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ABSTRACT

Topologically associated domains (TADs) are crucial
chromatin structural units. Evidence has illustrated
that RNA–chromatin and RNA–RNA spatial interac-
tions, so-called RNA-associated interactions (RAIs),
may be associated with TAD-like domains (TLDs). To
decode hierarchical TLDs from RAIs, we proposed
SuperTLD, a domain detection algorithm incorporat-
ing imputation. We applied SuperTLD on four RAI
data sets and compared TLDs with the TADs identi-
fied from the corresponding Hi-C datasets. The TLDs
and TADs share a moderate similarity of hierarchies
≥ 0.5312 and the finest structures ≥ 0.8295. Com-
parison between boundaries and domains further
demonstrated the novelty of TLDs. Enrichment anal-
ysis of epigenetic characteristics illustrated that the
novel TLDs exhibit an enriched CTCF by 0.6245 fold
change and H3 histone marks enriched within do-
mains. GO analysis on the TLD novel boundaries ex-
hibited enriched diverse terms, revealing TLDs’ for-
mation mechanism related closely to gene regula-
tion.

INTRODUCTION

RNAs physically associate with chromatin or other RNAs
via two main mechanisms (1–6). The newly transcribed
RNAs, nascent RNAs, remain at their template DNA se-
quence sites and interact with chromatin in cis-interactions.
After being released from the site of transcription, RNAs
interact with specific genomic loci, or RNAs, through
RNA: DNA hybrid formation or protein-mediated mech-
anism in trans-interactions. The RNA-associated interac-
tions (RAIs) are involved in multiple molecular mecha-
nisms, such as DNA methylation (7), long non-coding RNA
regulation (3,5,6,8) and fusion transcript formation (9).

Recent experimental technologies capture the genome-
wide interactions between RNA and DNA in the nu-
cleus, such as MARGI (10), GRID-seq (8), ChAR-seq
(11), iMARGI (12) and RADICL-seq (13). Through vari-

ous strategies, these technologies capture the chimeric frag-
ments between chromatin-associated RNAs and their spa-
tially adjacent genomic sequences. Compared to technolo-
gies that merely capture a specific RNA’s chromatin bind-
ing regions (14), these methods can handle both coding
and non-coding RNAs, thus contributing to a global view
of RNA–chromatin interactions. In addition, experimental
technologies are developed to infer the spatial associations
between different RNAs (4,15) through chromatin associa-
tion or RNA-binding protein mediation. This work refers to
RNA–chromatin interactions and RNA–RNA interactions
collectively as RAIs.

Several works have demonstrated that RAIs are related
to 3D chromatin structures, especially topologically asso-
ciated domains (TADs) (8,9,11). Chromosomes are orga-
nized into TADs in which DNA sequences within the same
domain interact more frequently than sequences from adja-
cent TADs (16–19). TADs are hierarchical; adjacent TADs
can form a new TAD. Li et al. demonstrated that GRID-
seq has high global concordance with Hi-C data in mESCs
and S2 cells, and chromatin-associated RNAs are predomi-
nantly confined within TADs (8). Guh et al. showed that the
lncRNA Xist can prevent the formation of TADs through
repelling positive chromatin factors and cohesin (6). Bonetti
et al. found that the DNA tags of RNA–chromatin inter-
actions are significantly enriched at TAD boundaries (13).
Based on the fact that TAD boundaries constrain the spread
of transcriptional activities, Bonetti et al. further demon-
strated its barrier effect as preventing the free diffusion
of RNA migration. Altogether, robust evidence has shown
that RAIs could extrapolate genomic interactions related to
RNA production and regulation. However, the systematic
survey of RAI inferred TAD-like domains (TLDs), includ-
ing the computational identification method and compre-
hensive evaluation, remains challenging.

To this end, we introduced SuperTLD, an imputation-
based domain detection method, to infer hierarchical TLDs
from RAIs. SuperTLD first imputes the missing inter-
action frequencies through a negative binomial model
with a mean-variance linear dependency for genes. Then
a Bayesian correction is incorporated into the structural
information theory to detect the hierarchical domains
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from the imputed RAIs. In this work, we collected three
RNA–chromatin interaction data sets, iMARGI, GRID-
seq, RADICL-seq and one RNA–RNA spatial interaction
data set RIC-seq. We detected their hierarchical TLDs via
SuperTLD and explored the inferred TLDs’ structural and
functional properties.

MATERIALS AND METHODS

RAI data sets

In this study, we considered four RAI data sets, among
which three RNA–chromatin interaction data sets are from
iMARGI(12), GRID-seq(8), RADICL-seq(13) and one
RNA–RNA spatial interaction data set is from RIC-seq (4).
For each dataset, we partition the genome into bins, with
each bin along the genome containing the same number of
consecutive nucleic acids. The interaction map is constructed
for each chromosome using the intra-chromosome interac-
tions. The RIC-seq data can be organized as a symmetric
bin-bin interaction map A ∈ R

n×n, ai, j ≥ 0. The interaction
maps of iMARGI, RADICL-seq, and GRID-seq can be
represented as A ∈ R

m×n, ai, j ≥ 0, where m and n are the
number of genes and bins, respectively.

(1) The human embryonic kidney (HEK293T) cell line
RNA–chromatin interactions from iMARGI (12) with
accession number GSE122690. We downloaded the
RNA–DNA interaction read pairs (in BEDPE format)
and constructed the RNA–chromatin interaction map
through binning at resolution 100 kb, with the reference
genome hg38.

(2) The mouse embryonic stem cell line RNA–chromatin in-
teractions from RADICL-seq(13) with accession num-
ber GSE132190. We downloaded the processed interac-
tions (in tab-delimited text format) with crosslinking us-
ing 1% formaldehyde. We derived the RNA–chromatin
interaction map at bin resolution 100 kb, with mm10
reference genome.

(3) The Drosophila S2 cell line RNA–chromatin interactions
from GRID-seq (8) with accession number GSE82312.
We downloaded the processed data where the GRID-
seq value is normalized interaction density between
RNA and DNA (in tab-delimited text format), with
Drosophila genome dm3. Given the short chromosome
size of Drosophila melanogaster, We used a bin resolu-
tion of 40kb to derive the RNA–chromatin interaction
map.

(4) The HeLa RNA–RNA spatial interactions from RIC-
seq (4) with accession number GSE127188. We down-
loaded the processed RNA–RNA interactions (in hic
format) with hg19 reference genome and derived the
symmetric interaction map at bin resolution 100kb.

Hi-C data and preprocessing

We downloaded the corresponding Hi-C datasets of the
four RAI data sets. These are the human embryonic kid-
ney cell line GSE44267 (20), mouse embryonic stem cell line
GSE96107 (21), Drosophila melanogaster embryonic cell

line GSE34453 (22), and HeLa cell line (requested from db-
Gap). We performed Hi-C read alignment using the same
reference genome as each RAI data set and built the Hi-
C contact map with the same bin resolution (23). Knight-
Ruiz normalization (24) is applied to the raw contact map to
equalize the contact numbers of each bin. The normalized
Hi-C contact map can be represented as H ∈ R

n×n , where
each cell hi, j ≥ 0 is the normalized interaction frequency be-
tween bin i and j.

Overview of SuperTLD

SuperTLD, which includes data imputation and hierar-
chical domain detection, is proposed for inferring TLD
structures from the RAI dataset. The RAI interaction
map is first normalized to achieve a uniform read cover-
age across bins for all the genes, as shown in Figure 1A.
Then we assume the normalized interaction frequency
follows a negative binomial distribution, whose parame-
ters are estimated with maximum log-likelihood by matrix
factorization-based stochastic gradient descent. Then the
posterior mean is derived as the imputed RAI. Next, the
hierarchical domain detection designed for the incomplete
graph is applied to the imputed RAI interaction maps for
TLD hierarchy inference (Figure 1B).

Impute the missing interaction frequencies via negative bino-
mial model. A drawback of the RAI capture technology
is that low-abundance RNAs may escape from the detec-
tion (1), resulting in the sparseness and uneven coverage
of the RAI interaction maps. Therefore, we adopted the
negative binomial random variation similar to SAVER (25)
and integrated matrix factorizations to impute RAI data for
mitigating the missing interaction frequencies.

Genomic sequencing technologies are often affected by
biological and technical biases, producing different read
coverage for each genomic region (26), which makes it chal-
lenging to identify the true positive signals. Therefore, the
read coverage is divided by the mean read coverage to
achieve uniform read coverage across bins. As for symmet-
ric interaction maps of the RIC-seq data set, Knight-Ruiz
normalization algorithm (23,24) is adopted to equalize the
row and column sum while maintaining symmetry.

Let mi, j be the normalized interaction frequency between
gene i (or bin i for RIC-seq interaction maps) and bin j in the
RAI interaction map. We model mi, j as a negative binomial
random variable via the following Poisson–Gamma mixture
distribution

mi, j ∼ Poisson(λi,j)

λi, j ∼ Gamma(αi,j, βi,j), (1)

where �i, j represents the true interaction frequency, with
a gamma prior added to account for its uncertainty (25),
�i, j is the shape parameter and �i, j is the rate parameter
of the gamma prior. Under the shape-rate parametrization,
the mean �i, j and variance σ 2

i, j of the gamma-distributed
�i, j is

μi, j = αi, j

βi, j
, σ 2

i, j = αi, j

β2
i, j
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Figure 1. SuperTLD method. (A) Data imputation. Given the RNA–chromatin interaction map, we first perform normalization to equalize the read
coverage across bins. Then we fit a Poisson-Gamma mixture model with a mean-variance linear dependency of genes. To derive the posterior gamma
distribution, we propose two latent factor matrices G, B for genes and bins that decompose � and then alternately train them to maximize log-likelihood
via stochastic gradient descent. Then the posterior mean μ̂ = Ĝ B̂T is derived as the imputed value using the learned Ĝ, B̂. (B) To infer the TLD hierarchy
from the imputed RAI interaction map, we construct the similarity graph of bins and employ dynamic programming to find a partition with minimum
structural entropy. The algorithm can be iteratively applied to increase the hierarchy layers with bottom-up and top-down approaches. While the top-down
approach is by independently applying the dynamic programming to each partition, the bottom-up approach models each partition as a vertex and form
a new similarity graph where the dynamic programming is applied. (C) This flow chart shows the data integration for RNA–chromatin interactions and
RNA–RNA interactions with the corresponding Hi-C. For the RNA–chromatin interaction map (the left part), the Hi-C contact map is first decomposed
to the k-feature representation of bins X. Next, X is concatenated with the imputed RNA–chromatin interactions μ̂ along with the bins through a scaling
factor �. Then the similarity graph is constructed from this concatenated matrix. The integrated data is the weighted sum between the RIC-seq interaction
map and the Hi-C contact map as they share the same bin resolution (the right part).

To address the mean-variance dependency for genes
in RAI data, we assume a Poisson-like distribution of a
gene such that the variance scales linearly with the mean
(constant Fano factor) (25). The constant Fano factor

F can be expressed as Fi = σ 2
i, j

μi, j
= 1

θi
for RNA–chromatin

interaction map, and Fi, j = σ 2
i, j

μi, j
= 1√

θi θ j
for RNA–RNA

interaction map. The gamma prior changes to λi, j ∼
Gamma(μi,jθi, θi) and λi, j ∼ Gamma(μi,j

√
θiθj,

√
θiθj),

respectively.
Our goal is to derive the posterior gamma distribution

of �i, j given the observed interaction frequency mi, j, so as
to use posterior mean μ̂i, j as the imputed value. Inspired
by SMURF(27), we maximize the log-likelihood by matrix
factorization-based stochastic gradient descent (SGD) al-
gorithm. First we propose two latent factor matrices, G ∈
R

m×k for genes and B ∈ R
n×k for bins, where k is the num-

ber of latent factors. We assume �i, j = Gi, � · Bj, � for RNA–
chromatin interaction map, and �i, j = Bi, � · Bj, � for RNA–
RNA interaction map, respectively. Then, we initialize the
latent factor matrix via applying singular value decompo-
sition on M. Next we update the latent factor matrices to
maximize the log-likelihood via SGD. The objective func-
tion for RNA–chromatin interaction map and RNA–RNA
interaction map are defined as Equations (2) and (3), respec-
tively.

min
G,B,θ

∑

(i, j )∈L

−θi gi · b j log θi + log �(θi gi · b j )

− log �(mi, j + θi gi · b j ) + (mi, j + θi gi · b j )

× log(1 + θi ) + 	(||gi ||22 + ||b j ||22) (2)
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min
B,θ

∑

(i, j )∈L,i≤ j

−√
θiθ j bi · b j log

√
θiθ j

+ log �(
√

θiθ j bi · b j ) − log �(mi, j + √
θiθ j bi · b j )

+ (mi, j + √
θiθ j bi · b j ) log(1 + √

θiθ j )

+	(||bi ||22 + ||b j ||22) (3)

where L is the set of mi, j > 0, gi = Gi,� ∈ R
k and bi = Bi,� ∈

R
k. 	 is the hyper-parameter controlling the L2 penalty

to avoid over-fitting. G, B, � are alternately updated via
SGD until the loss converges (see Supplementary Note 1).
Finally, we derive the imputed interaction frequency μ̂ =
Ĝ B̂T or μ̂ = B̂B̂T with the learned latent factor matrices
Ĝ, B̂.

Infer TLD hierarchy from RAI interaction map. Given an
imputed RAI interaction map of a chromosome, we next
construct the similarity graph. We model each bin as a ver-
tex and the interaction frequency as edge weights. For the
imputed RNA–chromatin interaction map, we model the
edge weight as the inner product between two vectors of the
corresponding bins. The adjacency matrix of the similarity
graph is further normalized by shrinking the magnitude of
its singular values.

Finding the TLDs is equivalent to forming a hierarchy
of the vertices. We adapt the tool SuperTAD (28), which is
designed for Hi-C contact maps to construct the TAD hi-
erarchy. SuperTAD employs dynamic programming to find
an optimal coding tree, the hierarchy, with the objective of
minimizing graph structural entropy. The graph structural
entropy measures the uncertainty embedded in the parti-
tioned graph. The similarity graph may underestimate the
actual structural entropy (29). To address this, besides the
negative binomial model-based interaction recovery afore-
mentioned, we adapt SuperTAD to the similarity graph by
incorporating a Bayesian correction during dynamic pro-
gramming and iteratively inferring hierarchy layer by layer.

We briefly review the definition of structural information
(entropy) as follows. Denote the similarity graph as G = (V,
E). A coding treeT of G forms a hierarchical partitioning of
vertices. Each node of T contains a subset of vertices while
the root �T represents all vertices. We term the vertex subset
coded by a node u ∈ T as ST(u). The parent of a node u
is termed as pT(u). For each tree node u ∈ T, u �= �T, the
structural entropy of u is defined as

HT(G; u) = − g(u)
V(G)

log2
V(u)

V(pT(u))

where g(u) is the weight sum of edges between vertices in
and not in ST(u). V(u) is the volume of vertices in ST(u),
i.e., the sum of vertices’ degree. V(G) is the the volume of
the graph G. If a node u is leaf that encodes a vertex, then
g(u) = V(u).

Denote the vertices as (v1, v2, ..., vn), which are ordered
bins according to the chromosome. Let S(n, k) be the struc-
tural entropy of the optimal coding tree that partitions n
vertices into k disjoint subsets. For each state in S, we tra-
verse every vertex vi ∈ {vk − 1, vk, ..., vn − 1} listed before
vn to minimize the sum of structural entropy S(i, k − 1) +

H(G; u) where u is the node encoding {vi + 1, vi + 2, ..., vn}
and H(G; u) is the structural entropy of the subtree with
root u. The recurrent relation of dynamic programming is
as follows:

S(n, k) = min
k−1≤i<n

{S(i, k − 1) + H(G; u)}

= min
k−1≤i<n

{S(i, k − 1) + HT(G; u)

+
∑

i+1≤ j≤n

HT(G; v j )} (4)

The similarity graphs can be sparse, to avoid the under-
estimation of structural entropy, we assume a uniform con-
nected graph prior and incorporate the Bayesian approach
to estimate the actual values of g(u),V(u) (see Supplemen-
tary Note 2). We use the Bayesian estimated parameters
to compute each state in S(n, k). The optimal partition-
ing can be found in time O(n3) through dynamic program-
ming with the recurrence in Equation (4). The algorithm
determines the optimal k with minimal structural entropy
kopt = arg mink∈[1,n] S(n, k) by enumerating all the possible
k values.

The dynamic programming is iteratively applied to form
the hierarchy, as shown in Figure 1B. we adopt a bottom-
up approach, which models each partition as a vertex and
form a new similarity graph for the k vertices. Then the dy-
namic programming approach is applied to the new sim-
ilarity graph. In this work, a two-layer TLD hierarchy is
adopted.

Assessment of the structural similarity between TLDs and
TADs

To assess the structural property of TLDs, we compare
TLDs with TADs that calculate the correlation of distance
decay patterns between two similarity graphs and measure
the similarity of domains and boundaries.

One feature in the Hi-C contact map is distance decay;
that is, the contact frequency of two bins decreases as their
genomic distance increases (30,31). As RAIs are captured
through spatial adjacency as Hi-C, the RAI-constructed
similarity graph of bins also shows a distance decay pattern.
The farther two bins are, the less they interact. We calcu-
late the average distribution of contact frequency over dis-
tance for each similarity graph as its distance decay distribu-
tion. We compute a Pearson correlation coefficient between
two distance decay distributions to depict the similarity be-
tween the RAI-constructed similarity matrix and Hi-C con-
tact map.

To assess the similarity between TLD and TAD parti-
tions, we adopt normalized mutual information (NMI) and
overlapping ratio (OR) (28). NMI aims at measuring the
similarity of two disjoint partitions, while the OR measures
the similarity between two hierarchical structures. We ap-
ply NMI to nodes with height 1 (nodes that are the parent
of leaves) in the inferred coding tree to evaluate the agree-
ment of TLD and TAD at the finest level. The value of NMI
ranges from 0 to 1 as zero indicates no mutual information
while one indicates perfect correlation. OR is a symmetric
metric, ranging from 0 to 1. One indicates TAD hierarchy
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and TLD hierarchy are the same, while zero indicates the
two hierarchies contain no intersection between any pair of
domains.

To explore whether the TLDs employ merely a subset of
TAD boundaries or have novel boundaries, we roughly de-
fine four types of relationships that are termed as matched,
merged, split, and shifted (32,33). A matched domain is de-
fined as both TLD boundaries lying within one bin (align)
of two boundaries of a TAD. A merged or split domain rep-
resents that one boundary aligns with a TAD and the other
aligns inside another TAD or identical TAD. A shifted do-
main is defined as both boundaries lying within five bins but
not aligning with a TAD’s two boundaries. Split and shifted
domains generate novel TLD boundaries among the four
relationships.

Assessment of epigenetic characteristics enrichment of TLDs

Evidence has demonstrated that TADs play a vital role in
gene regulation (16,18,19). The boundary of TADs is en-
riched in insulating features that interrupt the interactions
across two TADs (20,22). To assess the enrichment of tran-
scriptional repressors at TLD boundaries, we downloaded
the CTCF TF ChIP-seq peaks from ENCODE (https://
www.encodeproject.org/) for four cell lines. The ChIP-seq
peaks are summed into 5-kb intervals around boundaries.
Then we calculate intervals’ average peak number from two
regions. One is the region at the TAD boundaries (the bin
detected as a boundary, referred to as peak), the other is
the 50kb region located 500kb away from the boundaries
at both sides (referred to as background). We compute the
fold change of average peak number between peak and back-
ground per boundary. We take the average across bound-
aries minus one. The zero value of the average fold change
stands for no enrichment around boundaries.

Published works have validated that TADs are fre-
quently enriched in repressing/activating histone marks
H3K27me3/H3K36me3 (34,35). To assess the enrichment
of two histone modifications within TLDs, H3K27me3
(repressing) and H3K36me3 (activating), we downloaded
the Histone ChIP-seq data from ENCODE (https://www.
encodeproject.org/). Unlike CTCF binding that produced
sharp and narrow peaks, histone marks spread over more
extended regions. The histone marks are better modeled by
increasing or decreasing their level rather than by single dis-
crete peaks. Therefore, the fold change over control (in big-
Wig format) for histone marks are downloaded for three cell
lines, HEK293, HeLa, and mESC.

The ChIP-seq signals are summed into intervals with a
fixed 10% of the resolution. Next, we calculate the log10-
ratio between H3K27me3 and H3K36me3 for each inter-
val (LR value) and take the average LR values of intervals
within each domain as the observed LR values. Then the
empirical p-value for each domain is calculated via shuffling
intervals 1000 times and corrected through false discov-
ery rate with Benjamini–Hochberg method. With the con-
straint that corrected P-value <0.1, we report the fraction
of TLDs that significantly enriched in either H3K27me3 or
H3K36me3. A higher faction reflects that the inferred hier-
archy has more Histone H3 modifications enriched.

Integration of RAI data with Hi-C data

As the TLDs inferred from RAI data exhibit TADs’ char-
acteristics, we integrate each RAI data set with the corre-
sponding Hi-C to enhance the inferred domains’ perfor-
mance in the evaluation analysis.

To integrate asymmetric RNA–chromatin interactions
with Hi-C (as shown in Figure 1C, the left part), we first
apply the eigen-decomposition on the Hi-C contact map H
to derive bin’s k-feature vector X such that H = XTX. Then
X is concatenated with imputed RNA–chromatin interac-
tion map μ̂ along with the bins, weighted by a factor � ∈ [0,
1].

To integrate the RNA–RNA interactions with Hi-C (as
shown in Figure 1 C, the right part), the imputed interaction
map and Hi-C contact map are weighted summed through
a scaling factor �, as they share the same bin resolution.

RESULTS

SuperTLD infers hierarchical TLDs from RAI data sets

We developed SuperTLD, a hierarchical domain detec-
tion method incorporating imputation, using RAIs to in-
fer hierarchical TAD-like domains. Given any RAI inter-
action map, SuperTLD applies matrix factorization-based
stochastic gradient descent to impute the missing interac-
tion frequency via a negative binomial model. In TLD hier-
archy detection, SuperTLD adopts dynamic programming
to find a partition with minimum structural entropy, where
Bayesian correction is incorporated to address the underes-
timation of structural information.

This work collected four RAI data sets and performed
SuperTLD on each chromosome’s interaction map from
each data set with the default parameter value. SuperTLD
takes 18.5 minutes on average to run on all chromosomes
of a human cell line (see Supplementary Note 3: Supple-
mentary Table S1) and supports genome-wide multiprocess
computing.

To explore the structural and functional properties of the
inferred TLDs, we assessed the structural similarity between
TLDs and TADs and evaluated their epigenetic characteris-
tics enrichment using CTCF TF ChIP-seq and Histone H3
modification ChIP-seq data.

TLDs exhibit similar structures but high boundary variation
compared to TADs

To explore the structural properties of TLDs, we com-
pared TLDs with TADs and assessed the similarity be-
tween the two hierarchies. TAD hierarchy is detected from
the normalized Hi-C contact maps via our domain detec-
tion method. We adopted five metrics to quantify the sim-
ilarity between TLDs and TADs: Pearson correlation co-
efficient (PCC) of distance decay, overlapping ratio (OR),
normalized mutual information (NMI), common ratio, and
the percentage of various domain relationships. To eval-
uate the hierarchy inference potential of RAIs, we calcu-
lated the PCC between the distance decay distribution of
the RAI-constructed similarity graph and the Hi-C con-
tact map. Then, we applied OR and NMI to measure the

https://www.encodeproject.org/
https://www.encodeproject.org/
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similarity of TLDs and TADs on the aspect of hierarchi-
cal structure and the finest structure, respectively. Next, we
identified the common boundaries and calculated the com-
mon ratio as the percentage of common boundaries in TLD
boundaries. Last, we defined four types of domain relation-
ships, namely, match, merge, split, and shift. We quantified
the percentage of each type of domain in TLDs. We selected
one chromosome from each RAI dataset to illustrate the
result.

First, the RAI-constructed similarity matrices exhibited
a high correlation of distance decay with the Hi-C con-
tact map. The distance decay pattern characterizes the chro-
mosome polymer as distribution, inherently accounting for
randomness and structural variability (30). A high correla-
tion of distance decay with the Hi-C contact map reveals
the RAIs’ potential for TLD inference. We drew the distri-
bution of distance decay for the RAI-constructed similar-
ity matrix and Hi-C contact map and normalized the curve
by dividing the maximum of the distribution to make the
comparison more intuitive. As shown in Figure 2A, the nor-
malized curves rapidly decay within the closest 20 bins and
then flatten out. The curves of GRID-seq and RIC-seq de-
cay much faster and converge within 10 bins. The similarity
matrices of all data sets achieve a significant PCC over 0.95
with the Hi-C contact map.

Second, the inferred TLDs show a moderate structural
similarity with TADs. To quantify the agreement of struc-
tures between TLDs and TADs, we adopted OR on two hi-
erarchies and NMI on the disjoint partitions at the finest
level. As shown in Table 1, the RADICL-seq inferred TLDs
rank the top under both OR and NMI, while the GRID-seq
inferred TLDs have the smallest OR. Note that iMARGI
is excluded in the similarity comparison across data sets,
as different isolates of HEK293T exhibit inconsistent DNA
copy numbers leading to possible intrinsic structure differ-
ences between TLDs and TADs (see Supplementary Note 4:
Supplementary Figures S1 and S2). We drew the heatmap of
each RAI-constructed similarity matrix and Hi-C contact
map and annotated the TLDs and TADs through blocks.
As shown in Figure 2 B, RADICL-seq and RIC-seq inferred
TLDs exhibit a similar structure and share more common
boundaries (the red circles placed along the diagonal) with
TADs. iMARGI infers few TLDs on the short arm of chr10,
leading to a relatively low similarity at the finest level (NMI:
0.8252) with TADs. GRID-seq fails to infer the higher-level
TLDs of chr2R and ranks the last under OR measurement
among all RAI data sets.

Third, TLDs possess a large percentage of novel bound-
aries. Considering that regions within TLD are enriched
for RNA-related DNA-DNA interactions, the boundaries
of TLDs may act as a subset of TAD boundaries. To test
the novelty of RAI inferred TLDs, we calculated the com-
mon ratio as the percentage of common boundaries in TLD
boundaries, where the common boundary is the bin that
both TLD and TAD use as a boundary. As shown in Ta-
ble 1, RADICL-seq inferred TLDs have the highest com-
mon ratio of 0.2467 among RAI data sets, showing a high
percentage of novel boundaries. To explore the relationship
between TLDs and TADs, we defined the matched domain,
merged domain, split domain, and shifted domain. Note

that merge or match do not generate novel TLD bound-
aries while split and shift do. A TLD that cannot be clas-
sified into any type is a novel domain. We counted the do-
mains in each relationship and calculated their percentage
in TLDs. As shown in Table 1, more TLDs are merged or
split from TADs than matching or shifting. Additionally, a
large percentage of RAI inferred TLDs are novel domains.

Altogether, our analysis indicates that RAI inferred
TLDs show a moderate similarity of structure but a high
variation of boundaries and domains compared to TADs.

Novel TLDs show enriched epigenetic characteristics

The TAD boundaries act as insulators to obstruct the
spread of transcriptional activities, such that the promoter
preferentially interacts with enhancers within the same
TAD (20,36). We evaluated the enrichment of epigenetic
characteristics for TLDs and compared the results with
TADs.

To assess the enrichment of transcriptional repressor
CTCF at inferred TLD boundaries, we computed the fold
change of CTCF peaks for every boundary and took the
average as the result of the TLD hierarchy. We also cal-
culated the P-value of CTCF fold change to measure the
significance. As shown in Table 2, iMARGI inferred TLD
boundaries exhibit the largest CTCF fold change of 0.7386
(P-value of 0.0198). GRID-seq inferred TLD boundaries
achieve a larger CTCF fold change than TADs among the
four RAI data sets.

Next, we evaluated the enrichment of histone marks by
calculating the fraction of TLDs that significantly enriched
in H3K27me3/H3K36me3. A higher fraction indicates that
more inferred TLDs in the hierarchical coding tree are bi-
ologically meaningful. We also compared the result with
TAD hierarchies. As shown in Table 2, iMARGI inferred
TLDs achieve the highest ratio as 80.64% among data sets,
also higher than TADs (75.51%). RIC-seq inferred TLDs
show a low CTCF fold change (0.1022) at the boundaries,
but significant histone marks enrichment within most do-
mains (77.10%). This finding drives us to explore the het-
erogeneity within TLD boundaries further.

Except for the common boundaries shared with TADs,
we call the rest TLDs as unique boundaries or novel bound-
aries. The CTCF enrichment analysis is applied to the
three boundary groups for each data set. These are Hi-C
unique boundaries, RAI unique boundaries, and common
boundaries. As shown in Figure 3, the common bound-
aries between TADs and TLDs for each cell line exhibit
significant CTCF enrichment, revealing their strong insula-
tion strength. The iMARGI and GRID-seq inferred TLD
unique boundaries also show a relatively high CTCF enrich-
ment, demonstrating that RAIs can infer novel biologically
relevant boundaries.

Last, GO analysis is performed on TLDs’ common
boundaries and novel boundaries. As shown in Figure 4,
most of the genes on the common boundaries are enriched
for terms related to cytoplasm or cytosol, while genes on
the novel boundaries of different TLD hierarchies are en-
riched for different terms. This result further proved the
novel TLDs’ functional validity.
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Figure 2. Analysis of structural similarity between TLDs and TADs. (A) The normalized distance decay curve from each RAI-constructed similarity graph
as well as the Hi-C contact map. We calculate the distance decay as the average interaction frequency (vertical axis) for a pair of bins separated by a given
distance (horizontal axis). The text on the bottom right shows the PCC between two distributions, and ‘**’ stands for statistically extreme significant
p-value<0.01. The plot shows the distribution in the closet 100 bins (10 Mb for iMARGI, RADICL-seq, RIC-seq; 4Mb for GRID-seq). (B) The heatmap
of the Hi-C contact map (upper triangle) and the RAI-constructed similarity matrix (lower triangle). The boundaries of the inferred hierarchies are drawn
using different colors in the upper triangle (TADs in blue; TLDs in violet). The red circles along the diagonal annotated the common boundaries shared
by TADs and TLDs. The four heatmaps are normalized between 0-1 and share the rightmost color bar.

Table 1. The structural similarity between TLDs and TADs

TLDs OR NMI Common ratio Matcheda Merged Split Shifted

iMARGI-chr10 0.6252 0.8252 0.2321 2(6.45%) 12(38.71%) 3(9.68%) 0
RADICL-seq-chr13 0.6905 0.8818 0.2467 7(7.95%) 22(25%) 23(26.14%) 3(3.41%)
GRID-seq-chr2R 0.5312 0.8507 0.1678 2(2.22%) 9(10%) 27(30%) 6(6.67%)
RIC-seq-chr16 0.6687 0.8542 0.1548 3(2.29%) 8(6.11%) 47(35.88%) 7(5.34%)

aThe integer in front of the brackets indicates the number of matched domains, and the percentage indicates its proportion in TLDs. The columns ‘merged’,
‘split’, ‘shifted’ are the same.

Table 2. Epigenetic characteristics enrichment of TLDs and TADs

TLDs
CTCF fold

change
CTCF fold

change (TADs)a
CTCF
P-value

CTCF P-value
(TADs)

H3K*
ratiob

H3K* ratio
(TADs)

iMARGI-chr10 0.7386 1.1696 0.0198 0 80.64% 75.51%
RADICL-seq-chr13 0.2487 0.9017 0.0278 0 60.23% 72.46%
GRID-seq-chr2R 0.2008 0.1269 0.1826 0.3652 N/Ac N/A
RIC-seq-chr16 0.1022 0.2133 0.1783 0.2398 77.10% 81.82%

aThe column name suffixed with ‘(TAD)’ represents the analysis result of TADs. The rest columns are the same.
b‘H3K* ratio’ denotes the fraction of domains that significantly enriched in H3K27me3/H3K36me3 histone marks.
cThe result is not applicable due to a lack of data.

Integration of the RAIs with Hi-C improves the TAD hierar-
chy inference

As the TLDs exhibit similar structural and functional prop-
erties as TADs, we integrated RAIs with Hi-C to see if data
integration can enhance the performance of inferring TAD
hierarchy, i.e., inferring more and functionally enriched do-
mains. As shown in Figure 1C, the integration is conducted
after the imputation of RAIs. We introduced a scaling fac-
tor � ∈ [0, 1] for data integration, where � = 1 denotes no
Hi-C information and � = 0 denotes no RAI information.

Then the integrated interaction map is used to conduct the
hierarchical domain detection.

We tested the � value from 0 to 1 by 0.05 on each RAI
data set (see Supplementary Note 5: Supplementary Ta-
bles S2–S5). With the increasing proportion of Hi-C data,
the integrated data of iMARGI and RADICL-seq infers
a first increasing and then decreasing number of domains,
while GRID-seq and RIC-seq show a decreasing pattern.
For the RIC-seq data set, � = 0.95 vastly reduces the num-
ber of inferred domains from 131 (� = 1.0) to 57 and
enhances the epigenetic characteristics enrichment (CTCF
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Figure 3. Analysis of CTCF enrichment at TAD unique boundaries, TLD unique boundaries, and common boundaries. The plot shows the distribution
of the average number of CTCF ChIP-seq peaks around the boundaries (±500 kb). We identified the common boundaries and divided the rest into unique
boundaries of TADs and TLDs. The legend indicates the assigned color and the average CTCF fold change for each group of boundaries. We use half of
the bin size as the profile resolution to smooth the curve.

fold change: from 1.0225 to 1.8535; H3K* ratio: from
77.10% to 83.93%), revealing that data integration helps
to eliminate false-positive domains inferred from RIC-seq
data set. Note that the structural similarity of inferred do-
mains with TADs may not linearly improve with the in-
crease of Hi-C proportion.

The epigenetic characteristics enrichment analysis sup-
ports the integrated data’s effectiveness in TAD infer-
ence. Domains inferred from the integrated data show
enhancement in the boundaries’ CTCF fold change and
the H3K27me3/H3K36m3 enrichment within domains.
Among the four data sets, GRID-seq integrated data
achieves the largest increase in CTCF fold change by 0.1919,
and iMARGI integrated data achieves the largest increase
in the percentage of histone H3 mark-enriched domains by
3.13%. The results of iMARGI, GRID-seq, and RIC-seq
demonstrate that the integrated data performs better than
the sole data set, except iRADICL-seq.

DISCUSSION

In this work, we proposed a novel method SuperTLD that
uses RAIs to infer the TLD hierarchy structure, which com-
prises the data imputation and hierarchical domain detec-

tion. SuperTLD supports asymmetric or symmetric inter-
action maps of RAIs as input. By assessing the four pub-
lic RAI data sets from human, mouse, and Drosophila
melanogaster, we found that SuperTLD works well in the
analysis of RAIs, and the inferred TLDs exhibit significant
epigenetic characteristics enrichment. To explore the struc-
tural properties of TLDs, we adopted five evaluation met-
rics to assess their similarity with TADs. We adopted CF
ChIP-seq and histone ChIP-seq for TLDs’ epigenetic char-
acteristics enrichment analysis.

The gene amount and RNAs follow a non-uniform dis-
tribution along the genome. Unlike Hi-C, RAI data sets re-
quire a proper decision on the bin size when performing Su-
perTLD. A small bin size renders the interaction map too
sparse to infer TADs. A large bin size results in a rough
interaction map where only megabase-size domains can be
observed.

We roughly defined four domain relationships between
TLDs and TADs and classify each TLD. A large fraction of
TLDs are merged or split from TADs, however, the reasons
for this discrepancy remain unknown.

We have shown that functional evaluation of TLDs in-
ferred from RAI data sets reveals the enriched epige-
netic characteristics at TLD boundaries or within domains,
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Figure 4. GO analysis of genes on the common boundaries between TADs and TLDs and TLD novel boundaries for (A) iMARGI, (B) RADICL-seq,
(C) GRID-seq and (D) RIC-seq. The x-axis of each barplot represents the percentage of enriched genes for a given term. The terms are sorted by the
descending order of percentage for each barplot. When drawing for RIC-seq inferred TLDs, we set a threshold of 5% for common boundaries and 2% for
novel boundaries; the terms with a lower percentage are removed from the plot.

though the enrichment varies across RAI data sets. For
example, the TLD boundaries inferred from iMARGI ex-
hibit the most considerable CTCF fold change of 0.7386,
while those from RIC-seq show the most minor CTCF fold
change of 0.1022. Removing the common boundaries with
TADs, iMARGI inferred novel TLD boundaries exhibit the
largest CTCF fold change of 0.6245, while those from RIC-
seq show the smallest CTCF fold change of 0.091 (only a
slight enrichment of CTCF at boundaries), revealing the
advantages of iMARGI in TLD inference. With more data
available in the future, we can perform more detailed com-
parisons between RAI data sets spanning the difference in
species, cell lines, and chromosomes.

In the last section, we proposed integrating RAIs and Hi-
C to infer more domains with functional enrichment. The
integrated data infers new domains exhibiting strong CTCF
enrichment at the boundaries. Our evaluation of the data
integration proved the enhanced performance of TAD hi-

erarchy inference. We suggest integrating more interaction
sources to dissect the TAD structures and functions, such as
protein–RNA interaction, protein–DNA interaction, etc.

CONCLUSIONS

We proposed a novel method SuperTLD, comprising in-
teraction imputation and hierarchical domain detection, to
infer the hierarchical TLDs from RAIs. We collected four
RAI data sets and applied SuperTLD on each chromo-
some. The comparison experiments demonstrate that TLDs
share a moderate structural similarity with TADs but vary
on boundaries. The novel TLD boundaries are enriched for
epigenetic characteristics. GO analysis reveals the clear dif-
ference between the shared boundaries with Hi-C and novel
boundaries. Moreover, we integrated RAIs data with Hi-C
and found the superior of the inferred domain in the epige-
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netic characteristics enrichment, revealing the effectiveness
of multiple data sources integration in TAD inference.
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SuperTLD.
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