome to support
the development of new strategies for the diagnosis and treatment of diseases. Multiple
diseases can arise as a result of the perturbation of the gut microbiome (e.g., irritable bowel
syndrome, chronic idiopathic constipation, colorectal cancer, and obesity) [13]. According
to a study by Cani [14], approximately 4000 papers associated with the gut microbiota were
published in 2017, and more than 12,900 publications have been dedicated to the study of
the gut microbiota between 2013 and 2017.

With this large volume of data in mind, the processing and downstream analysis of
the data are important to achieve meaningful results and interpretations. The quality of
NGS data is also important for various downstream analyses, such as gene expression
studies, genome sequence assembly, and microbiome analysis [15,16]. Prior to analysis,
the sequencing data must first be checked and processed. The usual protocol is to first
assess the quality and depth of the reads [17,18]. Then, most pipelines start by performing
quality control on the datasets to increase the accuracy of subsequent processing [16].
Some examples of these preprocessing techniques are the removal of duplicate reads and
the deletion of low-quality reads. At present, different tools are available for sequence
trimming [19,20]. The next step includes the use of various pipelines to process the NGS
data for further downstream analysis, such as mothur [21], Quantitative Insights Into
Microbial Ecology (QIIME) [22], and its updated version QIIME2 [23], which have made
it easier for scientists to deal with the high volume of data produced from sequencing.
Analysis of NGS data is the last step before obtaining final results [24].

Perhaps the most important step of NGS data processing is data analysis and visualiza-
tion. Novel methods that account for this final step are required for the proper investigation
of the microbiome data. Most of the newly developed methods can be employed using
Python (e.g., QIIME2; [23]), and R (e.g., the phyloseq package; [25]. Big data analysis
has steadily increased due to the availability of NGS data and an increased interest in
analyzing microbiome data. An issue may arise if researchers have little experience in using
programming languages such as R and python. Although both are incredibly dominant
and flexible, learning and getting accustomed to these programming languages can be
challenging for beginners (i.e., both clinicians and researchers who only deal in wet-lab
experiments). We provide a general workflow for processing microbiome data in Figure 1.

In recent years, the emergence and development of web-based tools have enabled
researchers investigating the microbiome to easily perform comprehensive meta-analyses,
statistical analyses, and the interactive visualization of microbiome data without any need
for previous coding experience [26]. Here, we reviewed and tried to compare a variety of
the available open-access web tools and select those that are practical and easy to use when
analyzing the human gut microbiome datasets.
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Figure 1. Graphical representation of the overall general workflow for analyzing 16S rRNA gene 
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Visualization and Analysis of Microbial Population Structure (VAMPS, 
http://vamps2.mbl.edu, accessed on 10 September 2022), which was developed in 2014, is 
a free web-based service that offers a range of visualizations and analyses for the interac-
tive and iterative exploration of microbial communities through a comparison of marker 
gene data. This method uses PHP (v5.2.11) and JavaScript to create the visual front-end 
and uses Apache (v2.2.25) as its webserver. Additionally, MySQL databases are used for 
the storage of sequences, taxonomy, and user data. 

VAMPS users can start their analysis by uploading the NGS output files, usually us-
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system can assign the taxonomy for the sequences using oligo-typing, reference-based 
clustering, species level phylotype (SLP) with average linkage, or UCLUST after filtering 
the low-quality reads. Otherwise, the users may opt to perform their own quality filtering 
and taxonomic assignments and upload their data as input using VAMPS analytical tools. 

This service can be used with a public account; however, those users who upload 
their own data are required to have a personal account. Visualization datasets include the 
most common alpha and beta diversity metrics, and they also contain heatmaps, dendro-
grams, principal coordinate analysis, bar and pie charts, taxonomy, and operational taxo-
nomic unit (OTU) tables; OTU is the unit used in numerical taxonomy including their 
unique underlying sequences. These sequences are links to sequence distributions under-
lying the microbial community, which can be used to cross-check the taxonomy or query 
the external databases. Another unique feature of VAMPS is its flexibility in taxonomy 
selection, as users can combine multiple taxonomic levels using taxa-based abundance 
thresholds for analysis [27]. 

2.2. MicrobiomeAnalyst 
MicrobiomeAnalyst (https://www.microbiomeanalyst.ca/, accessed on 10 September 
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Figure 1. Graphical representation of the overall general workflow for analyzing 16S rRNA gene
microbiome data.

2. Freely Accessible Web-Based Tools for Microbiome Analysis
2.1. Visualization and Analysis of Microbial Population Structures (VAMPS)

Visualization and Analysis of Microbial Population Structure (VAMPS, http://vamps2
.mbl.edu, accessed on 10 September 2022), which was developed in 2014, is a free web-
based service that offers a range of visualizations and analyses for the interactive and
iterative exploration of microbial communities through a comparison of marker gene data.
This method uses PHP (v5.2.11) and JavaScript to create the visual front-end and uses
Apache (v2.2.25) as its webserver. Additionally, MySQL databases are used for the storage
of sequences, taxonomy, and user data.

VAMPS users can start their analysis by uploading the NGS output files, usually using
the marker genes (16S rRNA genes for bacterial and archaeal sequences). The VAMPS
system can assign the taxonomy for the sequences using oligo-typing, reference-based
clustering, species level phylotype (SLP) with average linkage, or UCLUST after filtering
the low-quality reads. Otherwise, the users may opt to perform their own quality filtering
and taxonomic assignments and upload their data as input using VAMPS analytical tools.

This service can be used with a public account; however, those users who upload their
own data are required to have a personal account. Visualization datasets include the most
common alpha and beta diversity metrics, and they also contain heatmaps, dendrograms,
principal coordinate analysis, bar and pie charts, taxonomy, and operational taxonomic
unit (OTU) tables; OTU is the unit used in numerical taxonomy including their unique
underlying sequences. These sequences are links to sequence distributions underlying the
microbial community, which can be used to cross-check the taxonomy or query the external
databases. Another unique feature of VAMPS is its flexibility in taxonomy selection, as
users can combine multiple taxonomic levels using taxa-based abundance thresholds for
analysis [27].

2.2. MicrobiomeAnalyst

MicrobiomeAnalyst (https://www.microbiomeanalyst.ca/, accessed on 10 September
2022) is a web-based program that allows the clinical and scientists who run wet-lab analysis
to easily perform exploratory analysis on abundance profiles and taxonomic signatures
based on microbiome studies. This program is based on Java, R, and JavaScript. The R
phyloseq package [24], in particular, is used for statistical analysis and visualization and
for improving computation efficiencies. The system is organized on a Google Cloud server
with 32 GB RAM and 8 CPUs (2.6 GHz each).

MicrobiomeAnalyst’s main attributes include the following: (1) It supports an array
of common and advanced methods for taxonomic diversity analysis, functional profiling,
visualization, and significance testing; (2) it also supports various data filtering and transfor-
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mation methods, along with well-established, recent algorithms for differential abundance
analysis; (3) it features a fully featured metabolic network visualization framework for
the intuitive exploration of results from functional profiling; (4) it supports meta-analysis
compatible with public datasets for context reference and pattern discovery via 3D visual
analytics; (5) it supports enrichment analysis based on more than 300 taxa sets which are
manually curated and collected from the literature and public databases. To our knowledge,
MicrobiomeAnalyst is still being updated, with the latest being on 08/29/2022. It has been
developed by the XiaLab at McGill University (Montreal, Quebec, Canada).

Four modules are involved in MicrobiomeAnalyst. First is the Marker Data Profiling
(MDP) module, which is designed for the 16S rRNA marker gene survey data. The second
is the Shotgun Data Profiling (SDP) module, which includes the functions for analyzing the
metagenomic or metatranscriptomic data. The third is the Taxon Set Enrichment Analysis
(TSEA) module, which is designed to identify the biologically or ecologically meaningful
patterns in a given list of important taxa. The last one is the Projection with Public Data
(PPD) module that allows users to visually compare their data with MicrobiomeAnalyst’s
own collection of datasets—in a manner similar to that available with VAMPS—for identi-
fying patterns and new biological insights. MicrobiomeAnalyst uses the outputs from both
mothur and QIIME, making use of the OTU table file and the more recently used Biological
Observation Matrix (BIOM) file, which stores information on OTUs, taxa, or genes. Chong
et al. [26] provide a detailed protocol for the use of the MicrobiomeAnalyst for microbiome
analysis. After uploading the required files, the users can choose to filter and normalize
their data. Similar to VAMPS, MicrobiomeAnalyst also includes the most common alpha
and beta diversity metrics and taxonomic diversity profiling using heatmaps, dendro-
grams, principal coordinate analysis, and bar and pie charts. In addition, it also allows
for the prediction of metabolic potentials and profiling of the functional diversity using
the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt) [28] and Tax4fun [29]. Moreover, a comparative analysis may be performed
using MicrobiomeAnalyst, such as differential abundance analysis, which allows users
to perform statistical comparisons to identify the significantly different features in OTUs
using edgeR [30] and DESeq2 [31]. Biomarker identification and classification may also be
achieved using two well-known methods, namely the linear discriminant analysis of size
effect (LEfSe), which was developed to help identify robust and biologically significant
features for biomarker discovery, and random forest, a non-parametric machine learning
algorithm that has performed well in many recent microbiome data analyses and classifi-
cations [2,26]. In addition, MicrobiomeAnalyst also provides example datasets using the
data from Human Moving Picture, which uses a biom file with a tree [32], Mammalian Gut,
which uses the plain text file [33], Mothur output file using Human stool [34], biom file
with an aging mouse gut dataset [35], and a plain text file with a tree file using the Pediatric
IBD dataset from the Integrative Human Microbiome Project Consortium (iHMP).

2.3. Mian

Mian (https://miandata.org/, accessed on 11 September 2022) is an interactive web-
based data discovery platform containing a rich set of visualization and machine learning
tools to help users examine the microbial community in the context of categorical and
numerical sample metadata. The front end of Mian is implemented using HTML5, CSS,
and JavaScript/jQuery. Visualizations are rendered using the D3.js and Chart.js libraries.
Meanwhile, the backend is implemented using Python 3.6.7, which includes the use of the
Flask web framework. Tools such as the beta diversity include R scripts, which have an R
3.6.1 runtime and are integrated with Python using the rpy2 library. The SciPy library is
mainly used for statistical testing and NumPy for matrix manipulations. Machine learning
tools use either scikit-learn or TensorFlow. The Mian web server is deployed on an AWS
Elastic Computing (EC2) m5a.large instance, which has 8GB of RAM and AMD EPYC 7000
series processors clocked at 2.5 GHz, running Ubuntu 16.04. The Amazon Elastic Block
Store (EBS) storage is employed for durability and scalability. However, the Mian web

https://miandata.org/
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server can be successfully deployed in any environment that supports Python and R and
has been tested running in both the OSX and SUSE Linux operation systems. It is built
at the University of British Columbia and is supported by the Providence Health Care
Research Institute and Centre for Heart Lung Innovation at St. Paul’s Hospital, with the
latest update from 2021.

Similar to MicrobiomeAnalyst, Mian makes use of the common input file formats (BIOM,
CSV/TSV-formatted OTU/ASV tables) generated from Mothur, QIIME, and DADA2. When
uploading the data, the users can also opt to normalize using rarefaction, the total and
cumulative sum, and upper quartile scaling. In Mian’s case, after uploading the files and
finishing the preprocessing, the users can visualize their alpha and beta diversity metrics
data using stacked bars, heatmaps, box, donut and scatter plots, PCoA, and NMDS.

Possibly the most unique feature of Mian is its feature selection tools and machine
learning algorithms. Unlike MicrobiomeAnalyst, which uses LEfSe for feature selection,
Mian uses recursive feature elimination, Fisher’s exact test, and Boruta, which selects the
OTUs/ASVs or taxonomic groups that are applied on a random forest classifier and are
ideal for selecting all of the groups that are relevant for discriminating between populations,
in contrast to finding the non-redundant ones. Moreover, Mian offers the use of machine
learning tools to assess the discriminative performance of the taxonomic groups selected
through a feature selection tool. Mian uses linear regressor, random forest classifier, and
deep learning, which trains a multi-layer perception network on the taxonomic data to
predict a numerical or categorical variable. The network can be customized with a different
number of fully connected and drop-out layers and a different number of units within each
layer [1].

2.4. Global Catalogue of Metagenomics (gcMeta)

Global Catalogue of Metagenomics (gcMeta) is a part of the Chinese Academy of
Sciences Initiative of Microbiome (CAS-MI) and has two main features: first design and im-
plementation as a standardized and state-of-the-art database management tool for support,
long-term preservation, and integrating microbiome projects worldwide, and second, to
provide web tools and workflows for massive data analysis (https://gcMeta.wdcm.org/,
accessed on 11 September 2022). The system is based on centralized computing and storage
resources. Its database management system is separated into metadata, sequence raw
data, and user information management. The updated version of gcMeta is constructed
on the basis of PostgreSQL for both the metadata and user information and makes use of
MongoDB for sequencing the raw data index information. The system is operated on Linux
servers, and the web interface was developed through Python.

The platform provides management, analysis, and publication services for microbiome-
related data. The analysis tools in gcMeta are installed based on a Docker container which
allows users to perform analyses. The users can upload the raw data and metadata to
gcMeta’s system through a web submission interface. After checking the quality, the data
can be browsed on the system under the user’s account. Although gcMeta provides five
main frameworks, we focused only on the use of 16S rRNA analysis. Using the Docker
container, the 16S rRNA sequence can be processed using the widely known QIIME2 to
produce a feature table and taxonomy. They also make use of QIIME2 for diversity analysis
and PICRUSt and biomarker discovery using LEfSe [10].

2.5. Microbiome Toolbox

Microbiome Toolbox allows for the exploration and understanding of the identification
of key microbiome features to depict an appropriate microbiome. This platform also focuses
on analyses of the microbiome, especially for the human gut. Besides visualization and
exploration, microbiome trajectories are also implemented using machine learning algo-
rithms, which can help determine the key features for microbiome analysis. The interactive
dashboard can be found at https://microbiome-toolbox.herokuapp.com/, accessed 10
September 2022.

https://gcMeta.wdcm.org/
https://microbiome-toolbox.herokuapp.com/
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The different types of microbiome data, such as the compositional and functional data
tables generated from different technologies such as 16S rRNA or shotgun metagenomics,
can be used as inputs on the platform. From our list of web tools, perhaps Microbiome
Toolbox is the only one dedicated to analyzing the microbiome data that change with
time or the data tables that essentially follow the same longitudinal structure of features
changing over time, and the toolbox is oriented more toward the analysis of the Early
Life Microbiome in infants [36]. Similar to MicrobiomeAnalyst, Microbiome Toolbox also
provides an already modified example dataset from both the mouse [37] and the gut
microbiome from breastfed infants [38].

3. Comparison of the Web Tools Using Gut Microbiome Dataset

In recent years, interest in studying the gut microbiome has increased and incredibly
large volumes of data are being produced and analyzed. NGS sequencing has revolution-
ized the field of microbiology. It has provided researchers with a cost-effective technology
to sequence millions of base pairs and replaces the conventional characterization of bacteria
or pathogens through morphology or cultivation-based approaches. It can also be used
to interrogate full genomes or exomes to discover novel mutations and disease-causing
genes. In the context of microbiome research, it provides a comparative insight into the
phylogenetic structure of microbial communities and their potential interactions with the
host [39]. In this review, we specifically used those datasets corresponding to the gut
microbiome to compare different free web tools for analyzing 16S rRNA gene sequences.
We looked at common and basic analyses, such as the alpha and beta diversities, in addition
to comparing the unique features that the web tools offer with respect to their usefulness
for carrying out gut microbiome analysis. We used two datasets: (1) a clinical dataset,
wherein the gut microbiome was analyzed to check the efficacy of fecal microbial transplant
(FMT) for people infected with Clostridioides difficile [40], and (2) a dataset that uses an
ecological analysis approach, wherein the lifestyle factors affecting the gut microbiome of
Korean navy trainees [41] are included, for testing these web tools. During the writing of
this review, we encountered challenges in using gcMeta, VAMPS, and Microbiome Toolbox
due to file format issues and unresponsive web pages and thus proceeded to only use
MicrobiomeAnalyst and Mian. As regards gcMeta, an unresponsive page was encountered
when trying to create an account or log in, which ultimately resulted in the failure of
data upload and analysis. Meanwhile, in terms of VAMPS, the fastq files first need to be
formatted in accordance with their algorithm. However, this poses a problem to those users
who have a large number of datasets in which time is needed to correct the format of the
abovementioned file. The same issue is seen when using Microbiome Toolbox. We believe
that the file format issues will result in limited use for the new users who are not familiar
with editing the output from the preprocessed data. First, the datasets were processed
using QIIME2, and then, the original methods for producing the biome file were used. The
files were then inputted into the abovementioned web tools using the default parameters
to check the taxa (class level) and alpha and beta diversities (Bray–Curtis dissimilarity);
Figures 2 and 3 show the output figures for MicrobiomeAnalyst and Mian, respectively.
We also proceeded to use MicrobiomeAnalyst and Mian’s “unique tools”. Although the
analysis performed in this review is outside the scope of the original studies, we still
explored the different analysis types that the two web tools offer, and the corresponding
results are summarized in Table 1.
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Table 1. Comparison of web-based microbiome tools.

Data Upload and Function VAMPS MicrobiomeAnalyst Mian gcMeta Microbiome
Toolbox

File format Edited
FASTA BIOM BIOM Edited OTU table

Database SILVA,
Greengenes SILVA, Greengenes NA NA

Common
analysis

Rarefaction curve X O O X

Bar/stack analysis O O O X

Pie chart O O X X

Core microbiome
analysis X O X X

Phylogenetic tree O O X X

α-Diversity

Shannon index O O O X

Simpson index O O O X

Richness index X O X X

Chao1 index O O X X

ACE index O X X X

Evenness index X X X X

β-Diversity

Bray-Custis dissimilarity O O O O

Jaccard distance X O X X

Unweighted UniFrac X O O X

Weighted UniFrac X O O X

NMDS X O O X

CCA analysis X O X X

RDA analysis X O X X

Correlation and
Clustering

analysis

Heatmap O O O O

Correlation plot O O O O

DEseq2 X O X X

Network analysis X O X X

Functional gene
prediction

PICRUSt X O X X

Tax4Fun X O X X

Comparative
analysis

LEfSe X O O X

Random Forest X O O X

O signifies the analysis method is available in the web tool; X signifies the analysis method is not available in the
web tool; NA signifies that databases are not provided for phylogenetic analysis; Tools that were currently not
accessible were left blank.

A comparison of Mian and MicrobiomeAnalyst revealed that both are easy to access,
and both have rapid visualization and computation time; both possess options to change
the parameters for visualization, although Mian provides fewer options than Microbiome-
Analyst. However, MicrobiomeAnalyst offers more downstream analysis features than
Mian, such as the ability to integrate the predicted functional genes using PICRUSt and
Tax4Fun (for bacteria and fungi, respectively). Several studies have used PICRUSt to
identify the functional genes present in the gut microbiome [42–44]. Bahr et al. [42] used
PICRUSt to observe the changes in the gut microbiota of children with atypical antipsy-
chotic risperidone (RSP), while Yun et al. [43] looked at genes in a Korean cohort in the
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context of how the genes differed based on the body mass index in normal, overweight,
and obese individuals. The PICRUSt module of MicrobiomeAnalyst provides users with
more options for analyzing their data in detail without having to process the same in a
command line interface.

Both Mian and MicrobiomeAnalyst offer the LEfSe analysis, which is mostly used
to identify the specific taxa for biomarkers [45,46]. Studies ranging from clinical use,
such as examining microbial dysbiosis, which revealed significant differences in bacterial
abundances between the healthy controls and colorectal adenoma or intramucosal colorectal
carcinoma patients [47], to finding the differences in the gut microbiota between native
Tibetan and Han populations through the abundant taxa present [48].

In recent years, there has been an increased use of machine learning to generate
models using microbiome data. Machine learning techniques offer a means to analyze
high-dimensional data and may be used to reveal the relationships between microbial
taxa and environmental features [49–52]. Mian and MicrobiomeAnalyst provide users
with the machine learning algorithm, i.e., random forests, which are arguably the most
effective machine learning model for analyzing microbiome data, owing to its high accuracy
with respect to classification. It has been verified with a variety of 16S rRNA datasets
for the identification of body habitat, host, and disease states [49,50]. Aryal et al. [53]
used a random forest for the diagnostic screening of cardiovascular disease using the gut
microbiome, while Ai et al. [54] used this model for identifying the gut microbes associated
with colorectal cancer. Mian also offers deep learning via a deep neural network employing
classification or regression, which is extremely useful because of its flexibility and ability to
resolve non-linear cases [55].

As there were issues with the file format and data curation on VAMPS and Microbiome
Toolbox, we opted to use the data that were available within their servers to show what
these web tools offer. In the case of VAMPS—using its search engine with the human–gut
environment as the source—we found and used the human data HMP_200 (V4–V5 region),
which were uploaded to the system between 2010 and 2011. In Figure 4, we show how the
taxa and alpha and beta diversities are visualized on VAMPS. In a similar fashion, we also
used the sample data corresponding to the human gut microbiome that are readily available
in the Microbiome Toolbox’s system (Figure 5), where machine learning algorithms are
used to predict the microbiome maturation index through time, in addition to identifying
outliers and selecting the key bacteria that are important within the given time trajectory.
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Limitations of Web-Based Tools for Microbiome Analysis

In data analysis using web-based tools, two factors are recognized as important.
First is the accessibility of web-based tools. Therefore, we checked the accessibilities of
all the web-based tools in this study using a microbiome dataset and found that Mian
and MicrobiomeAnalyst, and VAMPS were easily accessible. Conversely, gcMeta and
Microbiome Toolbox showed a non-responsive page when logging in, and slow response
when uploading the data, respectively. Moreover, an easily input file format for the web-
based tool is also important. The methods of the input file format change for Mian and
MicrobiomeAnalyst are demonstrated clearly. However, the information regarding an
input file format for Microbiome Toolbox and VAMPS is not described in detail. Although
those with the knowledge of manipulating input files can access both freely, those with
little experience might encounter difficulties when using VAMPS and Microbiome Toolbox.

Generally, statistical methods are chosen based on the distribution (normal or not)
and variance (equal or not) of the dataset. In the microbiome data, statistical analysis can
emphasize a meaningful microbiome result [56]. We acknowledge that the web-based
tools mentioned have different purposes with respect to analyzing the microbiome data.
Usually, it is better for the users if different statistical methods are already included in
the web tool. We found that statistical analyses are easy to perform using Mian and
MicrobiomeAnalyst. Meanwhile, VAMPS was better at visualization rather than statistical
analysis in comparison with Microbiome Toolbox and was more efficient at microbiome
feature prediction over time.

Taken together, the analysis tools that are included in VAMPS, Microbiome Toolbox,
Mian, and MicrobiomeAnalyst offer users a variety of options for easily managing their
microbiome data for further downstream analysis.

4. Conclusions

In this study, we explored different freely available web-based tools for microbiome
analysis using the gut microbiome datasets. Though there is software for analyzing the
microbiome data such as CLC Genomics Workbench (QIAGEN, Hilden, Germany), we
specifically focused on those tools that are freely accessible. Multiple tools are available for
microbiome analysis, such as the R-based Genepiper [57], MANTA [58], and Microbiome
Modeling Toolbox [59]—to name a few—but we only focused on web-based tools. In our
search, we found VAMPS, MicrobiomeAnalyst, Mian, gcMeta, and Microbiome Toolbox.
The abovementioned web tools are all freely accessible; however, there are log-in problems
with gcMeta. Similarly, VAMPS and Microbiome Toolbox require an extension for process-
ing the data on their site. Thus, we were left with MicrobiomeAnalyst and Mian, and we
compared the analysis tools they offer by evaluating the gut microbiome datasets corre-
sponding to clinical and ecological approaches using the basic analysis employed for the
microbiome data (alpha and beta diversities). In the case of MicrobiomeAnalyst and Mian,
we also tried to search for other analysis tools that can be used for further downstream
analysis. The ability of both web tools to perform different statistical analyses greatly helps
in discerning meaningful differences in user data. Moreover, the availability of PICRUSt in
MicrobiomeAnalyst provides users with the freedom to analyze the functional genes in
their dataset. While the two web-based tools also include LEfSe and random forest models
for the selection of biomarkers, Mian provides users with access to deep learning, i.e.,
using the deep neural network to build a sophisticated model, which can also be used for
classification. Collectively, we believe that free web-based tools will allow users, especially
clinicians and those new in the field, to make an easier and more practical and refined
analysis of the human gut microbiome data.
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