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Prerna Joshi , Anand Ranganathan* and Shailja Singh*

Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India

SUMOylation is one of the post-translational modifications that have recently been
described as a key regulator of various cellular, nuclear, metabolic, and immunological
processes. The process of SUMOylation involves the modification of one or more lysine
residues of target proteins by conjugation of a ubiquitin-like, small polypeptide known as
SUMO for their degradation, stability, transcriptional regulation, cellular localization, and
transport. Herein, for the first time, we report the involvement of the host SUMOylation
pathway in the process of infection of Leishmania donovani, a causative agent of visceral
leishmaniasis. Our data revealed that infection of L. donovani to the host macrophages
leads to upregulation of SUMOylation pathway genes and downregulation of a
deSUMOylating gene, SENP1. Further, to confirm the effect of the host SUMOylation
on the growth of Leishmania, the genes associated with the SUMOylation pathway were
silenced and parasite load was analyzed. The knockdown of the SUMOylation pathway
led to a reduction in parasitic load, suggesting the role of the host SUMOylation pathway in
the disease progression and parasite survival. Owing to the effect of the SUMOylation
pathway in autophagy, we further investigated the status of host autophagy to gain
mechanistic insights into how SUMOylation mediates the regulation of growth of
L. donovani. Knockdown of genes of host SUMOylation pathway led to the reduction
of the expression levels of host autophagy markers while promoting autophagosome–
lysosome fusion, suggesting SUMOylation-mediated autophagy in terms of autophagy
initiation and autophagy maturation during parasite survival. The levels of reactive oxygen
species (ROS) generation, nitric oxide (NO) production, and pro-inflammatory cytokines
were also elevated upon the knockdown of genes of the host SUMOylation pathway
during L. donovani infection. This indicates the involvement of the SUMOylation pathway
in the modulation of protective immune responses and thus favoring parasite survival.
Taken together, the results of this study indicate the hijacking of the host SUMOylation
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pathway by L. donovani toward the suppression of host immune responses and
facilitation of host autophagy to potentially facilitate its survival. Targeting of
SUMOylation pathway can provide a starting point for the design and development of
novel therapeutic interventions to combat leishmaniasis.
Keywords: autophagy, SUMOylation, host–pathogen interaction, autophagy maturation, Leishmania donavani,
SUMOylation mediated immune responses
INTRODUCTION

Visceral leishmaniasis (VL) also known as kala-azar, is one of the
most neglected tropical diseases caused by an intracellular
obligate protozoan parasite, Leishmania donovani (Badaro
et al., 1986). VL is the most severe form of leishmaniasis;
manifests symptoms like irregular bouts of fever, lack of
appetite, weight loss, enlargement of the spleen and liver, and
anemia; and may cause death if left untreated (Khusro and Aarti,
2017; Burza et al., 2018). It remains one of the top parasitic
diseases with the potential of an outbreak and maximum
mortality with an estimated 700,000 to 1 million new cases
annually (WHO, 2022). Leishmania parasites complete their
life cycle in two different hosts and exist in two forms: the
infective stage promastigotes in the phlebotomine sand fly and
amastigotes, and the replicative and disease-causing form in the
mammalian host (Dostálová and Volf, 2012). Macrophages are
considered one of the critical host cells infected by L. donovani
promastigotes where these promastigotes differentiate into
amastigotes. The early responses from the macrophages and
other antigen-presenting cells (APCs) to encounter the infection
include the production of IL-12, which leads to the induction of
IFN-g from Th1 cells (Kawamoto et al., 2000). This mechanism
induces the production of reactive oxygen species (ROS) and
nitric oxide (NO), the major microbicidal properties of
macrophages that effectively eliminate intracellular parasites
(Nandan et al., 1999; Kaye and Aebischer, 2011). However,
despite the initiation and induction of innate and adaptive
immune responses, the cumulative effect of multiple factors
suppresses host protective immune responses that allow the
parasite to establish long-lasting survival and the infection
(Sharma and Singh, 2009). For this, the major mechanisms
that are altered by the Leishmania parasite include the
downregulation of oxidative stress-mediated phagocytosis
process of macrophages (Kima, 2007; Olivier et al., 2012;
Carneiro et al., 2018) and activation of IL-10 secretion
(Ribeiro-de-Jesus et al., 1998; Bhattacharyya et al., 2001).
Activated IL-10 inhibits the production of many pro-
inflammatory cytokines including TNF-a (Gautam et al., 2011)
and IL-32g (Galdino et al., 2014) to promote the uncontrolled
spread of the parasite. Another important mechanism employed
by the Leishmania parasites to evade immune response is the
induction of host autophagy. The expression of Beclin-1, Atg5,
and LC3-II was induced upon Leishmania infection, thus
suppressing T-cell responses and promoting parasite survival
(Mitroulis et al., 2009; Cyrino et al., 2012; Crauwels et al., 2015;
Frank et al., 2015; Pitale et al., 2019).
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Post-translational modifications play an important role in the
regulation of various disease progressions. SUMOylation, one of
the post-translational modifications, is essential for many cellular
functions by regulating protein–protein interactions, protein
activity, and the localization of the protein (Hickey et al., 2012;
Ranjha et al., 2019). The process involves the modification of the
lysine residue of a substrate protein by the covalent linkage of a
polypeptide, SUMO (Small Ubiquitin-like MOdifier). This
SUMO moiety is transferred to a lysine residue usually found
within a consensus motif YKxE/D (Hay, 2005). The machinery
is enzymatically similar to ubiquitylation but mechanically
different as having its E1 SUMO enzyme (the AOS-1/UBA2
heterodimer), an E2 SUMO enzyme (UBC9), and E3 SUMO
enzymes, which enhance SUMO conjugation of specific targets
(Geiss-Friedlander and Melchior, 2007). SUMOylation is a
continuous and reversible mechanism regulated by SUMO-
specific cysteine proteases (SENPs) (Guo and Henley, 2014,
Kunz et al., 2018). In mammals, six SENP isoforms are
present. Among all 6 SENPs, SENP1 has extensively been
reported as the only protease with higher specificity and
isopeptidase activity toward SUMO-1 (Kolli et al., 2010), while
other SENPs have proteolytic cleavage preference for SUMO-2/3
(Gong and Yeh, 2006; Huang et al., 2009; Dou et al., 2010; Bawa-
Khalfe et al., 2012). SENP1 also has a proteolytic activity for
SUMO-2/3 substrates. Also, SENP1 regulates various signaling
mechanisms in the macrophages (Qiu et al., 2017; Yu et al.,
2017). SUMOylation plays an important role in various cellular
processes including DNA repair (Sarangi et al., 2014), several
types of cell death (Cho et al., 2015; Yang et al., 2019; Gâtel et al.,
2020; Li et al., 2020; Liu et al., 2020), oxidative stress (Akar and
Feinstein, 2009; Pandey et al., 2011; Stankovic-Valentin and
Melchior, 2018), and the regulation of immune responses
during many bacterial and viral infections (Ribet et al., 2010;
Fritah et al., 2014; Sidik et al., 2015). SUMO pathway obstructs
the activation of innate immune responses with its inhibitory
effect on various immune regulators that include IRFs
(Nakagawa and Yokosawa, 2002; Han et al., 2008; Kubota
et al., 2008), STAT proteins (Begitt et al., 2011; Van Nguyen
et al., 2012), nuclear factor-kB (NF-kB) (Liu et al., 2012), and
NF-kB inhibitor-a (IkBa) (Desterro et al., 1998). SUMOylation
of STAT1 by a single Lys703 residue induces IFN-g signaling
(Ungureanu et al., 2003).

SUMOylation has been reported to be exploited by different
viral proteins, thus aiding viral activity and replication by
interfering with the host cellular environment (Marcos-Villar
et al., 2011; Chang et al., 2016). Considering the diverse roles of
SUMOylation in modulating immunity and immune responses,
June 2022 | Volume 12 | Article 878136
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it comes as no surprise that bacteria, viruses, and parasites have
developed mechanisms and strategies to hijack the SUMOylation
pathway that contributes to the suppression of innate immune
signaling. As SUMOylation is the common key to regulating
many downstream pathways, we propose that this novel pathway
may be targeted for therapeutic intervention for leishmaniasis.
Here, we are reporting the role of host SUMOylation in
regulating various defense and immune responses from
macrophages during leishmaniasis. Our results indicate that
the host SUMOylation pathway favors the infection and
growth of L. donovani in the macrophages through the
modulation of host survival mechanisms and inflammatory
immune responses. This study would aid to identify better
strategies for the development of an effective vaccine or
drug candidate.
MATERIAL AND METHODS

Parasite and Cell culture
L. donovani Bob promastigotes were cultured in M199 medium
(Gibco, Grand Island, NY, USA) supplemented with 10% heat-
inactivated fetal bovine serum (FBS) (Gibco) and 10 µg/ml of
gentamicin (Life Technologies, Carlsbad, CA, USA) at 26°C.
Metacyclic stage parasites at 20 multiplicity of infection (MOI)
were used for infection. THP-1 cells were purchased from
National Centre for Cell Science (NCCS, Pune, India) and
were maintained in RPMI-1640 (Gibco) media supplemented
with 10% FBS (Gibco), 2 mM of L-glutamine, 10 mM of HEPES
buffer, 20 mM of sodium bicarbonate, 1 mM of sodium pyruvate,
and penicillin/streptomycin (10,000 units/ml) at 37°C in a
humidified incubator with 5% CO2. Phorbol 12-myristate 13-
acetate (PMA) (Sigma, St. Louis, MO, USA) at a concentration of
50 ng/ml for 24 h was used to differentiate the monocytes
into macrophages.

siRNA Transfection
For siRNA transfections, all siRNAs—SUMO-1 (sc-29498),
SUMO-2/3 (sc-37167), AOS-1 (sc-60174), UBA2 (sc-61740),
UBC9 (sc-36773), SENP1 (sc-44449), and control siRNA (sc-
37007)—were procured from Santa Cruz (Dallas, TX, USA).
Briefly, THP-1 macrophages were transfected with 60 pmol of
siRNA in Opti-MEM medium (Gibco) using the Hiperfect
transfection reagent (Qiagen, Valencia, CA, USA) as per the
manufacturer’s protocol. After 5 h of transfection, cells were
supplemented with the complete media containing 20% FBS and
further incubated for 36 h. Knockdown efficiency was measured
by qRT-PCR and Western blotting. For infection studies, these
transfected THP-1 macrophages were infected with purified
metacyclic L. donovani promastigotes at 20 MOI.

qRT-PCR for Gene Expression Analysis
Total RNA from infected or transfected macrophages was
isolated at an appropriate time point using the TRIzol reagent
(Invitrogen, Grand Island, NY, USA) and quantified using a
Nanodrop ND-1000 spectrophotometer (Thermo Fisher
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Scientific, Waltham, MA, USA). One microgram of total RNA
was used for cDNA synthesis, done by First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, USA), as per
manufacturer’s instructions, using random hexamer primers.
PCRs were carried out in Applied Biosystems, Real-Time PCR
System (ABI, Foster City, CA, USA) using PowerUp SYBR Green
PCR Master Mix (Thermo Fisher Scientific, USA). Primer
sequences for SUMO-1-Forward 5′-CATTGGACAGGAT
AGCAGTGAG-3′, Reverse 5′-CTCTGACCCTCAAAGAGA
AACC-3′; SUMO-2/3-Forward 5′-AGAGGCATACACCACTT
AGTAAAC-3′, Reverse 5′-TCTGCTGTTGGAACACATCAA-
3′; AOS-1-Forward 5′-ACGACCTCCGACTACTTTCT-3′,
Reverse 5′-GCCAAATCTTGAGTTCACTTGG-3′; UBA2-
Forward 5′-GGCAGCTGATGTTCCTCTTATT-3′, Reverse 5′-
CACTCATAACACTCGGTCACAC-3′; UBC9-Forward 5′-CAG
TGTGCCTGTCCATCTTAG-3′, Reverse 5′-CTTGAGCT
GGGTCTTGGATATT-3′; SENP1-Forward 5′-TAGTGAACCA
CAACTC CGTATTC-3′, Reverse 5′-ATGTCCTTGCCTG
GAAGATAAA-3′; IL-10-Forward 5′ –TTAAGGGTTACCTGG
GTTGC-3′, Reverse 5′-TGAGGGTCTTCAGGTTCTCC-3′; IL-
12-Forward 5′-ATGCCCCTGGAGAAATGGTG-3′, Reverse 5′-
GGCCAGCATCTCCAAA CTCT-3′; IL-32g-Forward 5′-AGG
CCCGAATGGTAATGCT-3′, Reverse 5′-CCACAGTG TCCT
CAGTGTCACA-3; TNF-a-Forward 5′-CCTCTCTCTAATCA
GCCCTCTG-3′, Reverse 5′-GAGGACCTGGGAGTAGA
TGAG-3′ ; RNU6AP-Forward 5′-GGCCCAGCA GTAC
CTGTTTA-3′, Reverse 5′-AGATGGCGGAGGTGCAG-3′.
Amplification at 50°C for 2 min followed by 40 cycles at 95°C
for 15 s, 60°C for 30 s, and 72°C for 1 min was the thermal profile
used for the real-time PCR. Melting curves were generated along
with the mean CT values for confirmation of the generation of a
specific PCR product. Amplification of RNU6AP (RNA, U6
small nuclear 1; THP-1 cells) was used as the internal control
for normalization. The results were expressed as fold change of
control [uninfected samples (RNU6AP)] using the 2−DDCT

method. Each experiment was done in triplicates and repeated
three times.

Cell Viability Assay
MTT assay was done to assess the effect of siRNAs on THP-1 cell
v i ab i l i t y . MTT [3- (4 ,5 -d imethy l -2 - th i azo ly l ) -2 ,5 -
diphenyltetrazolium bromide] dye solution (Sigma-Aldrich,
USA) [5 mg of MTT in 1 ml of phosphate-buffered saline
(PBS)] was diluted 1:10 in RPMI medium. For the MTT assay,
THP-1 cells (10,000 cells/100 µl) were seeded in each well of 96-
well flat-bottom plates. After the differentiation of monocytes
into macrophages, THP-1 macrophages were transfected with
respective siRNAs as described above. After 36 h, the MTT assay
was performed as per the manufacturer’s protocol. Briefly,
untransfected and transfected THP-1 macrophages were
incubated with MTT dye solution for 2 h at 37°C, and then the
stopping buffer (5% formic acid in isopropanol) was added to
stop the reaction at 37°C for 20 min. Absorption was then
measured at 570 nm, and the percentage of cell viability was
calculated. Each experiment was done in triplicates and repeated
three times.
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Singhal et al. Host SUMOylation Promotes Leishmania Survival
Quantification of Leishmania donovani by
Confocal Microscopy
THP-1 cells at 0.5 × 106 were seeded on 18-mm-diameter round
coverslips coated with poly-L-lysine (Sigma) and were stimulated
with 50 ng/ml of PMA to differentiate into macrophages for 24 h.
After the incubation, the coverslips were washed with RPMI-
1640 medium to remove the non-adherent cells. Then, adherent
THP-1 macrophages were transfected with specific siRNAs for
36 h followed by the infection with metacyclic L. donovani
promastigotes at 20 MOI. After 6 h of infection, cells were
washed thrice with RPMI medium to remove the non-
phagocytosed promastigotes. Infected macrophages were
further incubated for 24 h. After incubation, the coverslips
were washed with PBS followed by the fixation with chilled
methanol and then stained with propidium iodide (500 nM in 2×
SSC buffer) (Ramu et al., 2019). A minimum of 100 macrophages
was counted per coverslip under the confocal microscope to
determine the number of resident amastigotes. Confocal imaging
was performed with Olympus Fluoview FV1000 with 60×
objective magnifications, using an excitation/emission
wavelength of 535/617 nm.

Immunoblotting
Primary antibodies used in Western blotting with dilutions were
as follows: SUMO-1 (Santa Cruz #sc-5308; 1:1,000), SUMO-2/3
(Santa Cruz #sc-393144; 1:1,000), UBA2 (Santa Cruz #sc-
376305; 1:1,000), AOS-1 (Santa Cruz #sc-398080; 1:1,000),
UBC9 (Santa Cruz #sc-271057; 1:1,000), SENP1 (Santa
Cruz #sc-271360; 1:1,000), b-actin (Santa Cruz #sc-8432;
1:1,000), Beclin-1 (CST, Danvers, MA, USA; #3495T, 1:1,000),
Atg5 (CST #12994T, 1:1,000), and LC3A/B (CST #4108S,
1:1,000). Goat anti-mouse horseradish peroxidase (HRP)-
conjugated secondary antibody (1:5,000) was purchased from
Invitrogen (Carlsbad, CA, USA). Goat anti-rabbit HRP-
conjugated secondary antibody (1:2,500) was purchased from
ABclonal (Woburn, MA, USA). Briefly, differentiated
and transfected THP-1 macrophages were infected with
L. donovani promastigotes at 20 MOI for 48 h. Cell lysates
were prepared by using radioimmunoprecipitation assay (RIPA)
lysis buffer (G-Biosciences, St. Louis, MO, USA) with the
addition of a protease inhibitor cocktail (Roche, Basel,
Switzerland). An equal amount of cell lysates was loaded and
separated through sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE). The proteins were transferred onto
the nitrocellulose immunoblot membrane (Bio-Rad, Hercules,
CA, USA). The membrane was blocked in 5% bovine serum
albumin (BSA) in 1× PBS containing 0.05% Tween 20 (Sigma)
(wash buffer) overnight at 4°C, then washed thrice with wash
buffer, and further incubated with primary antibodies for 2 h at
room temperature following three washes and incubation with
HRP-conjugated secondary antibody for another 1 h at room
temperature. After three washes, blots were visualized with a
densitometric enhanced chemiluminescence (ECL) kit (Bio-Rad)
on the ChemiDoc Imaging System (Bio-Rad). Data were
analyzed using ImageJ software.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Confocal Analysis
THP-1 cells measuring 0.5 × 106 were seeded on 18-mm-
diameter round coverslips coated with poly-L-lysine (Sigma)
and were stimulated with 50 ng/ml of PMA to differentiate
into macrophages for 24 h. THP-1 macrophages were transfected
with specific siRNAs for 36 h followed by the infection with
metacyclic L. donovani promastigotes at 20 MOI for 24 h. Cells
were washed with RPMI followed by fixation with 2%
paraformaldehyde (PFA) for 15 min. Cells were washed with
1× PBS and were permeabilized with a permeabilization buffer
(0.1% BSA and 0.2% saponin in 1× PBS). Cells were washed with
washing buffer (0.1% BSA and 0.1% saponin in 1× PBS) followed
by the incubation of both primary antibodies for LAMP-1
(CST #9091S) and MAP LC3a/b (Santa Cruz #sc-398822)
together for 0.5 h at room temperature. Following washes,
secondary antibodies (Alexa Fluor 488 goat anti-rabbit IgG
(Invitrogen #A11008) for LAMP1 and Alexa Fluor 546 goat
anti-mouse IgG (Invitrogen #A11030) for LC3) were introduced
to the cells for 20 min at room temperature. Cells were washed,
and the coverslips were mounted on the slides with a mounting
medium, fluoroshield with DAPI (Sigma). The colocalization of
both antibodies was acquired and analyzed under confocal
microscopy. Confocal imaging was performed with Olympus
Fluoview FV1000 with 60× objective magnifications.
Colocalization was measured by Pearson’s correlation
coefficient, with values ranging between −1 and +1.

Measurement of Reactive Oxygen Species
THP-1-differentiated human macrophages were transfected with
siRNAs for 36 h in 96-well plates (Corning, New York,
NY, USA; #CLS3603). Macrophages were infected with L.
donovani promastigotes at 20 MOI for 30- and 60-min time
points. Thirty minutes before completing the incubation period,
cells were loaded with 10 µM of DCFH-DA according to
the manufacturer’s instructions (Abcam, Cambridge, UK;
#ab113851). At the end of the incubation period, cells were
immediately analyzed for ROS generation levels by fluorometry
with excitation/emission at 485/535 nm.

Measurement of Nitric Oxide
PMA-differentiated THP-1 macrophages were transfected with
siRNAs for 36 h followed by the infection with 20 MOI of
L. donovani promastigotes along with the co-stimulation of
lipopolysaccharide (LPS) (100 ng/ml) and hIFNg (20 ng/ml).
At 24 h post-infection, the supernatant was collected to estimate
the NO level (in the form of nitrite) using the Griess reagent kit
(Invitrogen #G-7921) as per the manufacturer’s instructions.

Immunoassay for Cytokines
siRNA-transfected THP-1 macrophages were infected with 20
MOI of L. donovani and stimulated with LPS (100 ng/ml). After
24 h of infection, the supernatant was collected and centrifuged
for further processing. The cytokine level for human IL-12p40
(430704), human TNF-a (430204), human IFN-g (430104), and
human IL-10 (430601) was measured using commercial ELISA
June 2022 | Volume 12 | Article 878136
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kits from BioLegend (San Diego, CA, USA), according to the
manufacturer’s instructions.

Statistical Analysis
Data were presented as the mean ± SD. Each experiment was
repeated three times in separate sets. All graphs generated and the
related statistical analyses were performed using GraphPad Prism
(GraphPad Software, La Jolla, CA, USA). Statistical significance
was quantified using the unpaired t-test with Welch’s correction.
Significance was reached with p-values <0.05. p-Values were
shown as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
RESULTS

Leishmania donovani Infection Induces the
Expression Level of Genes Involved in the
Host SUMOylation Process
First, we investigated the effect of L. donovani infection on the
expression of different genes of the host SUMOylation pathway.
As shown in Figure 1A, infection of PMA-differentiated THP-1
macrophages with L. donovani promastigotes significantly
upregulated the expression levels of SUMO-1, SUMO-2/3,
UBA2 , and UBC9 by ≥2- fo ld , whi l e a s ign ificant
downregulation of SENP1 was observed at 48 h post-infection
at the transcript level. We also analyzed the expression of these
genes in L. donovani-infected macrophages at the protein level
(Figure 1B). The results confirmed the significant upregulation
of a minimum of 1.5-fold in the expression levels of SUMO-2/3,
SUMO-activating E1 enzymes (AOS-1), and SUMO conjugating
E2 enzyme (UBC9) at 48 h post-infection compared to
uninfected macrophages (Figure 1C). These results indicate
the upregulation of the SUMOylation and the downregulation
of the deSUMOylation process in the human macrophages
following infection by L. donovani. We also investigated the
effect of L. donovani infection on the overall SUMOylation in the
macrophages. As shown in Figure 1D, a significant upregulation
of the expression profile of SUMOylated proteins by both
SUMO-1 and SUMO-2/3 was observed at 48 h post-infection.
This result indicates an upregulation of SUMOylation of the
proteins in Leishmania-infected macrophages that might
determine the fate of parasites in the macrophages.

Knockdown of the Genes Involved in the
SUMOylation Pathway Results in the
Reduced Parasitic Load in Macrophages
To further investigate the involvement of SUMOylation in
leishmaniasis progression, we inhibited the expression level of
these genes by using siRNA. The transfection efficiency was
measured at both transcript and protein levels. The results
revealed a significant transfection efficiency with ~50%
reduction in the expression level of SUMO-1 and SUMO-
activating E1 enzymes (AOS-1 and UBA2) and ~75% reduction
in the expression level of UBC9 at the transcript level
(Figure 2A); on the other hand, at the protein level, a
significant reduction of ~50% was observed for the expression
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of SUMO-1, SUMO-2/3, SUMO-activating E1 enzymes (AOS-1
and UBA2), SUMO-conjugating E2 enzyme (UBC9), and SENP1
compared to MOCK (Figure 2B). We also evaluated whether the
process of a knockdown of the genes in macrophages affects the
cell viability by performing an MTT assay and found no
significant changes in the cell viability (Figure 2C). To
investigate the role of genes involved in host SUMOylation
and deSUMOylation process in the disease progression of
Leishmania, we silenced the genes followed by L. donovani
infection and monitored the survival of L. donovani
amastigotes inside the macrophages. As shown in Figure 2D,
the knockdown of SUMO-1, SUMO-2/3, SUMO-activating E1
enzymes (AOS-1 and UBA2), and SUMO-conjugating E2
enzyme (UBC9) significantly reduced the number of
amastigotes in the human macrophages as compared to
control infected macrophages. Interestingly, the reduction was
more than 50% upon the knockdown of UBA2 and UBC9.
Inhibition of SUMO-activating and SUMO-conjugating
enzymes could lead to the complete inhibition of the
SUMOylation process. That might lead to the reduction of
protein SUMOylation essentially required for L. donovani
survival. However, no change in intracellular parasite load was
observed upon the knockdown of the deSUMOylating gene
SENP1 followed by L. donovani infection. Since there are six
different SENPs in mammals, this could be due to redundancy
among them or that downregulation of SENP1 may not alter the
SUMOylation status of proteins that directly or indirectly
determine parasite load. These results point toward the
essentiality of the host SUMOylation process necessitated by L.
donovani for its survival.

Host SUMOylation Process Regulates the
Initiation of Host Autophagy During
Leishmania donovani Infection
To investigate the mechanisms employed by these genes to favor
the parasite growth, we further characterized their function in
host-mediated survival strategy. In recent decades, various
studies have consistently reported the induction of host
autophagy by all species of Leishmania, in vitro and in vivo
(Mitroulis et al., 2009; Cyrino et al., 2012; Frank et al., 2015;
Matte et al., 2016; Franco et al., 2017; Dias et al., 2018; Pitale
et al., 2019). Inhibition of autophagy also leads to reduced
intracellular L. donovani survival (Thomas et al., 2018). In this
connection, we next studied the role of host SUMOylation and
deSUMOylation processes in the regulation of host autophagy.
We monitored the expression of three autophagy markers: i)
Beclin-1, which binds to Atgs essential to form a phagophore; ii)
Atg5, which conjugates to Atg12 crucial for the conjugation of
LC3 to phagophore; and iii) LC3, which yields LC3-II upon
proteolytic cleavage and lipidation required to form the
autophagosome. It is well-reported that the expression of these
genes was induced during Leishmania infection (Cyrino et al.,
2012; Frank et al., 2015; Thomas et al., 2018; Pitale et al., 2019).
As shown in Figure 3A, downregulation of genes from the host
SUMOylation pathway leads to no significant change in the
expression levels of Beclin-1 and Atg5. However, the knockdown
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FIGURE 1 | Induced expression of genes involved in host SUMOylation pathway upon Leishmania donovani infection. PMA-differentiated THP-1 macrophages were
infected with metacyclic stage L. donovani promastigotes at 20 MOI for 48 (h) Uninfected (Un) and L. donovani-infected (Ld) cells were processed for different evaluations.
(A) RNA was isolated from uninfected and infected macrophages at 48 h post-infection, and expression analysis of genes of the host SUMOylation pathway was performed
by quantitative real-time PCR (qRT-PCR). p-Value was calculated based on Student’s unpaired 2-tailed t-test comparing uninfected macrophages to infected macrophages
(*p < 0.05 and **p < 0.01). (B) Cytoplasmic extracts of uninfected and infected macrophages were analyzed by Western blotting to check the expression level of SUMO-1,
SUMO-2/3, AOS-1, UBA2, UBC9, and SENP1 at 48 h post-infection. GAPDH was used as the loading control. Band intensities were calculated using ImageJ software.
Data from one of three experiments are shown. (C) The graph represents the relative intensity of the bands calculated by ImageJ software at 48 h post-infection; *p = 0.028
for UBC9; **p = 0.0043 and 0.0073 for SUMO-2/3 and AOS-1, respectively. p-Value was calculated based on an unpaired t-test with Welch’s correction comparing
uninfected macrophages to L. donovani-infected macrophages (Un vs. LD). (D) Cytoplasmic extracts of uninfected and infected macrophages were analyzed by Western
blotting to check the expression of overall SUMOylated proteins at 48 h post-infection. GAPDH was used as the loading control. The band intensities of each lane were
analyzed by ImageJ software, and the values concerning band intensity are labeled on the peaks. PMA, phorbol 12-myristate 13-acetate; MOI, multiplicity of infection.
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FIGURE 2 | Host SUMOylation pathway favors the growth of Leishmania donovani in macrophages. PMA-differentiated THP-1 macrophages were transiently
transfected with siRNA against specific genes for 36 h MOCK here represents the transfection with a control siRNA. (A) Total RNA was enriched using TRIzol
(Qiagen). mRNA levels of transfected macrophages with target genes compared to MOCK were quantified by qRT-PCR. *p = 0.02, 0.03, and 0.04 for MOCK vs.
SUMO-1, AOS-1, and UBA2, respectively; **p = 0.0012 and 0.01 for MOCK vs. UBC9 and SENP1, respectively. (B) Cell lysates of transfected macrophages
were used to check the transfection efficiency by Western blotting. GAPDH was used as the loading control for each set separately. (C) Effect of transfection on
cell viability measured by MTT assay. THP-1 macrophages were transfected with specific siRNAs and control siRNA (MOCK) for 36 (h) No significant changes in
cell viability were observed upon the transfection of siRNAs against target genes compared to MOCK. (D) PMA-differentiated macrophages were transfected
with specific siRNAs followed by L. donovani infection for 6 (h) Macrophages were stained with propidium iodide after 24 h post-infection, and parasitic load in
the infected macrophages was calculated under confocal microscopy. Scale bar, 5 µm. Data from one of three experiments are shown. Parasite load was
counted in 100 macrophages. Statistical significance was quantified using the unpaired t-test with Welch’s correction, *p = 0.0286, 0.0222, and 0.0266 for
MOCK vs. SUMO-1, SUMO-2/3, and UBC9, respectively; **p = 0.0087 and 0.0034 for MOCK vs. AOS-1 and UBA2, respectively. PMA, phorbol 12-myristate
13-acetate.
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of UBC9 and SENP1 significantly reduced the expression of
LC3A/B-II. To study the role of host SUMOylation in the
regulation of autophagy upon L. donovani infection, we
monitored the expression levels of autophagy markers in L.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
donovani-infected macrophages. As shown in Figure 3B, upon
L. donovani infection, knockdown of SUMO-1, SUMO-
activating E1 enzymes (AOS-1 and UBA2), and SUMO-
conjugating E2 enzyme (UBC9) significantly reduced the
A B

FIGURE 3 | Host SUMOylation regulates the growth of Leishmania donovani by modulating autophagy initiation. (A) 1 × 106 THP-1 cells were differentiated
into macrophages and were transfected with the specific siRNAs (B) followed by L. donovani infection. MOCK here represents the transfection with a control
siRNA. Cell lysates were prepared at 48 h post-infection and were processed to check the expression level of different autophagy markers Beclin-1, Atg5, and
LC3A/B. Data from one of three experiments are shown. Band intensities were quantified by ImageJ software and were plotted in GraphPad Prism 8. Statistical
significance was quantified using the unpaired t-test with Welch’s correction, (A) *p = 0.03 and 0.016 for MOCK vs. UBC9 and SENP1, respectively, for the
expression of LC3A/B-II. (B) *p = 0.038 and 0.018 for MOCK vs. UBA2 and UBC9, respectively, and **p = 0.01 for MOCK vs. AOS-1 for the expression of
Beclin-1; *p = 0.035 and 0.043 for MOCK vs. UBA2 and UBC9, respectively, and **p = 0.01 for MOCK vs. AOS-1 for the expression of Atg5; *p = 0.027 and
0.011 for MOCK vs. AOS-1 and UBA2, respectively, and **p = 0.006 for MOCK vs. UBC9 for the expression of LC3A/B-II.
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expression level of Beclin-1 with ~3-fold decrease; similarly, a
significant reduction in the expression level of Atg5 and LC3A/B-
II was observed upon the knockdown of SUMO-activating E1
enzymes (AOS-1 and UBA2) and SUMO-conjugating E2 enzyme
(UBC9) with ~2-fold decrease. However, no significant changes
were observed upon the knockdown of SUMO-1, SUMO-2/3, and
SENP1 compared to MOCK-infected cells. Interestingly, upon
comparing the expression levels of autophagy markers from
uninfected to infected macrophages, we observed that
knockdown of SUMOylation pathway genes markedly reduced
the levels of autophagy markers in infected macrophages
compared to uninfected macrophages. These results collectively
indicate that L. donovani infection leads to the modulation of the
host SUMOylation process and thereby regulates autophagy.

Host SUMOylation Modulates the
Phagolysosome Fusion During the
Infection of Leishmania donovani
Our data showed that inhibition of host SUMOylation genes
reduced the expression level of LC3A/B-II, a marker of
autophagosomes upon L. donovani infection. For the
intracellular killing of a pathogen, the fusion of this
autophagosome with lysosome is essential to form a
phagolysosome having microbicidal capacity. Therefore, to
understand the mechanism of how SUMOylation-mediated
autophagy is being regulated during L. donovani infection, we
further studied its role in phagolysosome fusion, the final and
utmost important step of autophagy. PMA-differentiated, PMA-
transfected, and PMA-infected THP-1 macrophages were
analyzed for the expression of LAMP-1, a lysosome marker, and
its colocalization with LC3A/B, a marker of the autophagosome, as
observed under a confocal microscope (Figure 4A). As shown in
Figure 4B, a significant upregulation of the LAMP-1 fluorescence
intensity was observed upon the downregulation of SUMO-1,
SUMO-2/3, SUMO-activating E1 enzymes (AOS-1 and UBA2),
and SUMO-conjugating E2 enzyme (UBC9) by ~2-fold and
SENP1 by ~1.5-fold compared to MOCK in L. donovani-
infected macrophages. Colocalization of LAMP-1 and LC3A/B
was measured by Pearson’s correlation coefficient, with values
ranging between −1 and +1, and plotted in a graph as shown in
Figure 4C. Upon infection, knockdown of SUMO-2/3, SUMO-
activating E1 enzymes (AOS-1 andUBA2), SUMO-conjugating E2
enzyme (UBC9), and SENP1 significantly upregulated the
colocalization with 0.17, 0.14, 0.29, 0.52, and 0.23 values of
Pearson’s correlation coefficient as compared to MOCK, thus
inducing phagolysosome fusion. However, no significant
colocalization was observed upon the knockdown of SUMO-1
(Figure 4C). This could be because the target proteins of SUMO-1
might not have any involvement in the regulation of autophagy, as
knockdown of SUMO-1 changes neither the expression of
autophagy markers nor the phagolysosome fusion in the
infected macrophages. Though upon infection, knockdown of
SUMO-2/3 also does not significantly modulate the expression
of autophagy markers but regulates autophagy maturation,
suggesting the direct or indirect role of target proteins
SUMOylated by SUMO-2/3. Downregulation of SUMO-
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activating E1 enzymes (AOS-1 and UBA2) or SUMO-
conjugating E2 enzyme (UBC9) might inhibit the entire
pathway, therefore significantly modulating both the autophagy
initiation by regulating the expression of autophagy markers and
the autophagy maturation by phagolysosome fusion in L.
donovani-infected macrophages. Surprisingly, the knockdown of
SENP1 also induced phagolysosome fusion. Collectively, the result
indicates that the host SUMOylation process facilitates the survival
and growth of L. donovani by suppressing the phagolysosome
fusion, thus providing a niche to L. donovani for survival
and growth.

Host SUMOylation Regulates the Reactive
Oxygen Species Generation and Levels of
Nitric Oxide Production During Leishmania
donovani Infection
ROS and NO are the major strategies of macrophages for
regulating cell death and inflammatory responses in
encountering the pathogen. In this connection, we further
investigated the role of the host SUMOylation process in the
regulation of ROS generation and NO production during L.
donovani infection. Since ROS is an early defense phenomenon,
we observed ROS levels in transfected macrophages followed by
L. donovani infection at 30 and 60 min post-infection.
Knockdown of SUMO-1, SUMO-2/3, and UBC9 significantly
elevated the ROS generation by ~2-fold, while UBA2
downregulation elevated ROS levels by ~3-fold compared to
MOCK at 30 min post-infection. However, knockdown of
AOS1 does not alter the ROS generation in the macrophages
at 30 min post-infection. Interestingly, at 60 min post-infection,
a significant elevation of ROS generation was observed upon
knockdown of SUMO-2/3 and UBC9 by ~2-fold, SUMO-1 by
~3-fold, AOS-1 by ~4-fold, and UBA2 by ~6-fold compared to
MOCK. No significant change in ROS generation was observed
upon knockdown of SENP1 at 30 and 60 min post-infection
(Figure 5A). This suggests that during Leishmania infection,
the host SUMOylation process modulates ROS generation and
thus regulates the parasite load. NO is another important
component of the macrophage defense mechanism to control
Leishmania infection. Activation of macrophages by co-
stimulation of LPS and IFNg produces robust NO levels by
inducing gene expression of inducible NO synthase (iNOS).
Knockdown of SUMO-1, UBA2, and UBC9 significantly
upregulated the production of NO in infected and LPS- and
IFNg-stimulated macrophages by >2-fold at 24 h post-
infection. However, no alteration in NO production was
observed upon knockdown of SUMO-2/3, AOS-1, and SENP1
in infected macrophages (Figure 5B). One possibility is that
proteins SUMOylated only by SUMO-2/3 might not regulate
NO production in L. donovani-infected macrophages. This
result also indicates the involvement of the SUMO-1-
mediated SUMOylation process to regulate NO production
during L. donovani infection. Taken together, the results
indicate that host SUMOylation favors parasite growth and
survival by modulating the levels of ROS generation and NO
production of macrophages.
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Host SUMOylation Regulates
Pro-Inflammatory Cytokine Production
During Leishmania donovani Infection
Cytokines play a crucial role in mediating T-cell responses and
host defense mechanisms in macrophages. LPS potently activates
macrophages and cytokine signaling by TLR4 stimulation, while
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
Leishmania parasites suppress LPS-induced host inflammatory
cytokine responses (Lapara and Kelly, 2010). We investigated the
effect of perturbation of the host SUMOylation pathway on the
pro-inflammatory and anti-inflammatory cytokines from LPS-
stimulated macrophages. We found that the knockdown of genes
of the host SUMOylation pathway elevated the levels of pro-
A

B C

FIGURE 4 | Host SUMOylation favors the growth of Leishmania donovani by modulating autophagy maturation. Colocalization studies of autophagosome
marker, LC3A/B, and lysosome marker, LAMP-1, in L. donovani-infected macrophages were performed. (A) 0.5 × 106 THP-1 macrophages were transfected
with specific siRNAs followed by the infection of 20 MOI of L. donovani for 24 h MOCK here represents the transfection with a control siRNA. Macrophages
were incubated with the antibodies to LAMP-1 and LC3A/B with their respective secondary antibodies (see the Materials and Methods section). Images were
acquired under confocal microscopy. Here, the green color represents the expression level of LAMP-1, the red color represents the expression level of LC3A/B,
and the yellow color represents the colocalization of LAMP-1 and LC3A/B. Scale bar, 10 µm. A ×5 zoom image represents colocalization in a single cell. (B) The
graph represents the fluorescence intensity measurement of LAMP-1. Statistical significance was quantified using the unpaired t-test with Welch’s correction,
*p = 0.04, 0.017, 0.044, 0.043, and 0.011 for MOCK vs. SUMO-1, SUMO-2/3, AOS-1, UBC9, and SENP1, respectively; **p = 0.004 for MOCK vs. UBA2. (C)
Graphical representation of colocalization measured by Pearson’s correlation coefficient; values range between −1 and +1. A value of +1 indicates a positive and
strong correlation, while a value of −1 indicates a negative and weak correlation. Statistical significance was quantified using the unpaired t-test with Welch’s
correction, *p = 0.011 for MOCK vs. SENP1; **p = 0.0014, 0.0017, and 0.0024 for MOCK vs. AOS-1, UBA2, and UBC9, respectively; ***p = 0.0002 for MOCK
vs. SUMO-2/3. MOI, multiplicity of infection.
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inflammatory cytokines IL-12, IL-32g, and TNF-a at the
transcript level, while the level of anti-inflammatory cytokine
IL-10 was reduced upon the downregulation of SUMOylation
pathway (Supplementary Figure 1). We further investigated the
role of host SUMOylation and deSUMOylation processes in
modulating the cytokines profile using supernatants derived
from L. donovani-infected and LPS-stimulated macrophages.
We first monitored the expression level of an anti-
inflammatory cytokine, IL-10. Knockdown of AOS-1
significantly downregulates the expression level of IL-10 by ~2-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
fold, while no significant changes were observed upon the
knockdown of SUMO-1, SUMO-2/3, UBA2, and UBC9 in
infected macrophages. Surprisingly, a significant reduction of
~2.5-fold was also observed in the expression level of IL-10 upon
the knockdown of SENP1 compared to MOCK. A significant
upregulation of IL-12p40, a pro-inflammatory cytokine, was
observed upon the knockdown of SUMO-1 (~6-fold), SUMO-
2/3 (~9-fold), AOS-1, and UBA2 (~2-fold), while knockdown
of SENP1 significantly downregulates the expression level of
IL-12p40 by ~2-fold. No significant change in the expression
level of IL-12p40 was observed upon the knockdown of UBC9.
Knockdown of SUMO-2/3 , AOS-1 , UBA2 , and UBC9
significantly upregulates the expression level of IFN-g, a
pro-inflammatory cytokine; the maximum induction was
observed upon the knockdown of UBA2 and UBC9 by ~4-
fold as compared to MOCK, while knockdown of SENP1 also
upregulates the expression level of IFN-g to some extent in
infected macrophages. Knockdown of SUMO-1, AOS-1, and
UBC9 significantly upregulates the expression level of TNFa
and pro-inflammatory cytokine by ~2-fold; knockdown of
SUMO-2/3 and UBA2 upregulates the expression level of
TNF-a by ~4-fold in infected macrophages. Interestingly,
the knockdown of SENP1 significantly downregulates the
expression level of TNF-a (Figure 6A). We also monitored
the expression level of inflammatory markers upon L.
donovani infection at the transcript level. A significant
reduction was observed in the expression level of IL-10
at the transcript level upon knockdown of SUMO-2/3 and
UBC9 by ~2-fold, while no significant changes were observed
upon knockdown of other genes compared to MOCK.
Knockdown of UBA2 (~7-fold) and UBC9 (~2-fold)
significantly upregulates the expression level of IL-12 at the
transcript level. The expression level of IL-32g, a pro-
inflammatory cytokine, was observed to be significantly
upregulated upon knockdown of SUMO-1, SUMO-2/3,
UBA2, and UBC9 by ≥2-fold. Knockdown of SUMO-1 (~6-
fold) , SUMO-2/3 (~12-fold) , and UBA2 (~25-fold)
significantly upregulated the expression level of TNF-a
(Figure 6B). Interestingly, the downregulation of the
host SUMOylation pathway upregulates the levels of pro-
inflammatory cytokines by manifold in the infected
macrophages compared to uninfected macrophages. Taken
together, these results suggest that the host SUMOylation
process favors the infection and survival of L. donovani in
macrophages by modulating the levels of pro-inflammatory
cytokines such as TNF-a, IFN-g, IL-12p40, and IL-32g and
anti-inflammatory cytokine, IL-10.
DISCUSSION

SUMOylation has emerged as a host key signaling pathway that
has a diverse role in host-mediated immune responses for many
viral diseases and cancer biology (Wang et al., 2013; Saul et al.,
2015; Xia et al., 2015; Xu et al., 2015; Liu et al., 2016; Wang et al.,
2021). To establish the infection and sustain its survival,
A

B

FIGURE 5 | Host SUMOylation favors Leishmania donovani survival by
modulating the generation levels of ROS and nitric oxide. THP-1-differentiated
human macrophages were transfected with siRNAs for 36 h (A) in a 96-well
plate followed by the infection of L. donovani promastigotes at 20 MOI for 30-
and 60-min time points. Thirty minutes before completing the incubation period,
cells were loaded with 10 µM of DCFH-DA. Samples were immediately analyzed
for ROS levels by fluorometry with excitation/emission at 485/535 nm. The
graph was plotted in GraphPad Prism 8. Statistical significance was quantified
using the unpaired t-test with Welch’s correction, *p = 0.02, 0.05, and 0.04 for
MOCK vs. SUMO-1, SUMO-2/3, and UBC9, respectively; **p = 0.005 for
MOCK vs. UBA2 at 30 min post-infection and *p = 0.02 for MOCK vs. SUMO-
2/3; **p = 0.003 and 0.004 for MOCK vs. SUMO-1 and UBC9, respectively;
***p = 0.001 and 0.0007 for MOCK vs. AOS-1 and UBA2, respectively, at 60
min post-infection. (B) Transfected macrophages were infected with L.
donovani promastigotes at 20 MOI along with the stimulation of LPS (100 ng/
ml) and hIFN-g (20 ng/ml) for 24 h Griess reagent was used to estimate the NO
level in the supernatant. The graph was plotted in GraphPad Prism 8. Statistical
significance was quantified using the unpaired t-test with Welch’s correction
(*p < 0.05 and **p < 0.01). ROS, reactive oxygen species; MOI, multiplicity of
infection; LPS, lipopolysaccharide.
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Leishmania parasites successfully manage to evade the host
immune mechanism, but information on the host factors or
signaling pathways that are modulated by the parasite for the
stable infection has not been analyzed in detail. To elucidate the
role of host SUMOylation in the pathogenesis of L. donovani, we
chose to dissect this pathway to observe the roles of different
SUMO isoforms, SUMO-E1, and SUMO-E2 enzyme as well one
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
deSUMOylating gene, SENP1. We observed significant changes
in these genes’ expression upon L. donovani infection. Overall
host SUMOylation of many proteins via SUMO-1 or SUMO-2/3
was significantly induced upon L. donovani infection. This
indicates that host SUMOylation might be involved in the
regulation of host key downstream signals and subsequent
responses to favor L. donovani infection. To confirm it, the
A

B

FIGURE 6 | Host SUMOylation promotes the growth of Leishmania donovani by suppressing pro-inflammatory cytokines. THP-1 macrophages were transfected
with specific siRNAs followed by the infection of L. donovani along with or without the stimulation of LPS (100 ng/ml) for 24 h MOCK here represents the transfection
with a control siRNA. Culture supernatants were collected to measure different cytokines, while cells were used to check the expression of inflammatory markers at
the transcript level. (A) Graph represents cytokine levels measured by sandwich ELISA. Statistical significance was quantified using the unpaired t-test with Welch’s
correction, *p = 0.012 for MOCK vs. AOS-1 and ***p = 0.0003 for MOCK vs. SENP1 for IL-10; **p = 0.0029, 0.0032, 0.0028, and 0.0074 for MOCK vs. SUMO-1,
AOS-1, UBA2, and SENP1, respectively, and ***p = 0.0002 for MOCK vs. SUMO-2/3 for IL-12p40; *p = 0.025 for MOCK vs. SUMO-2/3, **p = 0.002 for MOCK
vs. SENP1, and ***p = 0.0002 and 0.0008 for MOCK vs. UBA2 and UBC9, respectively, for IFN-g; *p = 0.049 for MOCK vs. UBC9, **p = 0.0012 for MOCK vs.
AOS-1, ****p < 0.0001 for SUMO-2/3 and UBA2 for TNF-a in LPS-stimulated and Ld-infected macrophages. (B) RNA was isolated for gene expression analysis of
inflammatory cytokines by quantitative real-time PCR (qRT-PCR). *p = 0.04 for MOCK vs. SUMO-2/3 or UBC9 for IL-10; *p = 0.04 and 0.05 for MOCK vs. UBA2 and
SENP1, respectively; **p = 0.008 for MOCK vs. UBC9 for IL-12; *p = 0.02 for MOCK vs. SUMO-2/3 and 0.04 for MOCK vs. SUMO-1 or UBA2 or UBC9 for IL-32g;
*p = 0.05 and 0.02 for MOCK vs. UBA2 and SENP1, respectively; **p = 0.01 and 0.008 for MOCK vs. SUMO-1 and SUMO-2/3 for TNF-a in LPS-stimulated and Ld-
infected macrophages. p-Value was calculated based on Student’s unpaired 2-tailed t-test. LPS, lipopolysaccharide.
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expression of these genes was inhibited by siRNA-mediated
knockdown following L. donovani infection. Inhibition of the
host SUMOylation pathway at various steps reduced the number
of amastigotes inside the macrophages, while no change in the
parasite load was observed upon SENP1 knockdown. The result
was correlated to our first data, which validates our hypothesis
that host SUMOylation favors the infection and survival of L.
donovani in the macrophages. Further, we investigated host
survival strategies and immune mechanisms modulated by
host SUMOylation to regulate L. donovani survival.

It is well reported that different species of Leishmania induce
the expression level of autophagy genes in vivo or in vitro, thus
modulating host autophagy for its advantage (Cyrino et al., 2012;
Frank et al., 2015; Thomas et al., 2018; Pitale et al., 2019).
Multiple studies have shown that SUMOylation also
participates in various cell death mechanisms including
autophagy (Kim et al., 2015; Prudent et al., 2015; Mattoscio
et al., 2017; Scurr et al., 2017; Lorente et al., 2019). Autophagy is
induced upon the depletion of SUMO-1 and thus induced
autophagy-mediated cancer cell death (Lorente et al., 2019).
Interestingly, there is one report stating that autophagy
regulates the SUMO pathway (Mattoscio et al., 2017). Hence,
the diverse role of SUMOylation whether negative or positive in
the regulation of autophagy solely depends on the substrate
protein and their interacting partners. Therefore, we investigated
the ability of host SUMOylation in modulating host autophagy
for favoring the growth of L. donovani. We did not find
significant changes in the expression levels of Beclin-1 and
Atg5 upon the perturbation of host SUMOylation only. The
expression level of LC3A/B-II was reduced upon the knockdown
of UBC9 and SENP1. Interestingly, upon L. donovani infection,
the knockdown of most genes of the host SUMOylation pathway
reduced the expression level of Beclin-1, Atg5, and LC3A/B-II.
This finding suggests that host SUMOylation favors the growth
of L. donovani by modulating the initiation of autophagy. The
results conforme with the reports (Mitroulis et al., 2009; Thomas
et al., 2018; Pitale et al., 2019) that Leishmania parasites
modulate host autophagy for their welfare. Since the ultimate
step of autophagy is the fusion of autophagosomes to lysosomes
for the degradation of the internalized cellular components in
autolysosomes (Lőrincz and Juhász, 2020), we next investigated
the role of host SUMOylation in the autophagy maturation
during the infection of L. donovani. Our result indicated that
blocking genes of host SUMOylation induced the expression
level of LAMP-1 and promoted the autophagosome–lysosome
fusion. However, knockdown of SENP1 also reduced the
expression levels of autophagy markers and induced the level
of lysosome marker and autophagosome–lysosome fusion.
Collectively, these findings suggest that during L. donovani
infection, host SUMOylation promotes the initiation of
autophagy but suppresses the maturation of autophagy, thus
providing a niche for the survival and growth of L. donovani.

ROS is known as a signaling molecule regulating autophagy
in macrophages (Huang et al., 2011; Scherz-Shouval and Elazar,
2011). During infection, Leishmania parasites interfere with the
oxidative stress mechanisms of macrophages for its persistence
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(Ghosh et al., 2003; Sansom et al., 2013). SUMOylation is also
involved in maintaining ROS and NO homeostasis.
Endogenous SUMO-1 is reported as a suppressor of ROS
generation in neutrophils and smooth muscle cells (Akar and
Feinstein, 2009; Pandey et al., 2011; Gupta et al., 2020). Taken
this together, we evaluated the role of host SUMOylation in the
regulation of generation levels of ROS and NO during L.
donovani infection. We found that upon inhibition of any
step, SUMOylation significantly elevated ROS generation in
L. donovani-infected macrophages. Knockdown of SUMO-1,
UBA2, and UBC9 induced the production of NO upon the
infection. The result suggests that host SUMOylation
modulated the microbicidal mechanisms of macrophages in
terms of autophagy and the levels of ROS generation and NO
for the persistence of Leishmania. ROS acts as a key mediator to
trigger inflammatory cytokine production for establishing and
facilitating immune responses into either protection or non-
protection toward the infection. As soon as the parasite invades,
the host cell activates various cellular immune signaling
pathways and inflammatory responses including Th1 and
Th2 types to encounter the pathogen (Saha et al., 2007; Nylén
and Gautam, 2010). The production level of IL-12 and IFN-g
downregulates while the level of IL-4 and IL-10 upregulates
during the infection of Leishmania parasites (Murphy et al.,
2001; Castellano et al., 2009). IL-10 blocks the activation of Th1
cells that suppress the production of IL-12 and IFN-g to inhibit
the parasite clearance mechanism (Bacellar et al., 2000). In
splenic aspirate cells of VL patients, IFN-g and TNF-a
production upregulated by the neutralization of IL-10
decreases (Gautam et al., 2011) during parasite load. TNF-a
leads to the stimulation of IFN-g production (Singh et al., 2016)
and has a potential role in granuloma formation, which
facilitates the clearance of intracellular parasites (Titus et al.,
1989; Murray, 2000). IL-12 is important for the production of
IFN-g from NK cells and T cells and induces NO generation
and NOS2 expression, facilitating an antiparasitic effect (Liew
and O’Donnell, 1993). SUMOylation is reported to regulate
IFN responses by various molecular mechanisms (Hannoun
et al., 2016; Crowl and Stetson, 2018). Many viral proteins
manipulate the host SUMOylation pathway to establish
infection by altering inflammatory responses (Kubota et al.,
2008; Chang et al., 2009; Lowrey et al., 2017; Vidal et al., 2019).
In light of these reports, we next investigated the inflammatory
responses mediated by host SUMOylation during L. donovani
infection. We found that the knockdown of genes of the host
SUMOylation process significantly upregulates the production
level of proinflammatory cytokines IL-12p40, IFN-g, IL-32g,
and TNF-a, while the knockdown of deSUMOylating gene
SENP1 significantly downregulates the production levels of
IL12p40 and TNFa . The finding suggests that host
SUMOylation favors Leishmania infection by modulating
pro-inflammatory immune responses. However, the
knockdown of SENP1 regulates the inflammatory responses
and autophagy differently. Downregulation of SENP1 leads to
the reduction of IL-10 levels as well as upregulation of the
expression of LAMP-1 and promotes the autophagosome–
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lysosome fusion in infected macrophages. Interestingly,
knockdown of SENP1 also reduces the level of IL-12p40 and
TNF-a, but it does not modulate the generation levels of ROS
and NO. These results suggest the collated effect of the interplay
between pro-inflammatory and anti-inflammatory responses,
which might lead to no changes in parasite load upon
knockdown of SENP1 in infected macrophages.

The most prominent alterations of the immune responses were
observed upon the knockdown ofAOS-1,UBA2, andUBC9 in the L.
donovani-infected macrophages. This could be because AOS1/
UBA2 heterodimer and UBC9 are the sole E1-activating and E2-
conjugating enzymes for SUMOylation, and inhibition of any of
these enzymes can inhibit the overall SUMOylation process.
Different isoforms of SUMO may have different or similar target
protein preferences that may differentially regulate responses. A
distinct and overlapping set of target proteins have been identified
for SUMO-1 and SUMO-2, indicating their redundant and non-
redundant cellular functions (Vertegaal et al., 2006). As observed in
this study, the knockdown of SUMO-1 and SUMO-2/3 differentially
regulates the process of autophagy initiation and autophagy
maturation. Also, the knockdown of SUMO-1 elevated the levels
of ROS generation and NO more significantly than the knockdown
of SUMO-2/3 upon L. donovani infection, while the more significant
upregulation of pro-inflammatory cytokines levels was observed
upon the knockdown of SUMO-2/3 compared to SUMO-1.
Dissecting the SUMOylation pathway contributes to the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
understanding that in Leishmania infection, SUMOylation of
various proteins via not only SUMO-1 but also SUMO-2 or
SUMO-3 might play a role in differentially modulating various
cellular immune responses of macrophages to facilitate the infection
and growth of parasites.

The results of this study demonstrate that L. donovani
infection modulates the host SUMOylation process to facilitate
its survival and growth in the macrophages by modulating host
SUMOylation-mediated autophagy and the immune responses
(Figure 7). This study also opens novel horizons for targeting the
host SUMOylation pathway toward the development of
therapeutic antileishmanial drugs.
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