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N-methyl-D-aspartate receptors (NMDARs) belong to a family of ionotropic glutamate
receptors that play essential roles in excitatory neurotransmission and synaptic plasticity
in the mammalian central nervous system (CNS). Functional NMDARs consist of
heterotetramers comprised of GluN1, GluN2A-D, and/or GluN3A-B subunits, each of
which contains four membrane domains (M1 through M4), an intracellular C-terminal
domain, a large extracellular N-terminal domain composed of the amino-terminal
domain and the S1 segment of the ligand-binding domain (LBD), and an extracellular
loop between M3 and M4, which contains the S2 segment of the LBD. Both the
number and type of NMDARs expressed at the cell surface are regulated at several
levels, including their translation and posttranslational maturation in the endoplasmic
reticulum (ER), intracellular trafficking via the Golgi apparatus, lateral diffusion in the
plasma membrane, and internalization and degradation. This review focuses on the
roles played by the extracellular regions of GluN subunits in ER processing. Specifically,
we discuss the presence of ER retention signals, the integrity of the LBD, and critical
N-glycosylated sites and disulfide bridges within the NMDAR subunits, each of these
steps must pass quality control in the ER in order to ensure that only correctly assembled
NMDARs are released from the ER for subsequent processing and trafficking to the
surface. Finally, we discuss the effect of pathogenic missense mutations within the
extracellular domains of GluN subunits with respect to ER processing of NMDARs.

Keywords: disulfide bridges, glutamate receptor, glycosylation, excitatory synapse, posttranslational
modification

INTRODUCTION

N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that play an
essential role in mediating excitatory neurotransmission (Traynelis et al., 2010; Vieira et al., 2020).
NMDARs are heterotetramers comprised of two GluN1 (with eight splice variants) and two
GluN2 (GluN2A through GluN2D) and/or GluN3 (GluN3A and GluN3B) subunits (Paoletti, 2011;
Perez-Otano et al., 2016). All GluN subunits contain four membrane domains (M1 through M4), an

Abbreviations: AMPA, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid; ATD, amino-terminal domain; CNS,
central nervous system; COPII, coat protein complex II; COS, the cells being CV-1 in Origin, and carrying the SV40
genetic material; CTD, C-terminal domain; ER, endoplasmic reticulum; Ero1, ER oxidoreductin 1; GA, Golgi apparatus;
HEK293, human embryonic kidney 293 cells; LAOBP, leucine–arginine–ornithine binding protein; LBD, ligand-binding
domain; NMDAR,N-methyl-D-aspartate receptor; NTD, N-terminal domain; PDB, Protein Data Bank; PDI, protein disulfide
isomerase; PSD-MAGUKs, postsynaptic density (PSD)-95 family of membrane-associated guanylate kinases.
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extracellular amino-terminal domain (ATD) and the S1 segment
of the ligand-binding domain (LBD), an extracellular loop
between M3 and M4 containing the S2 segment of the LBD, and
an intracellular C-terminal domain (CTD) (Traynelis et al., 2010;
Paoletti et al., 2013; Figure 1A). It has been well established that
the S1 and S2 segments grasp their specific amino acid ligands
in the cleft and close around it after its binding, resembling a
Venus fly trap or a clamshell-like domain (Felder et al., 1999;
Traynelis et al., 2010). The conventional NMDAR subtype—
comprised of GluN1 and GluN2—is activated upon binding an
agonist such as L-glutamate to the LBD of GluN2 (hereafter
called the “glutamate-binding site”) together with a co-agonist
such as glycine to the LBD of GluN1 (hereafter called the
“glycine-binding site”). The unconventional NMDAR subtype—
comprised of GluN1 and GluN3—is activated by agonist binding
to the glycine-binding site of GluN3, with desensitization
mediated by binding of a co-agonist to the glycine-binding site
of GluN1. There were also found the triheteromeric NMDARs
such as GluN1/GluN2A/GluN2B and GluN1/GluN2/GluN3A
receptors with functional and pharmacological properties
different from diheteromeric NMDARs (Perez-Otano et al., 2016;
Stroebel et al., 2018). Thus, the NMDARs are composed of
various combinations of GluN subunits, which dictates their
functional properties.

Surface numbers and types of NMDARs are dynamically
regulated by the balance between their exocytosis and
internalization (Wenthold et al., 2003; Vandenberghe and
Bredt, 2004; Horak et al., 2014). The biogenesis of NMDAR
begins with the transcription of the GRIN subunit genes,
followed by their translation in the rough ER. It has been shown
that a large amount of unassembled GluN1 is present in the ER
in mammalian neurons, whereas both GluN2A and GluN2B are
expressed in limited numbers (Chazot and Stephenson, 1997;
Huh and Wenthold, 1999). Unassembled GluN1-1, GluN2,
and GluN3 are retained in the ER due to the presence of ER
retention signals in the CTD of GluN subunits (Okabe et al.,
1999; Perez-Otano et al., 2001), such as the KKK and RRR
motifs in the C1 cassette of the GluN1 (Standley et al., 2000;
Scott et al., 2001; Horak and Wenthold, 2009), HLFY motif
in the proximal part of the CTD of the GluN2B (Hawkins
et al., 2004) as well as the RXR motif in the GluN3B (Matsuda
et al., 2003). In addition, ER retention signals in the membrane
domains of the GluN1, GluN2A and GluN2B (Horak et al.,
2008), as well as in the NTDs of the GluN subunits (see below)
are also likely used. Interestingly, the presence of the PSD-95,
Dlg, and Zo-1 (PDZ)-binding motif at the distal end of the
CTD of the GluN1-3 splice variant negates both ER retention
signals in the C1 cassette, likely due to its interaction with
postsynaptic density (PSD)-95 family of membrane-associated
guanylate kinases (PSD-MAGUKs) and/or coat protein complex
II (COPII) (Standley et al., 2000; Scott et al., 2001; Mu et al.,
2003). Given the fact that splicing of GluN1 is regulated by
synaptic activity (Mu et al., 2003), it is clear that the processing
of unassembled GluN subunits in the ER is a complex and highly
regulated process. Several models have been proposed to describe
the assembly of functional NMDAR heterotetramers in the ER,
including the involvement of GluN1-GluN1 and GluN2-GluN2

homodimers (Meddows et al., 2001; Schorge and Colquhoun,
2003; Papadakis et al., 2004; Qiu et al., 2005) or GluN1-GluN2
heterodimers (Schuler et al., 2008). On the contrary, another
model predicts that GluN1-GluN1 homodimers are essential
for oligomeric assembly with the GluN2 subunit (Atlason
et al., 2007). The assembled NMDAR heterotetramers are
further processed by ER quality control machinery, which likely
controls that they are in the correct conformation, as well
as that all ER retention signals within the GluN subunits are
properly negated. NMDARs then likely bypass the somatic Golgi
apparatus (GA), and are processed in dendritic Golgi outposts
(Jeyifous et al., 2009), from which they are delivered in vesicles
to extrasynaptic membranes via exocytosis (Gu and Huganir,
2016). Surface NMDARs can be anchored by postsynaptic
density through lateral diffusion (Tovar and Westbrook, 2002;
Groc et al., 2004, 2006) or undergo endocytosis, recycling and
degradation (Roche et al., 2001; Nong et al., 2003; Lavezzari
et al., 2004; Scott et al., 2004). There are many comprehensive
reviews that cover events that occur during NMDAR transport
to and from cell surface membranes, especially focusing on
the CTD domains of GluN subunits (Wenthold et al., 2003;
Vandenberghe and Bredt, 2004; Lau and Zukin, 2007; Petralia
et al., 2009; Horak et al., 2014; Perez-Otano et al., 2016; Vieira
et al., 2020). The focus of this review is to summarize and discuss
the most up-to-date knowledge regarding the ER processing
of NMDARs, with an emphasis on the role of the extracellular
GluN domains. A major hypothesis in this field is that the ER
quality control machinery senses the proper ligand occupancy
and function of the NMDAR using a shared mechanism
with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptors (AMPARs) and kainate receptors (Penn et al., 2008;
Coleman et al., 2009, 2010; Scholefield et al., 2019). Although
this hypothesis is supported by a limited series of mutant
NMDARs (Kenny et al., 2009; She et al., 2012; Skrenkova
et al., 2019), experiments involving a larger series of mutant
NMDARs complicate this relatively simplistic interpretation, as
the EC50 values for agonists are often not correlated with the
surface expression of mutant NMDARs (Swanger et al., 2016).
In addition, the extracellular parts of the GluN subunits form
multiple disulfide bridges (Laube et al., 1993; Choi et al., 2001;
Lipton et al., 2002; Furukawa and Gouaux, 2003; Papadakis
et al., 2004), as well as they are robustly N-glycosylated in the
ER (Chazot et al., 1995; Everts et al., 1997; Huh and Wenthold,
1999; Kaniakova et al., 2016); however, how these modifications
contribute to the individual steps necessary for ER processing
of the NMDARs remains largely unknown. The relevance of this
review is emphasized by the fact that there have been identified
many pathogenic mutations in the GluN subunit genes, directly
linked to a variety of neuropsychiatric disorders and conditions,
which could alter the ER processing of the NMDARs (Hu et al.,
2016; Garcia-Recio et al., 2020).

THE ATD IN GluN SUBUNITS

The ATD in mammalian GluN subunits is an extracellular
domain comprised of approximately 400 amino acids
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FIGURE 1 | Continued
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FIGURE 1 | (A) The crystal structure of the GluN1/GluN2B heterotetramer (PDB code: 5IOU) (Zhu et al., 2016), including the glycine (yellow) and L-glutamate (gray)
molecules. ATD, amino-terminal domain; LBD, ligand-binding domain; MD, membrane domain (the C-terminal domain is not shown). The GluN1 is shown in red, and
the GluN2B is shown in green. (B,E) Schematic depiction of the LBD in the GluN1 (PDB code: 1PB7), GluN3A (PDB code: 2RC7), GluN2A (PDB code: 5H8Q), and
GluN2B (PDB code: 5IOU), including the glycine [yellow, (B)] and L-glutamate [gray, (E)] molecules. The amino acid residues reviewed in the text are indicated, and
residues included in the published series of mutant NMDARs with altered EC50 values for glycine/L-glutamate and surface expression are shown in orange. (C) The
relationship of surface expression of mutated GluN1 co-expressed with wild-type GluN3A (Skrenkova et al., 2019), the EC50 values for glycine were obtained using
GluN1/GluN2A receptors (Williams et al., 1996; Kvist et al., 2013; Skrenkova et al., 2020). (D) The relationship of surface expression of GluN1/GluN3A receptors with
analogous mutations in GluN1 and GluN3A (Skrenkova et al., 2019). (F,G) The relationship of surface expression of the indicated GluN1/GluN2A (F) or
GluN1/GluN2B (G) receptors with their EC50 values for L-glutamate (Laube et al., 1997; She et al., 2012; Swanger et al., 2016). If necessary, the values of the
relative surface expression of NMDARs were obtained by calculating values from graphs from the publications using ImageJ 1.52N software (National Institutes of
Health, Bethesda, Maryland, United States) (Schneider et al., 2012).

residues, with 35–57% homology among the GluN2A
through GluN2D and 22% homology between GluN1 and
GluN3 (Hansen et al., 2010; Romero-Hernandez et al., 2016).
Structurally, the ATDs of GluN subunits are clamshell-
like bi-lobed structures with two modular halves, called
R1 (distal to the membrane region) and R2 (proximal
to the membrane region), linked to the LBD via ATD-
LBD linkers (Karakas et al., 2009). Importantly, ATDs
have been shown to regulate the functional properties of
NMDARs in a subunit-dependent manner (Yuan et al.,
2009; Mesic et al., 2016). In addition, ATDs contain
modulatory binding sites for endogenous ions, such as
Zn2+ and H+, at both GluN1/GluN2A and GluN1/GluN2B
receptors (Paoletti et al., 1997; Rachline et al., 2005;
Gielen et al., 2009; Jalali-Yazdi et al., 2018). More detailed
information on the structural roles that ATDs play in
regulating the functional and pharmacological properties of
NMDARs can be found in previously published excellent
reviews (Hansen et al., 2010, 2018; Regan et al., 2015;
Stroebel and Paoletti, 2020).

The ATD likely mediates the assembly of the initial
GluN subunit dimers in the ER. For example, removing
the first 380 residues in the GluN1 abolished GluN1-GluN1
homodimerization as well as the subunit’s association with
GluN2A, leading to reduced surface delivery of GluN1/GluN2
receptors (Meddows et al., 2001). More recently, Farina and
colleagues found that the Y109C and T110A mutations in
the GluN1 promote homodimerization and heterodimerization,
respectively (Farina et al., 2011). In addition, work by our
group and others identified an ER retention signal in the
A2 segment of the ATD in the GluN2A and GluN2C,
but not the GluN2B; this signal is masked by the ATD
in GluN1 during the formation of GluN1/GluN2 receptors
(Horak et al., 2008; Qiu et al., 2009; Lichnerova et al.,
2014). Although it is currently unknown whether the ATD
in GluN3 contains an ER retention signal, a GluN3A lacking
the ATD has reduced surface delivery of NMDARs (Skrenkova
et al., 2019). With respect to pathogenic mutations, the
ATDs in GluN subunits have reduced negative selection
compared to the LBDs, resulting in a wide range of missense
mutations in the GluN2; however, the precise effect of
these mutations on the early processing of NMDARs is
poorly understood (Swanger et al., 2016). We would like
to emphasize the fact that it is currently unclear whether
conformational changes in ATDs, including those induced by

interactions with Zn2+ and H+, are sensed by ER quality
control mechanisms.

THE GLYCINE-BINDING SITE IN GluN1
AND GluN3 SUBUNITS

Johnson and Ascher (1987) found that glycine is a co-agonist
of NMDARs. Kuryatov et al. (1994) then identified the key
amino acid residues of the GluN1 for its interaction with glycine.
Binding assays with isolated LBDs of the GluN1 and GluN3
showed that glycine’s affinity for the GluN1 is 26.4 µM (Furukawa
and Gouaux, 2003) while it is approximately 650-fold higher for
the GluN3A (Yao and Mayer, 2006), even though the LBDs in
the GluN1 and GluN3 share 34% amino acid identity (Yao et al.,
2008). Subsequently, structural studies showed that in the case of
the GluN1, the α-carboxyl group in the glycine molecule interacts
with the subunit via the guanidium group at R523, the amide
groups at T518 and S688, and the hydroxyl group at S688, while
the amino group in glycine interacts with the P516, T518, and
D732 residues. In addition, the Q405 residue creates internal
bonds with W731 and D732 (Furukawa and Gouaux, 2003), and
the side chain of F484 residue in GluN1 forms key hydrophobic
interactions with W731 and caps the binding site as a lid, thus
sterically prevents the bound agonist from leaving the closed
cleft conformation of the LBD (Kalbaugh et al., 2004; Inanobe
et al., 2005). Similarly, the carboxyl group in the glycine molecule
interacts with R638, S633, and S801 residues in GluN3A, and the
amino group in glycine binds to S631, S633, and D845 residues.
The GluN3A’s ligand-binding site is closed by an interaction
between the E522 residue and the M844 and D845 residues and
is capped by the side chain in the Y605 residue (Yao et al., 2008).
Interestingly, D-serine binds the GluN1 with an affinity of∼7 µM
(Furukawa and Gouaux, 2003), and GluN3 binds D-serine with
even higher affinity (Yao and Mayer, 2006). In addition, four
water molecules form interactions between the glycine molecule
and the LBD in the GluN1 (Furukawa and Gouaux, 2003); in
the case of GluN3, three water molecules interact with the LBD
(Yao et al., 2008). The mechanism of D-serine binding to GluN1
and GluN3A is similar to the mechanism for glycine binding,
except that the carboxyl group in the D-serine molecule forms
bonds with GluN1 and GluN3A via the hydroxyl groups in
T518 and S633, respectively, the hydroxyl groups in S688 and
S801, respectively, and the carboxyl groups in D732 and D845,
respectively (Furukawa and Gouaux, 2003; Yao et al., 2008).
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Consistent with the hypothesis that quality control
mechanisms in the ER sense receptor’s ligand occupancy,
the surface expression of NMDARs carrying mutations in the
glycine-binding site in GluN1 and GluN3 were examined.
Specifically, the D732A mutation in the GluN1 —which
decreases the GluN1/GluN2B receptor’s affinity for glycine
approximately 30,000-fold due to the disruption of the hydrogen
bond between the carboxyl group of D732 and the amino
group of glycine (Williams et al., 1996)—reduces the surface
delivery of GluN1/GluN2A receptors by approximately 90%
(Kenny et al., 2009). In addition, three other mutations in GluN1
were studied: A714L, which destabilizes the glycine-bound
closed cleft conformation of the LBD of GluN1 (Furukawa
and Gouaux, 2003); F484A, which lacks an aromatic ring
responsible for forming hydrogen bonds in its side chain; and
T518L, which disrupts the hydrogen bonds that coordinate
glycine within its binding site (Yao and Mayer, 2006). In
addition, GluN1 with the F484A and T518L double mutations
was studied, previously found to be insensitive to glycine at
concentrations up to 30 mM (Kvist et al., 2013). The mutated
GluN1/GluN3A receptors exhibited reduced surface expression
in contrast to wild-type receptor in the following descending
order: GluN1-A714L/GluN3A, GluN1-F484A/GluN3A,
GluN1-T518L/GluN3A, GluN1-D732A/GluN3A, and GluN1-
F484A + T518L/GluN3A (Skrenkova et al., 2019); which
is correlated with respect to the glycine EC50 values for
GluN1/GluN2 receptors (Kvist et al., 2013) and the time constant
of desensitization for GluN1/GluN3A receptors (Skrenkova et al.,
2019). Similarly, the GluN1/GluN3A receptors with analogous
mutations in the GluN3A were expressed at the cell surface
in the following order (from highest to lowest expression):
wild-type GluN1/GluN3A, followed GluN1/GluN3A-
T825L, GluN1/GluN3A-Y605A, GluN1/GluN3A-S633L,
GluN1/GluN3A-D845A, and GluN1/GluN3A-Y605A-
S633L (Skrenkova et al., 2019; Figures 1B–D). Moreover,
GluN1/GluN3A receptors in which the GluN3A contains the
pathogenic D845N mutation (classified by the UCSC browser as
“clinically associated”) failed to reach the cell surface and produce
functional NMDARs (Skrenkova et al., 2019). The fact that all of
the mutated amino acid residues in the LBD—with the exception
of F484 and Y605 in the GluN1 and GluN3A, respectively—
directly interact with glycine indicates that the LBD’s sensitivity
for glycine is likely the sole factor that regulates the surface
delivery of GluN3A-containing NMDARs. This conclusion
is supported by the pathogenic S688Y mutation in GluN1—
sterically preventing the binding of both glycine and D-serine to
the LBD—which profoundly reduces the surface expression of
GluN3A-containing NMDARs (Skrenkova et al., 2020).

THE GLUTAMATE-BINDING SITE IN
GluN2 SUBUNITS

The first indication of the existence of NMDARs dates back
to 1963, when Curtis and Watkins tested large series of
synthetic substances and one of the compounds tested was
NMDA (Curtis and Watkins, 1963), which later provided the

name for this group of glutamate receptors. Interestingly, as
nicely reviewed previously, the effect of NMDA was known
before the confirmation of L-glutamate as one of the major
neurotransmitters in the mammalian CNS (Watkins, 2000).
Laube et al. (1997) mutated amino acid residues in GluN2B
according to sequence homology to GluN1 and the evolutionary
ancestor from the bacterial leucine-arginine-ornithine binding
protein (LAOBP) and they discovered the following amino
acid residues involved in direct interaction with L-glutamate
(which was later confirmed by crystallography): E413, H486,
S512, R519, V686, and S690. Subsequently, it was shown
that the LBDs of different GluN2 subunits show slightly
different EC50 values for L-glutamate (GluN2D: ∼0.5 µM;
GluN2C: ∼1.7 µM; GluN2B: ∼2.9 µM; GluN2A: ∼3.3 µM)
(Erreger et al., 2007). Because only eight of the 39 amino
acid residues directly lining in the ligand binding pocket are
different among the GluN2 subunits (Kinarsky et al., 2005), it
is unlikely that single amino acid residue replacement could
be responsible for the different sensitivity of GluN2 subunits
to L-glutamate (Anson et al., 1998; Chen et al., 2005; Hansen
et al., 2005; Kinarsky et al., 2005; Erreger et al., 2007). The
first crystal structure with the LBD of GluN2A helped to
fully understand interaction between L-glutamate and NMDAR
(Furukawa et al., 2005). Specifically, this study revealed that
the α-carboxyl group in the L-glutamate molecule interacts
with the guanidium group in the R518 residue and with the
backbone amines in the S689 and T513 residues. Moreover,
the amino group in L-glutamate interacts with the hydroxyl
groups in the S511 and T513 residues and via a water molecule
(W1) with the γ-carboxyl group in E413 and the hydroxyl
group in Y761; in addition, the hydroxyl group in Y730 and
the γ-carboxyl group in E413 forms an interaction between
S1 and S2 segments (Laube et al., 2004; Maier et al., 2007).
The γ-carboxyl group in the L-glutamate molecule interacts
with the backbone amines in the S689 and T690 residues
and with the hydroxyl group in T690, as well as via a water
molecule (W2) with the backbone amines in E691 and G688
and with the carbonyl group in V685 (Jespersen et al., 2014).
In addition, the L-glutamate molecule is stabilized in the LBD
by hydrophobic interactions with the side chains in the H485
and Y730 residues (Furukawa et al., 2005), and Jespersen and
colleagues predicted additional interactions between a third water
molecule (W3) and the carbonyl group in V685 and between
the γ-carboxyl group in the L-glutamate molecule and the
D731 residue (Jespersen et al., 2014). Interestingly, the presence
of the D731 residue (together with the displacement of the
water molecule) leads to the selective binding of NMDA to
GluN2A, in contrast to AMPA and kainate receptors, which
have glutamate with a longer side chain in this homologous
position (Armstrong and Gouaux, 2000; Furukawa et al., 2005;
Jespersen et al., 2014).

To verify the hypothesis that the ER quality control machinery
senses the correct occupation of the NMDAR by L-glutamate,
She et al. prepared a series of mutated GluN2B from a previous
electrophysiological study that identified amino acid residues
critical for interaction with L-glutamate (Laube et al., 1997).
In particular, the authors used the following mutations in
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GluN2B: E413A, which likely disrupts the interaction of
water with the γ-carboxyl group of glutamate, and which also
likely disrupts the interaction between S1 and S2 segments;
F416S, which most likely alters the potency of glutamate
indirectly because this amino acid is not directly involved in
the interaction with L-glutamate; V686A, which has not been
structurally characterized but could theoretically disrupt the
interaction of GluN2B with the water molecule; S690G, which
likely affects the interaction of GluN2B with the α-carboxyl
group of L-glutamate due to the smaller uncharged side chain
(Furukawa et al., 2005). Their elegant experiments revealed
that an increase in the EC50 values for L-glutamate (Laube
et al., 1997) negatively correlates with co-localization with
GA as well as surface delivery of GluN1/GluN2B receptors,
with the following order (from highest to lowest expression):
wild-type GluN1/GluN2B, followed by GluN1/GluN2B-
V686A, GluN1/GluN2B-F416S, GluN1/GluN2B-S690G, and
GluN1/GluN2B-E413A (She et al., 2012). Interestingly, the fact
that not all of these residues are involved in the interaction
between the GluN2B and the L-glutamate molecule (Laube
et al., 1997; Furukawa et al., 2005) supports the notion that
any structural changes that affect the subunit’s sensitivity for
L-glutamate reduce the surface delivery of the NMDARs.
Consistent with this notion, Swanger and colleagues reported
that the surface delivery of NMDARs carrying pathogenic
mutations in the GluN2A LBD had the following rank order
(from highest to lowest expression): wild-type GluN1/GluN2A,
followed by GluN1/GluN2A-V734L, GluN1/GluN2A-
I694T, GluN1/GluN2A-M705V, GluN1/GluN2A-A727T,
GluN1/GluN2A-G483R, GluN1/GluN2A-V685G, and
GluN1/GluN2A-D731N; the same rank order was observed
with respect to the receptor’s affinity for L-glutamate (Swanger
et al., 2016). With the exception of the D731N and V685G
mutations, none of the above-mentioned pathogenic mutations
in GluN2A likely affect direct interaction with L-glutamate.
The observed effect of the V685G mutation could be explained
similarly to the effect of the V686A mutation in GluN2B
(above). In the case of the D731N mutation, it is likely that
the altered side chain charge is a major cause of decreased
NMDAR surface expression. Moreover, the pathogenic E413G
mutation in GluN2B reduced the surface delivery of NMDARs
by approximately 80% and increased the receptor’s EC50 for
L-glutamate approximately 50-fold (Swanger et al., 2016), likely
by promoting the unbinding of L-glutamate and opening of the
LBD (Wells et al., 2018). On the other hand, other pathogenic
mutations within the LBD of GluN2A (A716T, K772E, V452M,
R504W, V506A, K669N, P699S, and E714K) and the LBD
of GluN2B (R540H, R682C, and R696H) revealed no clear
correlation between the receptor’s EC50 for L-glutamate and
surface expression, underscoring the notion that the potency of
L-glutamate is only one factor that regulates the surface delivery
of NMDARs (Figures 1E–G). We would like to emphasize that
existing studies have not systematically investigated homologous
mutations in amino acid residues in the LBDs of GluN2A and
GluN2B, so it is currently unclear whether there are differences
in ER processing of GluN1/GluN2A and GluN1/GluN2B
receptors.

DISULFIDE BRIDGES IN GluN SUBUNITS

Most membrane proteins contain one or more disulfide
bridges, which are important for creating the correct protein
conformations (Oka and Bulleid, 2013; Okumura et al., 2015).
The establishment of disulfide bridges is catalyzed in the ER,
which has a suitable oxidizing environment, as well as a
robust enzymatic apparatus composed of dozens of different
enzymes, such as protein disulfide isomerase (PDI) and ER
oxidoreductin 1 (Ero1) (Bulleid and Ellgaard, 2011; Sato and
Inaba, 2012). As previously reviewed in detail, this enzymatic
apparatus is a key part of the ER quality control machinery
(Feige and Hendershot, 2011; Oka and Bulleid, 2013; Ali Khan
and Mutus, 2014). Interestingly, the functions of key enzymes
regulating production of disulfide bridges may change during
neuropathological conditions, suggesting that proper formation
of disulfide bridges is essential for the normal functioning of the
human CNS (Andreu et al., 2012; Mossuto, 2013; Perri et al.,
2015).

Previous studies have shown that the GluN1 forms disulfide
bridges between the following four pairs of residues: C79-C308,
C420-C454, C436-C455, and C744-C798 (Laube et al., 1993;
Lipton et al., 2002; Furukawa and Gouaux, 2003; Papadakis et al.,
2004); moreover, based on its sequence homology with GluN1
and structural/functional studies, the GluN2A is predicted to
form the following four disulfide bridges: C87-C320, C429-C455,
C436-C456, and C745-C800, and the GluN2B is predicted to
form disulfide bridges between the C86-C321, C429-C456, C436-
C457, and C746-C801 residue pairs (Karakas et al., 2009; Zhang
et al., 2013; Karakas and Furukawa, 2014; Figure 2A). Finally,
three disulfide bridges are predicted to form in the GluN3A
(C537-C575, C543-C576, and C859-C913) and GluN3B (C439-
C475, C445-C476, and C759-C813) (Yao et al., 2008; Grand
et al., 2018). These disulfide bridges are functionally relevant,
as mutating the C79A and/or C308 residue in GluN1 reduces
the surface expression of GluN1/GluN2B receptors in HEK293
cells by approximately 50% (Papadakis et al., 2004); moreover,
mutating the C79 and C308 residues in GluN1 increases the EC50
for NMDA by 25% without affecting the EC50 for glycine in
GluN1/GluN2A receptors (Choi et al., 2001). On the other hand,
mutating the C87 and C320 residues in the GluN2A has no effect
on the surface delivery of GluN1/GluN2A receptors expressed
in HEK293 cells or hippocampal neurons, even though these
residues play a role in the homodimerization of GluN2A (Zhang
et al., 2013). Interestingly, the pathogenic C436R mutation in
the GluN2A and GluN2B decreased the surface expression of
NMDARs by approximately 90% (Serraz et al., 2016; Swanger
et al., 2016; Addis et al., 2017), although GluN1/GluN2A-C436R
receptors have only a slight change in the EC50 for L-glutamate
and glycine (Swanger et al., 2016). Similarly, the pathogenic
C456Y mutation in GluN2B also decreased the surface expression
of NMDARs by approximately 90%, but only slightly alters
the EC50 for both NMDA and glycine (Swanger et al., 2016;
Figures 2C,D). Thus, the presence of specific disulfide bridges
and/or the receptor conformation(s) that they help stabilize—
rather than a change in agonist binding due to the loss of
these bridges—is likely sensed by quality control machinery in
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FIGURE 2 | Schematic diagram showing the approximate locations of the predicted disulfide bridges (A) and N-glycosylation consensus sites [N-X-S/T; (B)] in the
various GluN subunits. The four membrane domains (M1 through M4) are indicated, and the disulfide bridges and N-glycosylation sites implicated in the ER
processing of NMDARs are shown in red (see text for details). (C,D) The relationship of surface expression of mutated GluN1/GluN2 receptors with disrupted
disulfide bridges or N-glycosylation site with EC50 values for glycine (C) or L-glutamate (D) (Choi et al., 2001; Papadakis et al., 2004; Lichnerova et al., 2015;
Swanger et al., 2016; Sinitskiy et al., 2017). If necessary, the values of the relative surface expression of NMDARs were obtained by calculating values from graphs
from the publications using ImageJ 1.52N software (National Institutes of Health, Bethesda, MD, United States) (Schneider et al., 2012).
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the ER. Nevertheless, this hypothesis should be tested directly
in future studies, as previous studies focused primarily on the
functional and pharmacological effects of disrupting disulfide
bridges on GluN1/GluN2 and GluN1/GluN3 receptors at the cell
surface (Laube et al., 1993; Sullivan et al., 1994; Choi et al., 2001;
Grand et al., 2018).

N-GLYCOSYLATION OF GluN SUBUNITS

Proteins found in the mammalian CNS contain a very high
number of tissue-specific N-glycosylated sites, indicating the
importance of N-glycans for the functioning of the CNS
(Zielinska et al., 2010). In general, N-glycosylation of the nascent
polypeptide is initiated in the lumen of the ER by the addition
of a dolichol-linked precursor oligosaccharide and its subsequent
modification to the high-mannose form of N-glycans; this
step is important for the proper assembly and processing of
proteins in the ER (Vagin et al., 2009; Moremen et al., 2012;
Xu and Ng, 2015). N-glycans are then remodeled during their
journey from ER to GA into hybrid and complex forms, by
coordinated activity of several hundred specific enzymes of the
glycosylation apparatus (Vagin et al., 2009). Interestingly, several
thousand different glycan structures have been identified in the
mammalian CNS that are likely to regulate the intracellular
sorting of glycoproteins as well as interactions between cells
and their external environment (Freeze, 2006; Vagin et al., 2009;
Moremen et al., 2012).

The GluN1, GluN2A, GluN2B, GluN3A, and GluN3B contain
12, 7, 7, 12, and 6 predicted N-glycosylation sites, respectively
(Everts et al., 1997; Lichnerova et al., 2015; Skrenkova et al.,
2018; Hemelikova et al., 2019; Figure 2B). When expressed
in HEK293 cells, 11 of the 12 predicted N-glycosylation
sites in the GluN1 and all seven sites in the GluN2B are
occupied by N-glycans (Kaniakova et al., 2016), and early
experiments showed that N-glycosylation is required for the
efficient expression of GluN1/GluN2A receptors in HEK293
cells (Chazot et al., 1995). We previously showed that mutating
either N203 or N368 in the GluN1 reduced the surface
expression of GluN1/GluN2A and GluN1/GluN3A receptors
in HEK293 cells by approximately 70%; moreover, mutating
both N-glycosylation sites reduced the surface expression of
NMDARs in hippocampal neurons by approximately 80%, likely
by disrupting ER processing (Lichnerova et al., 2015; Skrenkova
et al., 2018). On the other hand, no individual N-glycosylation
sites in the GluN2A, GluN2B, or GluN3A are essential for the
surface delivery of NMDARs, although simultaneously mutating
three specific N-glycosylation sites in the GluN3A reduced
the surface expression of NMDARs in hippocampal neurons
by approximately 40% (Lichnerova et al., 2015; Skrenkova
et al., 2018). Interestingly, the simulation predicted that intra-
domain interactions involving a glycan bound to the GluN1-
N440 residue stabilize the closed-clamshell conformation of
the LBD of GluN1, consistently with the fact that GluN1-
N440Q/GluN2A receptors (which cannot be glycosylated at the
GluN1-N440 position) have an EC50 value for glycine increased
by approximately 50% (Sinitskiy et al., 2017). However, none

of the studied NMDAR subtypes containing the GluN1-N440Q
mutation, GluN1-N440Q/GluN2A and GluN1-N440Q/GluN3A,
showed altered surface expression compared to the respective
wild-type receptors (Lichnerova et al., 2015; Skrenkova et al.,
2018; Figure 2C). In addition, treating cerebellar granule cells
with tunicamycin, a specific inhibitor of N-glycosylation in the
ER, reduced the surface delivery of NMDARs but had only a
slight effect on their functional properties (Lichnerova et al.,
2015). Finally, experiments in which hippocampal neurons were
treated chronically with specific inhibitors of the N-glycosylation
pathway revealed that N-glycan remodeling in the ER and
GA is not required for the surface delivery of NMDARs
(Hanus et al., 2016; Skrenkova et al., 2018). Thus, the mere
presence of specific N-glycans on GluN subunits is likely
assessed during the ER processing of NMDARs. We would
like to point out that there is a lack of studies examining the
presence of N-glycans on unconventional motifs and/or the
presence of other glycan structures, such as O-glycans, during ER
processing of the NMDARs.

CONCLUDING REMARKS

In this review, we have focused on summarizing previous studies
on the roles that the extracellular domains of GluN subunits play
in the processing of NMDARs in the ER, including studies that
tested the main hypothesis that the ER quality control machinery
senses the proper ligand occupancy of the NMDARs (Kenny
et al., 2009; She et al., 2012; Skrenkova et al., 2019). There are
several known endogenous ligands of LBDs in GluN2 (e.g., L-
glutamate, D/L-aspartate, homocysteate, and cysteinesulfinate) as
well as GluN1 and GluN3 (e.g., glycine, D/L-serine, and D/L-
alanine) with high affinity for NMDARs (Erreger et al., 2007;
Chen et al., 2008; Dravid et al., 2010; Traynelis et al., 2010).
Although the exact concentrations of these ligands in the ER
are not currently known, they are likely present at sufficiently
high concentrations to fully occupy newly formed wild-type
NMDARs, as they play key roles in intracellular signaling and
metabolic pathways (Berger et al., 1977; Fleck, 2006; Mothet et al.,
2015; Cooper and Jeitner, 2016). In principle, a neuron could
regulate the availability of NMDAR ligands to alter ER processing
of NMDARs, but it is more likely that the ER quality control
machinery verifies the proper functioning of the NMDARs fully
saturated with ligands.

As we have noted, there are likely several independent
mechanisms that are necessary for the proper processing of
NMDARs in the ER. It remains to be clarified whether these
mechanisms are used for individual steps in ER processing of
NMDARs, as redundant to protect against premature release of
NMDARs from the ER, or whether they are used in specific
situations, such as synaptic activity. In either case, NMDARs
likely interact with dozens of other proteins during their
processing in the ER besides previously published ones, such
as Sec8 (Sans et al., 2003), SAP102 (Standley and Baudry,
2000), and SAP97 (Jeyifous et al., 2009). It is important to
emphasize that the mechanisms underlying ER processing of
NMDARs have usually been investigated using mammalian
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cell lines, such as HEK293 and COS-1/-7 cells, and also using
primary cultured mammalian neurons (Standley et al., 2000;
Horak et al., 2008; Kenny et al., 2009; Qiu et al., 2009; She
et al., 2012; Swanger et al., 2016; Skrenkova et al., 2019,
2020). Since the experimental results are often similar between
the mentioned cell types, although the protein compositions
of their ER are likely different (Ramirez and Couve, 2011;
Karagas and Venkatachalam, 2019), we expect that NMDARs use
predominantly general ER quality control mechanisms shared
by all mammalian cells. In addition, the ER quality control
machinery includes a set of specific enzymes that catalyze the
formation of disulfide bridges (Oka and Bulleid, 2013; Okumura
et al., 2015) as well as the N-glycosylation (Vagin et al., 2009;
Moremen et al., 2012), but it is currently unknown which
enzymatic cascades catalyze these modifications of NMDARs.
Therefore, it is now necessary to focus on conducting mechanistic
studies to understand how the ER quality control machinery
processes NMDARs under normal physiological conditions. The
fact that several pathogenic mutations in the GluN subunits
alter the surface delivery of NMDARs (Swanger et al., 2016;
Addis et al., 2017; Chen et al., 2017; Liu et al., 2017; Ogden
et al., 2017; Vyklicky et al., 2018; Skrenkova et al., 2020), further

emphasizes the importance of understanding the molecular
mechanisms regulating ER processing of NMDARs also under
pathophysiological conditions. Given that a wide range of ER
quality control (Munshi and Dahl, 2016; Zhou et al., 2018) and
NMDAR (Traynelis et al., 2010; Strong et al., 2014) modulators
are currently available, it is possible that one of the potential
clinical treatments of patients with abnormal regulation of
NMDARs could be pharmacologically induced alteration of the
ER processing of the NMDARs.
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