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Abstract: Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably de-
velop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75
(LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including
PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75
contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 inte-
grase and transcription factors, to active chromatin to promote viral integration and transcription of
cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome
to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-
interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to
docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated
LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and
PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed
their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interact-
ing partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of
docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresis-
tance and could lead to novel therapeutic strategies targeting this protein complex for the treatment
of docetaxel-resistant tumors.

Keywords: autoantibodies; cell survival; chemoresistance; docetaxel; LEDGF/p75; integrase binding
domain; IBD interactome; prostate cancer

1. Introduction

Prostate cancer (PCa) is the most frequently diagnosed cancer among American men,
with approximately 248,530 new cases and 34,130 deaths estimated in 2021 in the United
States [1]. The current standard of care for metastatic castration prostate cancer (mCRPC),
the advanced stage of the disease, is anti-androgen therapy using androgen receptor
signaling inhibitors (ARSI) in combination with chemotherapy with the taxane drugs
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docetaxel (DTX) and cabazitaxel (CBZ) [2]. Despite recent advances in the treatment of
mCRPC, PCa still remains incurable due to the activation of multiple mechanisms that
promote tumor cell resistance to ARSI and taxane chemotherapy [3,4]. A full understanding
of these mechanisms is urgently needed to develop novel and more effective treatments for
therapy-resistant PCa.

Emerging evidence indicates that tumors exposed to therapeutic drugs for prolonged
periods undergo a reprogramming that results in the expansion of cancer stem cell (CSC)
populations that upregulate survival pathways and exhibit therapy resistance [5]. Previ-
ously, we reported that the transition of chemosensitive mCRPC cells to taxane resistance
is characterized by the activation of a transcriptomic program associated with increased
epithelial-to-mesenchymal transition (EMT) and stemness, and upregulation of cancer cell
survival proteins, such as lens epithelium-derived growth factor of 75 kD (LEDGF/p75)
and c-MYC [6]. In addition, our group and others demonstrated that LEDGF/p75, also
known as the dense fine speckled autoantigen of 70 kD (DFS70) and PC4 and SFRS1-
interacting protein (PSIP1), is upregulated in PCa and other cancers and contributes to
tumor aggressive properties, including chemoresistance [7–15]. LEDGF/p75 functions as a
transcription coactivator within RNA polymerase II (RNAPII) complexes that promotes
cellular survival under environmental stressors, including serum starvation, radiation, and
cytotoxic drugs [16,17]. Our group reported previously that its ectopic overexpression in
PCa cells confers protection to DTX by attenuating drug-induced lysosomal cell death [8].
The LEDGF/p75 pro-survival functions are likely mediated by interactions with transcrip-
tion factors to upregulate the expression of stress response, antioxidant, and cancer-related
genes [11,12,15–19].

LEDGF/p75 is also the target of a predominantly IgG autoantibody response in subsets
of patients with PCa, diverse autoimmune and inflammatory conditions, and apparently
healthy individuals, including children and young women [16,20]. This cancer-related
protein is broadly relevant to human disease given its documented roles in HIV-AIDS,
autoimmunity, and eye diseases [16,17,20–22].

LEDGF/p75 is a member of the hepatoma-derived growth factor (HDGF) family,
which includes HDGF, HRP2 (also known as HDGF2 or HDGFRP2), HRP3, and HDGFL1,
and has been implicated in cancer cell proliferation and survival [23,24]. These proteins
share homology at their N-terminal region, which contains a methyl-lysine reading PWWP
domain that in LEDGF/p75 is critical for recognition of methylated H3K36me2/3 marks in
active chromatin; regulation of its transcriptional and pro-survival activity; and interactions
with other proteins, including methyl-CpG-binding protein-2 (MeCP2), splicing factors,
and DNA repair proteins [25–30].

The C-terminus of LEDGF/p75, implicated in its pro-survival function [26,31,32], is
mainly comprised of the integrase binding domain (IBD), which serves as the binding
site for the HIV-1 integrase (IN) and is essential for LEDGF/p75-mediated tethering of
the IN-viral complex to transcriptionally active chromatin sites in order to facilitate viral
integration [21,22]. The IBD overlaps almost perfectly (residues 347–429) with the au-
toepitope recognized by human anti-LEDGF/p75 autoantibodies and serves as a hub for
protein–protein interactions that, in concert with the PWWP domain, facilitate the tethering
of transcription factors to RNAPII complexes at transcriptionally active sites [16,20,33,34].
Interestingly, HRP2 also has a C-terminal IBD, which enables this protein to maintain
residual HIV-1 integration in LEDGF/p75-depleted cells [35,36]. Because of their extensive
structural and functional overlap, LEDGF/p75 and HRP2 are considered paralogs that pro-
mote leukemic survival and relieve nucleosome-induced barrier to RNAPII transcription
in differentiated cells [37,38].

In addition to HIV-IN, other known LEDGF/p75 IBD-interacting partners include the
mixed leukemia lineage histone lysine methyltransferase protein MLL and its interacting
partner menin, the c-MYC interacting partner and cell division associated protein JPO2
(R1/CDCA7L/RAM2), the RNAPII-associated and RNA-processing regulator IWS1, the
DNA replication and apoptosis signaling associated kinase ASK1, the pogo transposable
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element and chromatin remodeling protein PogZ, and the RNAPII transcription mediator
Med-1 [15,19,33,34]. These LEDGF/p75 interacting partners have a disordered IBD-binding
motif (IBM) whose phosphorylation regulates their affinity for the IBD [39]. These IBD
protein–protein interactions have been carefully characterized using primarily ectopically
overexpressed recombinant proteins and in vitro assays [19,27,34,37,39]. However, studies
focusing on the endogenous LEDGF/p75 IBD interactome in a specific cancer context, and
particularly in chemoresistance, are scarce.

While various members of the LEDGF/p75 IBD interactome, i.e., MLL, menin, and
c-MYC, have been implicated in PCa [40,41], the contribution of this interactome to DTX
resistance has not been previously investigated. The aim of this study was to evaluate
the hypothesis that the LEDGF/p75 IBD interactome is endogenously upregulated in
DTX-resistant cells and contributes to chemoresistance, and that targeting this interactome
attenuates the survival and aggressive properties of DTX-resistant cells. In this study,
we provide evidence for the novel observations that this interactome is endogenously
upregulated in DTX-resistant PCa cells; that LEDGF/p75 interacts as part of an endogenous
nuclear complex with JPO2, c-MYC, menin, MLL, ASK, PogZ, IWS1, HRP2, and H3K36me2
in DTX-resistant PCa cells; and that depletion of selected members of this interactome
decreases the survival, clonogenicity, and tumorsphere formation capacity of DTX-resistant
PCa cells. These results identify the LEDGF/p75 IBD interactome as a novel and potentially
attractive target for treating DTX-resistant PCa.

2. Materials and Methods
2.1. Cell Lines

PCa cell lines PC3, DU145, and 22Rv1 were from the American Type Culture Collec-
tion (Manassas, VA, USA, Cat# ATCC-CRL-1435, ATCC-HTB-81, and ATCC-CRL-2505,
respectively) and cultured in RPMI-1640 medium (Corning, Corning, NY, USA Cat# 10-
040-CM), supplemented with 10% (v/v) fetal bovine serum (FBS, Genesee Scientific, San
Diego, CA, USA, Cat# 25-514), penicillin/streptomycin (Corning, Cat# 30-002-CI), and
normocin 1G (Invivogen, San Diego, CA, USA, Cat# NC9390718). Cells were grown under
5% CO2 at 37 ◦C. DTX-resistant (DR) PC3 and DU145 cell lines were developed as indicated
previously [6,9] and maintained in the presence of 10 nM DTX (LC Laboratories, Wobun,
MA, USA, Cat# D-1000). Short tandem repeat (STR) service provided by ATCC (Cat#
ATCC-135-XV) was used to authenticate the cell lines. Mycoplasma testing was conducted
at least twice a year using the Lonza MycoAlertTM Mycoplasma Detection Kit (Lonza,
Basel, Switzerland, Cat# LT07-218).

2.2. Antibodies

Rabbit antibodies targeting the following proteins were acquired from Bethyl Labora-
tories (Montgomery, TX, USA): LEDGF/p75 (Cat# A300-848A), menin (Cat# A300-105A),
JPO2 (Cat# A300-846A), and HRP2 (Cat# A304-314A). Rabbit antibodies targeting the
following proteins were from Cell Signaling Technology (Danvers, MA, USA): MDR1 (Cat#
13342), IWS1 (Cat# 5681), c-MYC (Cat# 18583), GR (Cat# 12041S), H3K36me2 (Cat# 2091T),
and GAPDH (Cat# 5174). Other rabbit antibodies used were against Med-1/TRAPP220
(Abcam, Waltham, MA, USA, Cat# ab243893), PogZ (Aviva Systems Biology, San Diego, CA,
USA, Cat# RP39173-P050) and histone H3 (GeneTex, Irvine, CA, USA, Cat# GTX122148).
Mouse monoclonal antibodies included ASK1 (Abnova, Walnut, CA, USA Cat# H00010926-
M01) JPO2 (Novus Biologicals, Centennial, CO, USA, Cat# NBP2-46198); and horseradish
peroxidase (HRP)-conjugated anti-β-actin (Cell Signaling Technologies, Cat# 12620). Hu-
man sera containing antinuclear autoantibodies (ANAs) displaying the characteristic
monospecific dense fine speckled (DFS) nuclear immunofluorescence pattern that de-
fines immunoreactivity to LEDGF/p75 [16,20,42], or specific to DNA topoisomerase I
(TOPO-1/Scl-70), were from the autoimmune serum collections of Werfen (formerly Inova
Diagnostics, San Diego, CA, USA) and the Casiano Laboratory.
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2.3. Immunoblotting

Whole cell lysates were prepared as described previously [6,9], and their protein con-
centration was determined using the BioRad DC Protein Assay Kit (Cat# 5000112) to ensure
equal loading of proteins separated on individual lanes by SDS-PAGE (NuPAGE 4–12%,
Thermo Fisher Scientific, Waltham, MA, USA). Electrophoresis was followed by protein
transfer to polyvinyl difluoride membranes (MilliporeSigma, Burlington MA, USA, Cat#
IPFL00010). Membranes were blocked with 5% dry milk solution prepared in TBS-T buffer
(20 mM Tris-HCL, pH 7.6, 140 mM NaCl, and 0.2% Tween 20) and probed with appropriate
primary antibodies. After several washes with TBS-T, membranes were incubated with
HRP-conjugated secondary anti-rabbit IgG (Cell Signaling Technology, Danvers, MA, USA,
Cat# 7074), anti-mouse IgG (Cell Signaling Cat# 7076), or anti-human IgG (Invitrogen,
Cat# A18847). Membranes were then washed with TBS-T, and the protein bands were
detected by enhanced chemiluminescence (Thermo Fisher Scientific, Waltham, MA, USA,
Cat# 34580). Protein bands from at least 3 independent blots were scanned for each pro-
tein of interest, quantified using ImageJ software (National Institutes of Health, Bethesda,
MD, USA, Fiji Version 1.44a), and normalized to β-actin or glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) loading control protein bands to determine fold upregulation.

2.4. Quantitative Real-Time PCR

Quantitative real-time PCR (qPCR) was performed as described previously [27].
Briefly, total RNA was extracted from cultured cells using the RNeasy plus mini kit (QIA-
GEN, Redwood City, CA, USA). The iScript cDNA synthesis kit (Bio-Rad, Hercules, CA,
USA, Cat# 1708891) was used to reverse transcribe RNA (0.5 µg) into cDNA. QPCR was
performed in the MyiQ real-time PCR detection system using iQ SYBR Green Supermix (Bio-
Rad, Hercules, CA, Cat# 1708880), with appropriate primers, following the manufacturer’s
recommendations. Primer sequences for LEDGF/p75, menin, and JPO2 were designed
using the Primer3 software or obtained from previously published papers. Primers were
commercially synthesized by Integrated DNA Technologies (IDT). GAPDH mRNA was
used for normalization. Data were normalized to values of corresponding controls.

2.5. MTT Viability Assay and Determination of IC50 Values

DTX-resistant cell lines and their parental, drug-sensitive counterparts were seeded in
96-well plates at a density of 5000 cells per well and then treated with DTX (0–10,000 nM) for
up to 72 h in at least three independent experiments, each performed with three biological
replicates. After treatments, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) was added to each well (1 mg/mL), and plates were incubated for 2 h in a 5% CO2
incubator at 37◦C. Plates were then centrifuged at 1500 rpm for 5 min to avoid loss of
floating cells caused by DTX-induced mitotic arrest and cell rounding. Supernatants were
discarded, and 100 µL of dimethyl sulfoxide (DMSO, Thermo Fisher Scientific, Waltham,
MA, USA, Cat# D128-1) was added to each well. Absorbance was measured at 450 nm
using a µQuant Microplate Spectrophotometer (BioTek Instruments, Winooski, VT, USA).
Values were normalized to the absorbance obtained for untreated, control cells. Standard
error of the mean (SEM) was calculated, and IC50 values were extrapolated using Image J.

2.6. Ingenuity Pathway Analysis

This analysis was performed using the QIAGEN’s Ingenuity® Pathway Analysis
(IPA) software (https://www.qiagenbioinformatics.com/products/ingenuity-pathway-
analysis/, accessed on 17 February 2021). This web-based software application facilitates
the pathway analysis and interpretation of various datasets (e.g., gene expression, miRNA,
and RNAseq) using different biological factors. In this study, the list of differentially
expressed genes (DEGs) in PC3-DR and DU145-DR cells with their respective fold change
values were used as input for the IPA software. From the list of core analyses, “Expression
analysis” based on the “Expr Fold Change” measurement was selected to analyze the direct
and indirect relationships of the various DEGs with respect to different diseases and func-
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tions, using “Ingenuity Knowledge Base (Genes Only)” as the reference set. IPA is built on
comprehensive, manually curated content of the QIAGEN Knowledge Base, which along
with powerful algorithms, helps in the identification of most significant pathways and
causal relationships associated with experimental data. This is more powerful than gene set
enrichment analysis since the knowledge about the direction of effects, rather than mere as-
sociations, is utilized. From the several options available in IPA, the “Canonical pathways”
option was selected to elaborately visualize all of the activated and inhibited pathways.

2.7. Validation of Human Anti-LEDGF/p75 Autoantibodies

Human DFS sera containing autoantibodies to LEDGF/p75 [42] were evaluated using
NOVA Lite HEp-2-ANA slides (Werfen, San Diego, CA, USA). To validate the specificity of
these autoantibodies, sera were immunoadsorbed with a recombinant polypeptide corre-
sponding to the entire IBD region as described [42]. Sera diluted at 1:80 in PBS with and
without the IBD polypeptide were then evaluated for anti-LEDGF/p75 immunoreactivity
using HEp-2 ANA slides. FITC-conjugated secondary antibodies were used at 1:100 dilu-
tion for detection of anti-LEDGF/p75 autoantibodies. Image acquisition was performed on
a Keyence BZ9000 Biorevo fluorescence microscope.

2.8. Co-Immunoprecipitation

Co-immunoprecipitation (co-IP) of endogenous proteins was performed from whole
cell lysates using an immunoprecipitation kit (Abcam, Cat# ab206996). Briefly, PC3-DR
and DU145-DR cells were grown to confluency (80–90%) for 24 h in 100 mm tissue culture-
treated dishes (Genesee Scientific, San Diego, CA, USA, Cat# 25-202), and their viability
was assessed to ensure minimal spontaneous cell death prior to IP. Cells were washed twice
with ice-cold Dulbecco’s PBS (dPBS), scraped in non-denaturing lysis buffer containing
the kit’s protease inhibitor cocktail (PIC) on ice, and collected into pre-chilled 1.5 mL
microcentrifuge tubes, which were then set on a rotary mixer for 30 min at 4 ◦C followed by
centrifugation at 10,000 rpm for 10 min at 4 ◦C. Supernatants containing soluble proteins
(500 µg) were then incubated for 12 h on the rotary mixer at 4 ◦C with pre-washed Protein
A/G Sepharose beads in 50% slurry in wash buffer (provided in the co-IP kit) and anti-
LEDGF/p75 human autoantibodies (1:100 dilution). As negative control for co-IP, we
used an irrelevant normal human serum (NHS) that lacked autoantibody reactivity against
PCa cells, as assessed by immunoblotting and immunofluorescence microscopy. Human
DFS-positive sera containing high titer, monospecific anti-LEDGF/p75 autoantibodies
were used for co-IP experiments. Antigen-antibody-bead complexes were centrifuged
at 2000 rpm for 2 min at 4 ◦C, and the bead-bound complexes were washed three times
with the wash buffer. Proteins were eluted by adding 4X lithium dodecyl sulfate (LDS)
buffer (Invitrogen-Thermo Fisher Scientific, Waltham, MA, USA, Cat# NP0007) containing
0.1% β-mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA, Cat# M-6250) to the beads
followed by boiling for 5 min. Samples were centrifuged at 12,000 rpm for 3 min at 4 ◦C, and
supernatants containing co-IP proteins were processed for SDS-PAGE and immunoblotting.

2.9. Confocal Microscopy

Cells were grown on coverslips placed inside wells of 6-well plates (100,000 cells per
well) for 24 h. RPMI medium was retrieved and cells were washed with dPBS, followed by
fixation with 4% formaldehyde (Electron Microscopy Sciences, Hatfield, PA, USA, Cat#
15712) and permeabilization with 0.2% Triton X-100 (Thermo Fisher Scientific, Waltham,
MA, USA, Cat# BP151-100). To reduce non-specific fluorescence, cells were first incubated
for 1 h in blocking buffer (12.5% BSA, 10% Triton-X100, and 0.5% Tween-20 in dPBS) and
then co-incubated with human anti-LEDGF/p75 autoantibodies together with rabbit or
mouse antibodies to individual interacting partners for 2 h at room temperature. All
antibodies were used at 1:200 dilution. Cells were incubated with appropriate secondary
antibodies labeled with FITC or rhodamine at 1:50 dilution for 1 h, and coverslips were
mounted on slides with medium containing 4′,6-diamidino-2-phenylindole (DAPI; Vec-
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tashield, Burlingame, CA, USA, Cat# H-1200-10). Confocal microscopy was conducted
using a Zeiss LSM-710-NLO microscope with a 63X oil immersion objective and appropriate
filters. Images were analyzed using ImageJ.

2.10. Nuclear Detection of JPO2

For the nuclear detection of JPO2, PC3-DR, and DU145-DR, cells were treated with
100 nM dexamethasone (Sigma-Aldrich, St. Louis, MO, USA, Cat# D4902) for up to
1.5 h prior to cellular fractionation or confocal analysis. For the cellular fractionation
experiments, cells were seeded in 100 mm tissue culture dishes, allowed to adhere in
humidified 37 ◦C/5% CO2 incubator for 24 h, and then incubated for 24 h in RPMI medium
supplemented with 10% charcoal-stripped FBS (CS-FBS; Gibco Cell Culture-Thermo Fisher
Scientific, Waltham, MA, USA, Cat# 12676-029) prior to treatment with dexamethasone.
Cells were treated with dexamethasone, trypsinized, washed with dPBS, and centrifuged at
1500 rpm for 5 min at 4 ◦C. Pellets were resuspended in 100 µL of 1X hypotonic lysis buffer
supplemented with PIC and incubated on ice for 15 min. Igepal CA-630 (Sigma-Aldrich,
St. Louis, MO, USA, Cat# I3021) was added (0.6%), and tubes were vortexed vigorously for
10 s and immediately centrifuged at 9500 rpm for 30 s at 4 ◦C. Supernatants (cytoplasmic
fraction) were transferred to pre-chilled tubes for subsequent studies. Pellets containing
nuclei were resuspended in 100 µL of Laemmli lysis buffer supplemented with complete
PIC and 100 mM phenylmethanesulfonylfluoride (PMSF). Lysates were then sonicated
and individually passed through a 50 µL 22-gauge Hamilton syringe (Hamilton Company,
Reno, NV, USA, Cat# 80565) to shear DNA and reduce sample viscosity. Samples were
centrifuged at 12,000 rpm for 5 min at 4 ◦C, and the supernatants (soluble nuclear fraction)
were transferred to pre-chilled tubes for use in SDS-PAGE and immunoblotting. For the
nuclear visualization of JPO2, cells were grown overnight in 6-well plates containing
coverslips before incubation in CS-FBS RPMI-1640 medium for 16 h at 37 ◦C/5% CO2,
followed by replacement with the same medium with or without 100 nM dexamethasone
and processing for confocal microscopy.

2.11. RNA Interference

PC3-DR and DU145-DR cells (50,000 cells per well) were cultured on 6-well plates
and transfected 24 h later with either 50 nM LEDGF/p75, 100 nM JPO2, 100 nM menin,
or 200 nM HRP2 siRNAs for up to 96 h. The siRNA sequences used were as follows:
si-LEDGF/p75 (′5-AGACAGCAUGAGGAAGCGAUU-3′), validated previously [9,18,42];
si-JPO2 (pool of three siRNAs, A = ′5-UGAAAGGCUACUCGAAGACUU-3′, B = ′5-
UUAUCUCGAACAGUUAU GGTT-3′, C = ′5-UUAGGCACCAAUGGUAUGCTT-3′); si-
menin (′5-GAUCAUGCCUGG GUAGUGUUUG-3′), selected from a pool of 10 siRNAs
validated previously [43]; si-HRP2 (pool of three different siRNA duplexes from Santa Cruz
Biotechnology, Dallas, TX, USA, Cat# sc-105539). Cells were transfected using Interferin®

siRNA transfection reagent (Polyplus-transfection®, Illkirch, France, Cat# 409-01). Scram-
bled siRNA duplex (SD, Dharmacon, Lafayette, CO, USA, Cat# D-001210-0105) was used
as non-targeting negative control. Protein depletion was assessed by immunoblotting.

2.12. Apoptosis Assays

PC3-DR and DU145-DR cells were seeded at a density of 50,000 cells per well in
six-well plates and incubated in 2 mL of RPMI medium containing 10% FBS, penicillin/
streptomycin, and normocin. After 24 h, the cells were transfected with either 50 nM
LEDGF/p75, 100 nM JPO2, 100 nM menin, or 200 nM HRP2 siRNAs for 72 h. Scrambled
siRNA duplex (SD) was used as non-targeting negative control. Supernatants from each of
the wells were collected prior to detachment of the cell monolayer with diluted trypsin
(1 min treatment) and harvesting. The combined floating and attached harvested cells for
each condition were used for analysis, and samples were kept on ice. Annexin V/7AAD
staining was performed according to the recommended protocol of the Annexin V Apopto-
sis Detection Kit eFluor™ 450 (eBioscience-Thermo Fisher Scientific, Waltham, MA, USA,
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Cat# 88800672). Fluorescence was measured using a Miltenyi Biotec MACSQuant Analyzer
10 Flow Cytometer (Miltenyi Biotec, Auburn, CA, USA). The percentage of apoptotic cells
(Annexin V positive) was determined using FlowJo software version 9.9.6 (FlowJo, Ashland,
OR, USA).

2.13. Clonogenic Assays

PC3-DR and DU145-DR cells were transfected with individual siRNAs and grown in
RPMI-1640 medium supplemented with 10% FBS for 72 h. Then, an equal number of viable
transfected cells was transferred to 6-well culture plates (500 cells per well). Twenty-four
hours later, new medium containing DTX was added, and plates were incubated for 10 days
at 37 ◦C/5% CO2. Adherent colonies were washed with dPBS, fixed with ice-cold 3:1 (v/v)
methanol–acetic acid solution for 5 min, washed again with dPBS, stained with 0.5% crystal
violet for 20 min, and then washed gently with tap water. Images of the stained colonies
were acquired using a 20-megapixel Cannon SX740-HS camera, and quantification was
performed using the automated colony counting capability of Image J software following
identical parameters for each well.

2.14. Tumorsphere Formation Assays

Spheroid cultures from siRNA transfected cells were maintained using complete
MammoCult™ medium (Stem Cell Technologies, Vancouver, Canada, Cat# 05620) sup-
plemented with hydrocortisone (0.48 µg/mL, Sigma-Aldrich, St. Louis, MO, USA, Cat#
H0135), heparin (4 µg/mL Sigma-Aldrich, St. Louis, MO, USA, Cat# H3149), and 1% peni-
cillin/streptomycin. PC3-DR and DU145-DR cells were seeded at 50,000 cells per well and
transfected with the various siRNAs. After 48 h, an equal number of viable cells (1000 cells
per well) were harvested and resuspended 50 times in MammoCult™ medium to ensure
a single cell suspension. Cells were then seeded in 24-well untreated plates (Genesee,
Cat# 25–102) in 0.5 mL MammoCult™ medium. Tumorspheres were grown for 4 days
at 37 ◦C/5% CO2 and visualized in an Olympus IX70 microscope equipped with Phase
Contrast and Hoffman Modulation Contrast, and a SPOT imaging system. Tumorsphere
area was quantified from three independent images per individual treatment using Image
J software.

2.15. Measurement of Surface CD44 Antigen

Cell culture and gene silencing procedures were performed as mentioned above. Cells
were stained using a standard flow cytometry protocol for the detection of surface CD44
antigen using V450 Mouse Anti-human CD44 antibody according to the manufacturer’s
instructions (BD Biosciences, Franklin Lakes, NJ, USA, Clone# G44-26, Cat# 561292). Flow
cytometry analysis was performed using a MACSQuant analyzer 10 (Miltenyi Biotec,
Auburn, CA, USA) and FlowJo analysis software (FlowJo, Ashland, OR, USA).

2.16. Statistical Analysis

Data are expressed as mean± SEM from at least 3 independent experiments. Statistical
analysis was performed with GraphPad Prism version 6 (GraphPad Software, San Diego,
CA, USA). Two-sample comparisons were determined using the two-tailed Student t-test.
For multiple comparisons, we used two-way ANOVA. p values < 0.05 were considered
statistically significant.

3. Results
3.1. The LEDGF/p75 IBD Interactome Is Endogenously Overexpressed in DTX-Resistant
PCa Cells

To evaluate the contribution of the LEDGF/p75 IBD interactome to PCa chemore-
sistance, we first assessed the endogenous protein expression of LEDGF/p75 and its
known IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, PogZ, and Med-1 in
AR-independent DTX-resistant PC3-DR and DU145-DR cell lines compared to their drug-
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sensitive, parental counterparts. We also included in our analysis c-MYC, an interacting
partner of JPO2 [44], and HRP2, which is not considered an IBD-binding protein but shares
significant structural and functional overlap with LEDGF/p75 [37]. The DTX-resistant cell
lines PC3-DR and DU145-DR were developed by selection and expansion of surviving cells
after consecutive treatments with increasing concentrations of DTX [6,9]. In a previous
study, we showed via RNA sequencing and functional assays that these DTX-resistant cell
lines upregulate a transcriptomic program associated with increased stemness [6]. These
cell lines showed increased IC50 values, overexpression of MDR1 (multi-drug resistance
protein 1), and enhanced clonogenic capacity compared to their drug-sensitive counterparts
(Supplementary Figure S1).

Consistent with our previous observations [6,9], LEDGF/p75 was upregulated in PC3-DR
and DU145-DR cells compared to their respective drug-sensitive parental cells(Figure 1A).
JPO2 and c-MYC were also upregulated in both cell lines (Figure 1B,C). Menin and MLL,
which form a ternary complex with both LEDGF/p75 and HRP2 through IBD binding in
leukemia cells [19,37], were overexpressed in DU145-DR cells (Figure 1D,E). However, while
MLL was significantly overexpressed in PC3-DR cells, menin showed moderately increased
expression without achieving statistical significance (Figure 1D,E). Other LEDGF/p75 IBD-
interacting proteins, IWS1, ASK1, and PogZ, were also overexpressed in the PC3-DR and
DU145-DR cells compared to DTX-sensitive cells (Figure 1F–H). Med-1, recently reported as
an interacting partner of the LEDGF/p75 IBD [15,39], was also significantly overexpressed
in the chemoresistant cell lines compared to the parental sensitive controls (Figure 1I). In
addition, HRP2 was significantly overexpressed in both DTX-resistant cell lines (Figure 1J).
The fold induction values for each of these proteins in the DTX-resistant cells relative to
their sensitive counterparts are listed in Table 1. The upregulation of these IBD-interacting
proteins appeared to be posttranscriptional since, with the exception of LEDGF/p75 and
c-MYC, we did not find in pilot qPCR studies or in RNAseq data [6] consistently increased
transcript expression in the DTX-resistant cells (data not shown).
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Figure 1. LEDGF/p75 and its IBD-interacting partners are differentially upregulated in DTX-resistant
PCa cell lines. Upper panels: immunoblots showing upregulation of (A) LEDGF/p75, (B) JPO2,
(C) c-MYC, (D) menin, (E) MLL, (F) IWS1, (G) ASK1, (H) PogZ, (I) Med-1, and (J) HRP2 in DTX-
resistant PC3-DR and DU145-DR cells compared to their parental, drug-sensitive counterparts.
Bottom panels: bar graphs showing quantification of fold change in protein expression from at
least three independent experiments per cell line via densitometric ImageJ analysis, with values
normalized to β-actin. Paired t-test statistical analysis revealed that protein expression in DTX-
resistant PCa cells achieved statistical significance compared to controls (* p < 0.05, ** p < 0.01).
Due to the very low expression of some of the proteins in the parental PC3 and DU145 cells, we
normalized their expression to an arbitrary value of 0.10 for quantification purposes. Error bars
represent mean ± standard deviation (SD).
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Table 1. Nomenclature, functions, and average fold induction of LEDGF/p75 interactome proteins in docetaxel-resistant
PC3-DR and DU145-DR cells relative to their sensitive counterparts.

Protein Approximate MW Other Common Names Functions PC3-DR * DU145-DR *

LEDGF/p75 70 kD DFS70, PSIP1 Stress survival, transcription coactivator of RNAPII,
chromatin binding 3.35 4.50

JPO2 52 kD CDCA7L, R1 PI3K regulator, c-MYC binding protein and potentiator 10.32 3.92

c-MYC 50 kD Oncogenic transcription factor; cancer
stemness marker 4.44 3.71

Menin 83 kD MEN1 Histone methyltransferase, transcription factor,
hematopoiesis, leukemogenesis 1.45 1.90

MLL 432 kD KMT2A Transcription factor, early development,
hematopoiesis, leukemogenesis 3.13 2.05

IWS1 56 kD RNAPII elongation, transcription regulator 2.18 2.15

ASK1 70 kD MAP3K5 Stress-activated cell cycle regulating mitogen
activated kinase 7.40 4.35

PogZ 155 kD Pogo transposable element, mitosis,
chromatin remodeling 4.21 3.93

Med-1 168 kD TRAPP220 Mediator of RNAPII transcription subunit 1

HRP2 74 kD HDGF2, HDGFL2,
HDGFRP2

RNAPII transcription regulator, relieves
nucleosome-induced barrier to transcription 2.44 2.42

* Fold induction relative to individual protein expression in DTX-sensitive cells (normalized to 1) was calculated by quantitative im-
munoblotting as described in Materials and Methods.

3.2. LEDGF/p75 Interacts Endogenously with IBD-Binding Partners in DTX-Resistant PCa Cells

After establishing the upregulation of LEDGF/p75 and members of its IBD interactome
in PC3-DR and DU145-DR cells, we sought to determine if these protein interactions
also occur endogenously in the chemoresistant cells. First, we conducted an ingenuity
pathway analysis (IPA) to identify in silico if any protein–protein interaction data are
already available on individual members of the LEDGF/p75 IBD interactome in PCa
cells. IPA results showed that c-MYC was associated with 26 canonical pathways, ASK1
(MAP3K5) with 23 pathways, and MLL (KMT2A) with 1 pathway (Table S1). An IPA map
of a representative canonical pathway (Molecular Mechanisms of Cancer) showing protein
interactions involving c-MYC and ASK1 in PC3 cells is provided in Supplementary Figure
S2. Similar results were obtained with DU145 cells (data not shown). These results indicated
that while there are substantial data on protein interactions or pathways involving these
two proteins in PCa cells, there are limited data for LEDGF/p75 and its interacting partners.

To determine if LEDGF/p75 interacts endogenously with its known IBD-interacting
partners in DTX-resistant cells, we immunoprecipitated proteins from PC3-DR and DU145-
DR cells using human anti-DFS sera containing autoantibodies to LEDGF/p75 [42]. These
polyclonal but highly specific human autoantibodies react with multiple epitopes within
the entire IBD region [45], which allows for their immunoprecipitation of LEDGF/p75
without necessarily competing with its IBD-interacting partners for binding sites. To
validate the specificity of the two anti-DFS patient sera (EC10 and PL48) used in our co-
immunoprecipitation (co-IP) studies, we first pre-absorbed these sera with a recombinant
peptide corresponding to the entire LEDGF/p75 IBD autoepitope region. The pre-absorbed
sera lost their nuclear DFS immunofluorescence staining pattern characteristic of anti-
bodies to LEDGF/p75 (Figure 2A). Immunoblotting analysis confirmed that both sera
detected the increased LEDGF/p75 expression observed in the DTX-resistant PC3-DR and
DU145-DR cells compared to sensitive cells (Figure 2B). In addition, LEDGF/p75 depletion
using specific siRNAs abolished the anti-DFS serum immunoreactivity in both cell lines
(Figure 2C). Finally, the ability of anti-DFS sera to co-immunoprecipitate LEDGF/p75
and its known IBD interacting partner JPO2 was abolished by pre-absorption with the
IBD autoepitope-containing peptide (Figure 2D,E). These results demonstrated that the
human DFS sera EC10 and PL48 contained highly specific anti-LEDGF/p75 autoantibodies
capable of reacting with this protein by immunoblotting, immunofluorescence microscopy,
and immunoprecipitation and, therefore, are excellent tools to study the endogenous
LEDGF/p75 interactome.
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anti-LEDGF/p75 sera with the autoepitope-containing IBD peptide (LEDGF/p75 residues 347–429) abolished their immu-
noreactivity in HEp-2 ANA test slides. (B) Immunoblots showing immunoreactivity of the selected anti-LEDGF/p75 sera 
against a 75 kD protein band in whole cell lysates of both parental and DTX-resistant PC3 and DU145 cell lines, with 
noticeable increased expression of the protein in the resistant cells. (C) Immunoblots showing the reactivity of representa-
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Figure 2. Validation of the specificity of human anti-LEDGF/p75 autoantibodies used in this study. (A) Representative
human monospecific (only fluorescence pattern detected) anti-LEDGF/p75 sera (EC10 and PL48) displaying the charac-
teristic dense fine speckled (DFS) nuclear pattern of high titer anti-LEDGF/p75 autoantibodies, also known as anti-DFS
or anti-DFS70 autoantibodies (FITC), in HEp-2 antinuclear antibody (ANA) test slides. Pre-adsorption of the two human
anti-LEDGF/p75 sera with the autoepitope-containing IBD peptide (LEDGF/p75 residues 347–429) abolished their im-
munoreactivity in HEp-2 ANA test slides. (B) Immunoblots showing immunoreactivity of the selected anti-LEDGF/p75
sera against a 75 kD protein band in whole cell lysates of both parental and DTX-resistant PC3 and DU145 cell lines, with
noticeable increased expression of the protein in the resistant cells. (C) Immunoblots showing the reactivity of representa-
tive human serum EC10 against LEDGF/p75 in whole lysates from PC3-DR and DU145-DR cells, with siRNA-mediated
LEDGF/p75 knockdown (KD) compared to scrambled duplex control (SD). Note the loss of serum immunoreactivity
against the 75 kD protein band in cells with LEDGFp75 knockdown. Beta-actin was used as loading control in panels B
and C. (D) Immunoprecipitation of endogenous LEDGF/p75 from PC3-DR and DU145-DR cells using representative anti-
LEDGF/p75 human serum EC10. A well-characterized LEDGF/p75 interacting partner, JPO2, was used as a positive control
to initially monitor and validate the capacity of monospecific anti-LEDGF/p75 sera to immunoprecipitate its IBD-interacting
proteins. Irrelevant normal human serum (NHS) was used as negative control. (E) Pre-adsorption of anti-LEDGFp75 human
EC10 serum with the autoepitope-containing IBD polypeptide abolished its ability to co-immunoprecipitate LEDGF/p75
and JPO2, again confirming the specificity of the serum autoantibodies.

LEDGF/p75 and its IBD interacting partners were co-immunoprecipitated with the
human autoantibodies and detected by immunoblotting using commercially available
antibodies (Figure 3A). Our results show that LEDGF/p75 co-immunoprecipitated with its
endogenous IBD interacting partners JPO2, menin, MLL, IWS1, ASK, and PogZ in both PC3-
DR and DU145-DR cells (Figure 3A). c-MYC and HRP2 were also co-immunoprecipitated.
We were unable to detect Med-1 in the co-IPs, most likely due to the low abundance of
this protein in PCa cells or relatively poor Western blot transfer due to its high molecular
weight. In order to detect this protein in the immunoblots shown in Figure 1I, we had to
load 7–10 times more cell lysate protein than for the other proteins examined. Endogenous
proteins in cell lysates were also immunoprecipitated with an irrelevant normal human
serum (NHS) used as a negative control. Human autoantibodies specific to TOPO-1/Scl-70,
a protein that has not been implicated as a LEDGF/p75 binding partner, were also used as
negative control to confirm the specificity of LEDGF/p75 protein–protein interactions. As
expected, TOPO-1 was not co-immunoprecipitated by the anti-LEDGF/p75 autoantibodies,
and NHS did not immunoprecipitate any of the proteins examined. To determine the co-IP
efficiency, we compared by immunoblotting analysis the amount of immunoprecipitated
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LEDGF/p75 from PC3-DR and DU145-DR whole cell lysates (eluate) with that of input (1%
of eluted fraction), irrelevant NHS, and flow-through (unbound material) (Supplementary
Figure S3). These results highlighted the specificity of the autoantibody-mediated co-IP of
the LEDGF/p75 interactome.
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Figure 3. Human anti-LEDGF/p75 autoantibodies capture endogenous interactions with IBD-binding partners in DTX-
resistant PCa cells. (A) Endogenous proteins from PC3-DR and DU145-DR cells were immunoprecipitated using highly
specific and validated human sera containing autoantibodies to LEDGF/p75. Immunoprecipitated LEDGF/p75 and its
endogenous IBD-interacting partners were detected by immunoblotting using specific rabbit or mouse antibodies. Proteins
in cell lysates were also immunoprecipitated using an irrelevant normal human serum (NHS) as negative control. Input
represents 1% of the protein concentration of the immunoprecipitated cell lysate. TOPO-1 was included as a negative
control since there is no evidence of its interaction with LEDGF/p75. (B) Di-methyl histone H3K36 (H3K36me2), a marker
for active chromatin, was immunoprecipitated with anti-LEDGF/p75 autoantibodies. (C) Rabbit antibody to H3K36me2
was co-incubated with human anti-LEDGF/p75 autoantibodies in DTX-resistant cells and detected with rhodamine-labeled
secondary antibody (red). Merged images show the yellow-orange staining typical of colocalization. DAPI was used for
nuclear staining. Images were acquired by confocal microscopy. Scale bar, 10 µm, applies to all confocal images.

H3K36me2, a marker of active chromatin that is recognized by the LEDGF/p75
PWWP domain [25], also co-immunoprecipitated with LEDGF/p75 (Figure 3B). Confocal
microscopy analysis of endogenous H3K36me2 and LEDGF/p75 showed a noticeable
co-localization, most likely in areas of the nucleus corresponding to active chromatin
(Figure 3C). This suggested that the LEDGF/p75 endogenous interactome is located within
active chromatin in the chemoresistant cells.

3.3. LEDGF/p75 Colocalizes with Interacting Partners in Nuclei of DTX-Resistant PCa Cells

For subsequent studies, we selected the LEDGF/p75 IBD interactome members JPO2,
c-MYC, menin, and MLL, which while previously implicated in PCa [40,41,44] have not
been investigated together with LEDGF/p75 in the context of PCa chemoresistance. We
also included in this analysis the LEDGF/p75 paralog HRP2. Using confocal microscopy,
we investigated if LEDGF/p75 co-localizes endogenously in the nucleus of DTX-resistant
cells with these selected members of its interactome.

In initial studies, we noticed a diminished nuclear co-localization of LEDGF/p75 and
JPO2 in PC3-DR and DU145-DR cells given the elevated cytoplasmic localization of JPO2.
Since JPO2 function is linked to glucocorticoid signaling [46], we treated PC3-DR and
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DU145-DR cells with 100 nM dexamethasone, which led to increased nuclear accumulation
of JPO2 in both cell lines (Figure 4A,B) compared to untreated cells. As a positive control,
we followed the nuclear translocation of glucocorticoid receptor (GR) upon dexamethasone
treatment in both cell lines and noticed its nuclear co-localization with JPO2, suggesting
their presence in the same transcription complex (Figure 4A,B). Glucocorticoid-induced
JPO2 nuclear translocation was confirmed by immunoblotting of cytoplasmic and nuclear
fractions from DTX-resistant cells treated with dexamethasone (Figure 4C,D). Next, we
analyzed the co-localization of LEDGF/p75 with JPO2 in DTX-resistant cells with and
without dexamethasone treatment. In the absence of dexamethasone, JPO2 appeared both
in the cytoplasm and the nucleus of the DTX-resistant cells (Figure 4E,F upper panels)
but localized mostly to the nucleus after dexamethasone treatment (Figure 4E,F lower
panels). Translocated JPO2 partially co-localized with LEDGF/p75, likely in areas of the
nucleus corresponding to active chromatin, as evidenced by the similarity between the
LEDGF/p75-JPO2 co-localization pattern (Figure 4C,D) and that of LEDGF/p75-H3K36me2
(Figure 3C). LEDGF/p75 and JPO2 also co-localized in parental, drug-sensitive PC3 and
DU145 cells, but the signals were weak due to their relatively lower expression in these cell
lines compared to DTX-resistant cells.
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Figure 4. JPO2 co-localizes with LEDGF/p75 upon dexamethasone-induced nuclear translocation. (A,B) Dexamethasone
induced JPO2 nuclear translocation in the DTX-resistant PCa cells PC3-DR and DU145-DR. Cells growing in charcoal-
stripped medium were treated with 100 nM dexamethasone (Dex) for 30 min and then prepared for confocal microscopy
analysis using an anti-JPO2 mouse antibody co-incubated with an anti-GR rabbit antibody used as a control for nuclear
translocation. (C) Cells growing in charcoal-stripped medium were treated with 100 nM Dex for up to 90 min, followed by
cytoplasmic and nuclear protein extraction for immunoblotting detection of GR and JPO2. (D) Immunoblot quantification of
nuclear JPO2 levels (2 independent experiments) following exposure of PC3-DR and DU145-DR cells to Dex, using ImageJ
software. (E–G) Representative human anti-LEDGF/p75 antibody displays the characteristic dense fine speckles (DFS)
nuclear pattern, detected with FITC-labeled secondary anti-human antibody (green). This pattern was also produced by
anti-JPO2 after Dex treatment in PC3-DR (E) and DU145-DR (F) cells and their sensitive counterparts (G). Scale bar, 10 µm,
applies to all confocal images.

Consistent with the co-IP data, LEDGF/p75 also partially co-localized in the nuclei
of PC3-DR and DU145-DR cells with c-MYC, menin, MLL, and HRP2 (Figure 5A–D).
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However, the co-localization of these proteins in the parental DTX-sensitive cells PC3 and
DU145 was scarcely detectable due to their relatively low expression compared to DR cells
(Figure 5E–H).
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Rabbit antibodies to c-MYC (A,E), menin (B,F), MLL (C,G), and HRP2 (D,H) were co-incubated
with human anti-LEDGF/p75 auto-antibodies in DTX-resistant and DTX-sensitive cells, and de-
tected with rhodamine-labeled secondary antibody (red). Merged images show the yellow-orange
staining typical of co-localization. DAPI was used for nuclear staining. Images were acquired by
confocal microscopy.

3.4. LEDGF/p75 Depletion Does Not Alter the Protein Expression of Its Interacting Partners but
May Influence Their Nuclear Localization

We showed previously that ectopic LEDGF/p75 overexpression in PC3 cells confers
resistance to DTX-induced cell death, whereas its depletion in PC3-DR and DU145-DR
resensitizes these cells to taxanes [8,9]. This depletion likely results in decreased IBD
protein–protein interactions, leading to decreased transcription of stress survival genes
and attenuated cell survival. Hence, we evaluated the effects of transient LEDGF/p75
knockdown on the expression and co-localization of selected interacting partners in DTX-
resistant cells. LEDGF/p75 silencing did not affect the endogenous protein expression of
JPO2, c-MYC, menin, MLL, and HRP2, assessed by immunoblotting in PC3-DR (Figure 6A)
and DU145-DR cells (Figure 6B).
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Figure 6. LEDGF/p75 depletion does not alter the protein expression of selected IBD interacting partners in DTX-resistant
cells but affects their nuclear localization patterns. LEDGF/p75 knockdown was assessed by immunoblotting using a rabbit
anti-LEDGF/p75 antibody in PC3-DR (A) and DU145-DR (B) cells transfected with siLEDGF/p75 (KD) or scrambled duplex
(SD) control oligos. Representative blots show that the protein expression levels of JPO2, c-MYC, menin, MLL, and HRP2
were not altered by LEDGF/p75 depletion. For confocal microscopy analysis, human anti-LEDGF/p75 autoantibodies
were co-incubated with rabbit antibodies to JPO2 (C), c-MYC (D), menin (E), MLL (F), and HRP2 (G) in DTX-resistant PC3
cells with and without LEDGF/p75 depletion. Detection of nuclear proteins was achieved with FITC-labeled secondary
anti-human antibody (green) and rhodamine-labeled secondary anti-rabbit antibody (red). Merged images show the
yellow-orange staining typical of co-localization. DAPI was used for nuclear staining.

We then visualized by confocal microscopy the effects of LEDGF/p75 depletion on the
nuclear localization of JPO2, c-MYC, menin, MLL, and HRP2 in PC3-DR cells. LEDGF/p75
depletion did not affect extensively the nuclear localization of JPO2; however, there was
increased punctuated cytoplasmic JPO2 staining in the knockdown cells compared to
control cells (Figure 6C), suggesting that LEDGF/p75 may partially contribute to JPO2
nuclear localization. The nuclear localization of c-MYC, a JPO2-binding protein, was not
affected by LEDGF/p75 depletion (Figure 6D). Interestingly, the menin signal intensity
consistently decreased in the nuclei of LEDGF/p75-depleted cells, even when the total
protein levels were not affected by LEDGF/p75 depletion (compare Figure 6A,B with
Figure 6E, bottom panels). MLL, which is tethered together with menin to active chromatin
sites by LEDGF/p75 in leukemic cells [19], displayed an altered immunofluorescence
pattern in the LEDGF/p75-depleted DR cells characterized by discrete small speckles
disseminated through both the nucleus and cytoplasm (Figure 6F, bottom panels). This
pattern differed from that observed in the control DR cells, where LEDGF/p75 and MLL
markedly co-localized in the nucleus, excluding the nucleoli (Figure 6F, top panels). These
results suggested that LEDGF/p75 contributes to the endogenous nuclear localization of
the menin–MLL complex. Similar to c-MYC, the endogenous nuclear localization of HRP2
was not affected by LEDGF/p75 depletion (Figure 6G).

3.5. Depletion of LEDGF/p75, JPO2, Menin, or HRP2 Enhances Apoptosis in
DTX-Resistant Cells

To determine if individual silencing of LEDGF/p75, JPO2, menin, or HRP2 induced
apoptotic cell death, we performed an Annexin V/7AAD apoptosis assay in PC3-DR and
DU145-DR cells transfected with siRNAs targeting these proteins. Protein knockdowns
were monitored by immunoblotting for up to 96 h, and their effects on cell morphology
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and survival were assessed. The optimal depletion time for all proteins was 72–96 h using
optimized siRNAs (individual or pools) transfected into cells with the InterferinTM reagent
(see Materials and Methods). This produced robust and durable knockdowns (KD) in
both DTX-resistant cell lines, as measured by immunoblotting and qPCR (Figure 7A,D,G,J,
Supplementary Figure S4A,D,G,J, and Supplementary Figure S5). In a representative
experiment, PC3-DR cells transfected with non-targeting control oligos (SD) showed 88.9%
cell viability (Annexin V-, 7AAD-), 5.54% apoptosis (Annexin V+, 7AAD-), 4.97% late
apoptosis/secondary necrosis (Annexin V+, 7AAD+), and 0.56% necrosis (Annexin V-, PI+)
(Figure 7C). By contrast, LEDGF/p75 silencing in these cells caused an increase in cell death
(5.99% early apoptosis + 11.7% late apoptosis + 4.12% necrosis). This silencing generated
a significant fold increase in the average apoptotic index (early + late apoptotic cells) of
2.11 relative to SD control (Figure 7C). Silencing of JPO2, menin, and HRP2 also produced
significant fold increases in apoptotic index averaging 3.43, 3.82, and 2.32, respectively
(Figure 7F,I,L). Likewise, the silencing of LEDGF/p75, JPO2, menin, and HRP2 in DU145-
DR cells led to significant fold increases in the apoptotic index, with average values of
1.48, 1.71, 2.08, and 2.32, respectively (Supplementary Figure S4). These results indicated
that these four members of the LEDGF/p75 interactome contribute to the survival of
PC3-DR and DU145-DR cells and were in harmony with the increased cell death visualized
by morphological analysis of the cells under Hoffman Modulation Contrast microscopy
(Figure 7 and Supplementary Figure S4, panels B,E,H,K).
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Figure 7. Transient knockdown of LEDGF/p75, JPO2, menin, or HRP2 decreases the survival of PC3-DR cells. siRNA-
mediated silencing of LEDGF/p75 (A), JPO2 (D), menin (G), and HRP2 (J) was confirmed by immunoblotting of PC3-DR
cell lysates transfected with specific siRNAs (KD) or si-SD control oligos for 72 h. PC3-DR cell morphology was visualized by
Hofmann Modulation Contrast microscopy (B,E,H,K). PC3-DR cells transfected with either control (SD) or specific siRNAs
(KD) were stained with Annexin V/7AAD, and cell death was analyzed by flow cytometry (C,F,I,L). Representative plots
from three replicate experiments showing apoptotic index (calculated as described in Materials and Methods) are presented.
Statistical significance was determined by comparing the fold increase in apoptotic cells from cells with LEDGF/p75, JPO2,
menin, or HRP2 knockdown with the normalized values for cells transfected with SD control oligos, using Student’s t-test
(*** p < 0.001, **** p < 0.0001).
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3.6. Depletion of LEDGF/p75, JPO2, Menin, or HRP2 Inhibits the Clonogenicity and Tumorsphere
Formation Capacity of DTX-Resistant PCa Cells

The upregulation of the LEDGF/p75 IBD interactome in DTX-resistant PCa cells
and its impact on cell survival led us to investigate the effects of individual silencing of
LEDGF/p75, JPO2, and menin on the clonogenicity and tumorsphere formation capacity
of PC3-DR and DU145-DR cells. Again, because of its structural and functional similarity
to LEDGF/p75, HRP2 was included in these experiments. We used LEDGF/p75 for
comparison purposes in these experiments given that we previously reported that its
depletion in PC3-DR and DU145-DR cells leads to a significant decrease in clonogenicity
in the presence of increasing concentrations of DTX [9]. Consistent with our previous
observations, LEDGF/p75 depletion led to significant reduction of colony formation in
both PC3-DR (Figure 8A,B) and DU145-DR (Supplementary Figure S6A,B) cells. The
clonogenicity of both control and LEDGF/p75-depleted cells gradually decreased as the
resistant cells were exposed to increasing concentrations of DTX, with more robust effects
produced by the combination of knockdown plus DTX. Individual depletion of JPO2,
menin, or HRP2 also led to significant reduction of colony formation in PC3-DR cells
(Figure 8C–H). This reduction was more robust than that observed with LEDGF/p75
depletion, particularly in the presence of DTX. Notably, knockdown of menin or HRP2
nearly abolished colony formation in the presence of DTX (Figure 8E–H). Similar results
were obtained with DU145-DR cells (Supplementary Figure S6C–H), although the effects
of JPO2 knockdown were not as robust as those observed in PC3-DR cells (Supplementary
Figure S6C,D). We did not include parental sensitive cells in this analysis because they
display lower clonogenic capacity compared to DR cells (Supplementary Figure S1) and do
not form clones in the presence of DTX (data not shown).

In addition, we examined the contribution of LEDGF/p75, JPO2, menin, and HRP2 to
tumorsphere formation in PC3-DR and DU145-DR cells. We have shown previously that
unlike the parental, drug-sensitive cells, these DTX-resistant cell lines display enhanced
tumorsphere formation capacity associated with increased stemness compared to their
DTX-sensitive counterparts [6], consistent with emerging evidence that tumor spheroids are
enriched for CSC-like cells [47]. For these experiments, DTX-resistant cells were transiently
transfected with siRNAs targeting LEDGF/p75 (Figure 9A top panel), JPO2 (Figure 9B
top panel), menin (Figure 9C top panel), or HRP2 (Figure 9D top panel) for 48 h and
then cultured as 3D spheroids for 5 days. The tumorsphere formation capacity of both
PC3-DR and DU145-DR cells was markedly impaired when each of the selected members
of the LEDGF/p75 interactome was individually silenced (Figure 9). Taken together,
these results demonstrated for the first time that selected members of the LEDGF/p75
interactome contribute to the clonogenic and tumorsphere capacity of DTX-resistant PC3
and DU145 cells.

3.7. Depletion of LEDGF/p75 in PCa Cells Does Not Lead to Decrease in Lineage-Specific or
Stemness Markers

While LEDGF/p75 has been implicated in stem cell renewal in leukemia [15], it is not
clear if this protein is essential for maintaining cell lineage-specific or stemness markers in
PCa cells. We first examined the effects of LEDGF/p75 silencing on the expression of GR, a
nuclear steroid receptor that is upregulated in DTX-resistant PCa cells [48], and observed
no impact on its protein expression levels in PC3-DR and DU145-DR cells (Supplementary
Figure S7A,B). Similarly, we observed that LEDGF/p75 depletion had no effects on the
protein expression levels of the nuclear receptors AR and ARv7 in the androgen-dependent
cell line 22Rv1 (Supplementary Figure S7C). These results suggested that the expression
of the nuclear steroid receptors AR and GR, which drive PCa progression [3,4], is not
regulated by LEDGF/p75.
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Figure 8. Knockdown of LEDGF/p75, JPO2, menin, or HRP2 inhibits the clonogenicity of PC3-DR cells. Representative
images of clonogenic assay plates show decrease in colony formation in PC3-DR cells with LEDGF/p75 (A), JPO2 (C),
menin (E), or HRP2 (G) knockdowns (KD) compared to scrambled duplex control cells (SD) in the presence and absence
of DTX. Colonies were counted after 10 days of treatment. Adjacent bar graphs show quantification of PC3-DR colonies
(B,D,F,H) and represent the average of colonies counted in at least three independent experiments. SEM was calculated.
Statistical significance was determined by comparing the values for cells transfected with si-SD control oligos with values
for cells with LEDGF/p75, JPO2, menin, or HRP2 knockdown in the presence or absence of DTX, using Student’s t-test
(* p < 0.05, ** p < 0.01, **** p < 0.0001).

Previously, we showed that the PC3-DR and DU145-DR cell lines have increased
stemness markers compared to the sensitive parental cells [6]. To determine if LEDGF/p75
contributes to this stemness, we evaluated the effects of its silencing on the expression of
the stem cell marker Oct-4 in PC3-DR and DU145-DR cells, observing no effects (Supple-
mentary Figure S8A). Further, LEDGF/p75 silencing had no effect on the surface expression
of the cancer stem cell marker CD44 in PC3-DR and DU145-DR cells (Supplementary Fig-
ure S8B). Similarly, menin depletion had negligible effects on CD44 expression in both cell
lines (Supplementary Figure S8C). By contrast, depletion of JPO2 and HRP2 produced a
moderate albeit significant reduction in CD44 expression (Supplementary Figure S8D,E).
It is not clear, however, is this reduction is linked to the robust cell death induced by the
individual depletion of these proteins. These results are consistent with the observation
that LEDGF/p75 depletion had no effects on the protein expression levels or nuclear
localization of c-MYC (Figure 6), an emerging cancer stemness marker.
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Figure 9. Knockdown of LEDGF/p75, JPO2, menin, or HRP2 impairs tumorsphere formation in PC3-DR and DU145-
DR cells. siRNA-mediated knockdowns of LEDGF/p75 (A), JPO2 (B), menin (C), and HRP2 (D) were confirmed by
immunoblotting in PC3-DR and DU145-DR cells transfected with specific siRNAs (KD) compared to cells transfected
with SD control oligos. Representative images of tumorsphere formation assays showing a decrease in spheroid size in
PC3-DR and DU145-DR cells after individual siRNA-mediated depletion of LEDGF/p75, JPO2, menin, or HRP2 compared
to SD control spheres. Tumorspheres were visualized using phase contrast or Hoffman Modulation Contrast microscopy.
Tumorsphere area was quantified (bottom graphs) from triplicate images per experiment using ImageJ software. Data are
from at least 3 independent experiments and are represented as mean SEM. * p < 0.05, ** p < 0.01, **** p < 0.0001.

4. Discussion

PCa resistance to taxanes involves the interplay between multiple molecular mech-
anisms, including increased activation of anti-apoptotic proteins, multi-drug resistant
transporters, cytokines and chemokines, stress and antioxidant proteins, AR variants, GR
signaling, microtubule alterations, miRNAs, and EMT/CSC-associated signaling path-
ways [3,4,6,47–49]. Dissecting these mechanisms is essential for identifying molecular
pathways or complexes that could be targeted in combination with taxanes for cura-
tive mCRPC treatments. The goals of this study were to characterize the endogenous
LEDGF/p75 IBD interactome in taxane-resistant mCRPC cellular models and explore its
potential as a therapeutic target to overcome this resistance.

Our group demonstrated previously that ectopic overexpression of LEDGF/p75 in PCa
cells confers protection to DTX-induced cell death, its endogenous levels of LEDGF/p75
are upregulated in mCRPC cellular models selected for DTX resistance, and targeting
this protein in chemoresistant PCa cells can resensitize them to taxanes [6,9]. In addition,
we established that the interaction between the LEDGF/p75 N-terminal PWWP domain
and MeCp2 increases the promoter activity of HSP27 [27], a LEDGF/p75 target gene im-
plicated in PCa chemoresistance [50]. LEDGF/p75 is a druggable target, and disruption
of its IBD-mediated protein interactions has been proposed as a potential therapeutic
strategy for HIV/AIDS and leukemia [51–53]. However, while some LEDGF/p75 IBD-
interacting partners have been implicated in cancer, including leukemia, medulloblastoma,
and PCa [15,19,33,34,37,40,44,53–56], very little is known about their collective contribu-
tion to PCa chemoresistance. We hypothesized that this interactome is endogenously
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upregulated in cellular models of PCa chemoresistance and that targeting it could pro-
vide a rationale for exploring its potential as a novel therapeutic strategy to overcome
taxane resistance.

To our knowledge, this is the first study where the currently known LEDGF/p75
IBD interactome is evaluated endogenously, in a specific cancer model, and in the con-
text of cancer chemoresistance. Previous studies from our group and others have used
E. coli-purified recombinant proteins and ectopic overexpression of tagged-recombinant
proteins in common laboratory cell lines (e.g., HeLa, 293T, PC3, etc.) to establish in-
teractions between the LEDGF/p75 PWWP and IBD domains and other transcription
factors [19,27,34–37,54,57,58]. These studies have generated a wealth of valuable informa-
tion on the detailed molecular interactions between these proteins and their implications
for malignancy. However, studies on endogenous LEDGF/p75 protein interactions in
clinically relevant cancer cellular models have been more challenging due to the relatively
low expression of some IBD interactome proteins in many established cell lines, as well
as the limited availability of antibodies that can efficiently co-IP endogenous LEDGF/p75
with its interacting partners. Using co-IP and confocal microscopy approaches, we took
advantage of the upregulation of this interactome in DTX-resistant cells, and the availability
of highly specific human anti-LEDGF/p75 autoantibodies (known as DFS or anti-DFS70
autoantibodies), to establish that LEDGF/p75 interacts endogenously with its known
IBD-binding partners in a pre-clinical cellular model of cancer chemoresistance. We should
note that the clinical and biological significance of these DFS autoantibodies is still unclear
given their presence in subsets of healthy individuals, particularly young women and
children, patients with diverse inflammatory conditions, and even subsets of patients
with PCa [16,20]. They are considered as negative biomarkers of systemic autoimmune
rheumatic disease and sensors of an aberrantly regulated LEDGF/p75 [16,20]. Their recog-
nition of conformational and linear epitopes along the entire IBD region [45] is still puzzling
but makes them valuable tools in studies of LEDGF/p75 biology.

The upregulation of the LEDGF/p75 IBD interactome in DTX-resistant PCa cells is
likely to increase global RNAPII-mediated transcription, consistent with the notion that
cancer cells become “addicted” to high levels of transcription to maintain their malignant
phenotype, including resistance to stressors such as chemotherapeutic drugs and inhibitors
of transcription [59]. It is not clear, however, what is driving the expression of this in-
teractome in DTX-resistant PCa cells. It is well established that AR signaling drives PCa
progression by upregulating the expression of cell survival and cancer-related genes in
AR-positive PCa cells (2-4). However, GR bypasses AR signaling and drives the expression
of both GR-target and AR-target genes, including therapy resistance genes, in PCa cells that
are androgen refractory or treated with long-term anti-androgen therapy [60]. We reported
previously that both AR and GR signaling upregulate LEDGF/p75 expression in metastatic
PCa cells [61]. Further, as shown in Figure 4, the translocation of JPO2 into the nucleus
is dependent on GR activation by glucocorticoids. Therefore, follow-up studies should
determine if the expression, nuclear localization, and functions of LEDGF/p75 and its IBD
interacting partners are dependent on GR signaling in GR-positive DTX-resistant cells.

Of note, c-MYC, a JPO2-interacting partner and amplifier of RNAPII-transcribed
genes [44,59], was detected as part of the endogenous LEDGF/p75 interactome, although
there is no evidence that the two proteins physically interact. It is likely that c-MYC as-
sociates with this interactome through its interaction with JPO2 and not through direct
binding to LEDGF/p75. JPO2 and LEDGF/p75 were reported as coordinately upregu-
lated in murine and human metastatic medulloblastoma and interact in medulloblastoma
cell lines to promote P13K/AKT signaling and cell migration [54]. Recently, it was also
reported that JPO2 expression is elevated in PCa and promotes disease aggressiveness by
stabilizing c-MYC [44]. Thus, it is plausible that JPO2 brings c-MYC into close proximity to
LEDGF/p75 to facilitate its localization to active chromatin as part of the RNAPII transcrip-
tion complex. However, LEDGF/p75 alone may not be essential for this since its depletion
did not affect c-MYC nuclear localization in the DTX-resistant cells.
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HRP2, which in concert with LEDGF/p75 tethers IBD-interacting partners to active
chromatin and facilitates RNAPII transcription [35–38], may likely facilitate the localization
of c-MYC and other transcription factors to active chromatin in the absence of LEDGF/p75.
Our observation that LEDGF/p75 silencing did not completely abrogate cell survival and
clonogenicity in the DTX-resistant cells points to the presence of other factors that may
complement its pro-survival activity (Figure 7, Figure 8, Figures S4 and S6). HRP2, for
instance, interacts with other IBD interactome members (e.g., menin, MLL, and IWS1)
and contributes to HIV-1 integration in LEDGF/p75-knockout cells through IBD-mediated
interaction with the HIV-integrase, suggesting that in the absence of LEDGF/p75, it may
still facilitate RNAPII transcription of cell survival genes [34,35]. Our observation that
knockdown of HRP2, as well as JPO2, robustly abrogated the survival, clonogenicity, and
tumorsphere formation capacity of DTX-resistant cells implicates for the first time these
proteins in the survival of chemoresistant PCa cells. These results are consistent with recent
studies showing that depletion of LEDGF/p75 sensitizes mixed-lineage leukemic cells
to chemoresistance and that individual or combined silencing of LEDGF/p75 and HRP2
reduces the in vivo growth of treatment-resistant glioma [15,62].

While LEDGF/p75 silencing moderately affected the nuclear localization of JPO2, menin,
and MLL, it had no effects on HRP2 and c-MYC, which would be consistent with a lack of
direct physical interaction between LEDGF/p75 and HRP2 or c-MYC. However, given that
LEDGF/p75 and HRP2 share significant structural and functional homology [35–38], we
expected to detect both proteins in the same transcription factor complex in DTX-resistant
cells. This would allow them to function together, or play redundant roles, in tethering
transcription factors to active chromatin sites to promote increased RNAPII transcription of
cell survival genes in the taxane-resistant cells. Consistent with this, both LEDGF/p75 and
HRP2 interact with menin and MLL in mixed lineage leukemia to promote transcription of
cancer-related genes, cell proliferation, and survival [19,37]. Interestingly, it was noted that
the interaction of HRP2 with MLL was less dependent on menin, a protein that is critical
to facilitate the interaction between LEDGF/p75 and MLL [37]. LEDGF/p75 was also
recently shown to support MLL leukemia resistance to cytarabine chemotherapy, likely via
interaction with co-activators of super-enhancers (SE), highlighting the role of this protein
and its interactome in promoting cancer chemoresistance [15].

Emerging evidence indicates that the menin–MLL complex is upregulated in PCa,
plays a role in AR signaling in AR-positive tumors, and can be targeted with small molecule
inhibitors to reduce xenograft tumor growth [40]. However, its role in AR-negative, DTX-
resistant cells had not been previously investigated. Our results showed for the first time
that menin and MLL are upregulated in DTX-resistant, AR-independent PCa cells and
interact endogenously with LEDGF/p75, and that menin knockdown inhibits the survival,
clonogenicity, and tumorsphere formation of these cells. These results, combined with
those obtained with JPO2 and HRP2, underline a critical role for the LEDGF/p75 IBD
interactome in taxane resistance. While LEDGF/p75 silencing did not affect menin and
MLL expression in DTX-resistant cells, it influenced their nuclear localization pattern. This
is consistent with the role of LEDGF/p75 in tethering these and other IBD-interacting
partners to active chromatin sites [33,34]. It would be important, however, to determine
in future studies whether HRP2 can compensate for the absence of LEDGF/p75 in DTX-
resistant cells by efficiently tethering menin, MLL and other IBD-interacting transcription
factors to active chromatin.

Other members of the LEDGF/p75 interactome that were upregulated in DTX-resistant
PCa cells were IWS1, ASK1, PogZ, and Med-1. While we did not investigate their contribu-
tion to DTX-resistance in PCa cells in this study, there is growing evidence supporting their
role in cancer. For instance, IWS1 phosphorylation by AKT in lung cancer was shown to be
important for the regulation of RNA processing [55]. ASK1 has been implicated in several
cancer signaling pathways, including cellular responses to DTX therapy [56]. While the role
of PogZ in cancer is poorly understood, this protein was reported to interact with HRP2 in
cancer cells to facilitate DNA repair [29,63]. Med-1, a mediator of RNAPII transcription



Cells 2021, 10, 2723 21 of 25

and interactor of the bromodomain protein 4 (BRD4), an SE assembly protein, was re-
cently implicated in leukemia chemoresistance via interaction with LEDGF/p75 [15] and in
enhancing the stemness and metastasis of squamous cell carcinoma via SE formation [64].

A limitation of our study is the lack of transcriptomic or proteomic data from patient-
derived DTX-resistant PCa samples confirming the upregulation of members of the LEDGF/
p75 interactome. It should be emphasized that these clinical samples are extremely difficult
to obtain given the complexity of biopsying bone metastasis, where the DTX-resistant
tumors typically reside. We searched in silico for PCa gene/protein expression datasets
derived from DTX-resistant tumors but were unable to find datasets that specifically
compared transcript or protein expression in taxane-naive vs. taxane-resistant prostate
tumors. In light of this, future translational studies could focus on determining whether the
LEDGF/p75 IBD interactome is upregulated at the transcript or protein level in circulating
tumor cells or circulating exosomes from PCa patients that failed taxane therapy compared
to chemotherapy-naive patients. We should note, however, that c-MYC, a member of the
LEDGF/p75 interactome, has already been implicated as a driver of tumor aggressiveness,
stemness, and chemoresistance in various cancer types, including PCa [41,65–68].

5. Conclusions

Our results revealed the following novel observations: (1) LEDGF/p75 and its IBD
interacting partners are spontaneously upregulated in AR-independent PCa cells that
were selected for taxane resistance; (2) using human anti-LEDGFp75 autoantibodies as
immunoprecipitation tools, we showed that these proteins interact endogenously in DTX-
resistant PCa cells as part of a complex that co-localizes with the active chromatin marker
H3K36me2; (3) c-MYC and HRP2, two proteins that have been linked to LEDGF/p75
function, are members of this interactome in DTX-resistant PCa cells, although it is not
clear if the three proteins interact directly; (4) LEDGF/p75 silencing does not affect the
expression of its interacting partners but influences the nuclear localization of JPO2, menin,
and MLL in DTX-resistant PCa cells; (5) individual silencing of LEDGF/p75, JPO2, menin,
and HRP2 increases apoptosis and abrogates clonogenic and tumorsphere formation
capacity in DTX-resistant PCa cells; and (6) silencing LEDGF/p75 does not affect the
expression of lineage markers (AR or GR) or stemness associated proteins (Oct-4 and
CD44) in PCa cells, suggesting that this protein may not contribute to lineage-specific
nuclear steroid receptors and stemness in PCa. Although the contribution of LEDGF/p75
to chemoresistance has been documented in various cancers, our results implicate for the
first time its IBD interactome in PCa chemoresistance (see visual abstract). Further studies
are necessary to dissect in detail the mechanistic contribution of individual members of
this interactome to DTX resistance. Although drug resistance mechanisms may differ from
one cancer type to another, the recent report that LEDGF/p75-induced chemoresistance
in mixed-lineage leukemia cells involves the activation of cell cycle genes, regulation of
the expression of BRD4 and Med-1, and activation of nuclear SE [15] raises the question
of whether LEDGF/p75 and its IBD-interacting partners, and possibly PWWP-interacting
proteins, induce taxane resistance in PCa cells via similar mechanisms. Future studies
must include RNAseq and ChIPseq studies, followed by functional analyses, focused
on LEDGF/p75, HRP2, and other members of the interactome in the context of PCa
taxane resistance to elucidate the underlying mechanisms. Additional studies targeting
LEDGF/p75 and its interacting partners with small molecule inhibitors, individually and in
combination, in both cell-derived and patient-derived xenograft models of DTX resistance,
are guaranteed to determine the therapeutic potential of targeting this interactome for
overcoming PCa chemoresistance in the clinic.
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Validation and structural character-ization of the LEDGF/p75-MLL interface as a new target for the treatment of MLL-dependent
leukemia. Cancer Res. 2014, 74, 5139–5151. [CrossRef]

54. Chan, T.S.; Hawkins, C.; Krieger, J.R.; McGlade, C.J.; Huang, A. JPO2/CDCA7L and LEDGF/p75 are novel mediators of
PI3K/AKT signaling and aggressive phenotypes in medulloblastoma. Cancer Res. 2016, 76, 2802–2812. [CrossRef]

55. Sanidas, I.; Polytarchou, C.; Hatziapostolou, M.; Ezell, S.A.; Kottakis, F.; Hu, L.; Guo, A.; Xie, J.; Comb, M.J.; Iliopoulos, D.;
et al. Phosphoproteomics screen reveals akt iso-form-specific signals linking RNA processing to lung cancer. Mol. Cell 2014, 53,
577–590. [CrossRef]

56. Dávila-González, D.; Choi, D.S.; Rosato, R.R.; Granados-Principal, S.; Kuhn, J.G.; Li, W.-F.; Qian, W.; Chen, W.; Kozielski, A.J.;
Wong, H.H.; et al. Pharmacological inhibition of NOS activates ASK1/JNK pathway augmenting docetaxel-mediated apoptosis
in triple-negative breast cancer. Clin. Cancer Res. 2018, 24, 1152–1162. [CrossRef] [PubMed]

57. Hendrix, J.; van Heertum, B.; Vanstreels, E.; Daelemans, D.; De Rijck, J. Dynamics of the ternary complex formed by c-Myc
interactor JPO2, transcriptional co-activator LEDGF/p75, and chromatin. J. Biol. Chem. 2014, 289, 12494–12506. [CrossRef]

58. Hughes, S.; Jenkins, V.; Dar, M.J.; Engelman, A.; Cherepanov, P. Transcriptional co-activator LEDGF interacts with Cdc7-Activator
of s-phase kinase (ASK) and stimulates its enzymatic activity. J. Biol. Chem. 2010, 285, 541–554. [CrossRef] [PubMed]

59. Cruz-Ruiz, S.; Urióstegui-Arcos, M.; Zurita, M. The transcriptional stress response and its implications in cancer treatment.
Biochim. Biophys. Acta BBA Rev. Cancer 2021, 1876, 188620. [CrossRef] [PubMed]

60. Kumar, R. Emerging role of glucocorticoid receptor in castration resistant prostate cancer: A potential therapeutic target. J. Cancer
2020, 11, 696–701. [CrossRef] [PubMed]

61. Woods-Burnham, L.; Ross, C.K.C.-D.; Love, A.; Basu, A.; Sanchez-Hernandez, E.S.; Martinez, S.; Ortiz-Hernández, G.L.; Stiel, L.;
Durán, A.M.; Wilson, C.; et al. Glucocorticoids induce stress oncoproteins associated with therapy-resistance in African American
and European American prostate cancer cells. Sci. Rep. 2018, 8, 15063. [CrossRef]

62. Yu, J.R.; LeRoy, G.; Bready, D.; Frenster, J.D.; Saldaña-Meyer, R.; Jin, Y.; Descostes, N.; Stafford, J.M.; Placantonakis, D.G.; Reinberg,
D. The H3K36me2 writer-reader dependency in H3K27M-DIPG. Sci. Adv. 2021, 7, eabg7444. [CrossRef]

63. Baude, A.; Aaes, T.L.; Zhai, B.; Al-Nakouzi, N.; Oo, H.Z.; Daugaard, M.; Rohde, M.; Jäättelä, M. Hepatoma-derived growth
factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Res. 2016, 44, 2214–2226. [CrossRef]

64. Dong, J.; Li, J.; Li, Y.; Ma, Z.; Yu, Y.; Wang, C.-Y. Transcriptional super-enhancers control cancer stemness and metastasis genes in
squamous cell carcinoma. Nat. Commun. 2021, 12, 3974. [CrossRef]

65. Civenni, G.; Malek, A.; Albino, D.; Garcia-Escudero, R.; Napoli, S.; Di Marco, S.; Pinton, S.; Sarti, M.; Carbone, G.M.; Catapano,
C.V. RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer.
Cancer Res. 2013, 73, 6816–6827. [CrossRef] [PubMed]

66. Fatma, H.; Maurya, S.K.; Siddique, H.R. Epigenetic modifications of c-MYC: Role in cancer cell reprogramming, progression and
chemoresistance. Semin. Cancer Biol. 2020. online ahead of print. [CrossRef]

67. Han, H.; Lee, H.H.; Choi, K.; Moon, Y.J.; Heo, J.E.; Ham, W.S.; Jang, W.S.; Rha, K.H.; Cho, N.H.; Giancotti, F.G.; et al. Prostate
epithelial genes define therapy-relevant prostate cancer molecular subtype. Prostate Cancer Prostatic Dis. 2021. online ahead of
print. [CrossRef] [PubMed]

68. Hatano, K.; Yamaguchi, S.; Nimura, K.; Murakami, K.; Nagahara, A.; Fujita, K.; Uemura, M.; Nakai, Y.; Tsuchiya, M.; Nakayama,
M.; et al. Residual prostate cancer cells after docetaxel therapy increase the tumorigenic potential via constitutive signaling of
CXCR4, ERK1/2 and c-Myc. Mol. Cancer Res. 2013, 11, 1088–1100. [CrossRef] [PubMed]

http://doi.org/10.1016/j.bmc.2012.12.012
http://doi.org/10.1158/0008-5472.CAN-13-3602
http://doi.org/10.1158/0008-5472.CAN-15-2194
http://doi.org/10.1016/j.molcel.2013.12.018
http://doi.org/10.1158/1078-0432.CCR-17-1437
http://www.ncbi.nlm.nih.gov/pubmed/29301832
http://doi.org/10.1074/jbc.M113.525964
http://doi.org/10.1074/jbc.M109.036491
http://www.ncbi.nlm.nih.gov/pubmed/19864417
http://doi.org/10.1016/j.bbcan.2021.188620
http://www.ncbi.nlm.nih.gov/pubmed/34454982
http://doi.org/10.7150/jca.32497
http://www.ncbi.nlm.nih.gov/pubmed/31942193
http://doi.org/10.1038/s41598-018-33150-2
http://doi.org/10.1126/sciadv.abg7444
http://doi.org/10.1093/nar/gkv1526
http://doi.org/10.1038/s41467-021-24137-1
http://doi.org/10.1158/0008-5472.CAN-13-0615
http://www.ncbi.nlm.nih.gov/pubmed/24063893
http://doi.org/10.1016/j.semcancer.2020.11.008
http://doi.org/10.1038/s41391-021-00364-x
http://www.ncbi.nlm.nih.gov/pubmed/33903734
http://doi.org/10.1158/1541-7786.MCR-13-0029-T
http://www.ncbi.nlm.nih.gov/pubmed/23788635

	Introduction 
	Materials and Methods 
	Cell Lines 
	Antibodies 
	Immunoblotting 
	Quantitative Real-Time PCR 
	MTT Viability Assay and Determination of IC50 Values 
	Ingenuity Pathway Analysis 
	Validation of Human Anti-LEDGF/p75 Autoantibodies 
	Co-Immunoprecipitation 
	Confocal Microscopy 
	Nuclear Detection of JPO2 
	RNA Interference 
	Apoptosis Assays 
	Clonogenic Assays 
	Tumorsphere Formation Assays 
	Measurement of Surface CD44 Antigen 
	Statistical Analysis 

	Results 
	The LEDGF/p75 IBD Interactome Is Endogenously Overexpressed in DTX-Resistant PCa Cells 
	LEDGF/p75 Interacts Endogenously with IBD-Binding Partners in DTX-Resistant PCa Cells 
	LEDGF/p75 Colocalizes with Interacting Partners in Nuclei of DTX-Resistant PCa Cells 
	LEDGF/p75 Depletion Does Not Alter the Protein Expression of Its Interacting Partners but May Influence Their Nuclear Localization 
	Depletion of LEDGF/p75, JPO2, Menin, or HRP2 Enhances Apoptosis in DTX-Resistant Cells 
	Depletion of LEDGF/p75, JPO2, Menin, or HRP2 Inhibits the Clonogenicity and Tumorsphere Formation Capacity of DTX-Resistant PCa Cells 
	Depletion of LEDGF/p75 in PCa Cells Does Not Lead to Decrease in Lineage-Specific or Stemness Markers 

	Discussion 
	Conclusions 
	References

