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Quantum sensing of noises in one 
and two dimensional quantum 
walks
Tian Chen, Xiong Zhang & Xiangdong Zhang

Quantum walk (QW) provides a versatile platform for the realization of quantum algorithms. Due to 
the existence of the inevitable noises in the walk, the different quantum algorithms accommodating 
to different noises are demanded. Thus, the success of the algorithms based on the QW requires us 
to sense different noises in the walk. Until now, the way to distinguish different noises in the walk 
has been discussed rarely. Here, we propose an efficient way to sense the noises in the one and two 
dimensional QWs. The populations of the coin in the walk with or without decoherence are presented. 
By only detecting the populations of the coin in the QW, we can determine whether there exists the 
decoherence in the total QW system. Moreover, the non-Markovianity of the coin in the one and two 
dimensional QWs is revealed, in which the coin is taken as an open quantum system, and the other 
components of the QW system is taken as the large environment. With the measured value of the 
non-Markovianity for the coin, we can conjecture which kinds of noise emerges in the one and two 
dimensional QWs.

Quantum walk (QW) has been employed as a useful tool in the study of quantum algorithms and quantum com-
munication1–17. For the quantum coherence is introduced into the coin operator in the QW, the variance of the 
position distribution in the QW displays the quadratical dependence on time; while in the classical walk (CW) 
system, the variance of the position distribution increases linearly with time. It means that the walker of the QW 
system can go further in the position space than the walker of the CW system at the same time3–5. Such properties 
have been applied to design the quantum algorithms with the QW9. The quantum search algorithms based on the 
QW display the speedup over the classical algorithms. It only requires  N( ) and N N( ln )  steps to find a 
desired item out of N items on the hypercube and two-dimensional lattice, respectively6–17. However, due to the 
inevitable interaction from the environment, the decoherence will emerge in the QW system18–38. Because of the 
loss of the quantum coherence in the QW system, the dynamic properties of the QW system will exhibit the sim-
ilar behaviors as that of the CW system. The variance of the position distribution in the QW shows the linear time 
dependence when the strong decoherence is introduced into the walk, and the critical decoherence strength for 
the change from QW to CW depends on the type of noise19, 30, 38. Meanwhile, the advantage from the quantum 
coherence in the quantum search algorithms disappears when the decoherence emerges in the walk37. Up to now, 
considering the decoherence, there has not been an efficient quantum algorithms based on the QW.

Although the decoherence is detrimental to many functions of the QW, in some respects, the decoherence 
can show many benefits. With the very weak decoherence in the walk, the uniform distribution in the position of 
the walk is achieved and the desirable quantum speedup is enhanced21. The efficiency of quantum transport can 
be improved with the aid of decoherence36. The advantage of decoherence only emerges in the QW with certain 
noises. Besides, due to impacts from different noises, the different quantum algorithms suiting for different noises 
are required. In this sense, the sensing of the existence of decoherence and the discrimination among different 
types of decoherence in the QW system are very important. Such sensing of the QW can help us to develop and 
choose a feasible quantum algorithm based on the QW for the practical use.

To sense the properties of the QW, it is straightforward to measure the position distribution and the coin 
populations in the total QW system and get all of the information about it19, 30, 38. However, due to the extended 
infinite space of the position, it is hard for us to perform such measurement on the position space and get the 
knowledge of the total walk. So it will be very useful if we can develop the quantum sensing method to uncover 
the properties of the QW with accessing only small part of the QW system. So far the way to distinguish different 
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noises in the walk has been discussed rarely. On the other hand, in optical systems, when taking the optical polar-
ization degrees of freedom and the optical momentum degrees of freedom as the open quantum system and the 
environment respectively, some researchers have interpreted that by only measuring the non-Markovianity of the 
polarization degrees of freedom, the existence of the initial correlation between the system and environment can 
be revealed39–50.

Motivated by the investigations above, in this work we introduce the non-Markovianity of a small quantum 
system to sense the inaccessible total QW system. In our study, we take the two-level coin in the QW system as 
the open quantum system. By examining the populations of the coin, we can conjecture whether the decoherence 
emerges in the QW system. Furthermore, in our discussion, we take the broken line noise and coin-decoherence 
as two different kinds of decoherence. These two kinds of decoherence have been widely used in the description 
of the dynamics of the QW containing noises18–38. We find that, when these two different noises affect the one or 
two dimensional QW, the non-Markovianity of the coin will exhibit different time evolution behaviors with the 
system-environment coupling strength. It means that we can infer these two different types of noises in the QW 
by detecting the non-Markovianity of the coin only and without measuring the total QW system. Though the 
non-Markovian dynamics in the QW has been mentioned already51–53, the studies there mainly focused on the 
evolution dynamics of the coin, and had no discussion about the discrimination of different noises in the QW.

The organization of our work is as follows: the Sec. Results contains two subsections, in Subsec. The pop-
ulations of the coin in one and two dimensional QWs with or without noises, we present the populations of the 
coin in the one and two dimensional QWs with or without noises, two different kinds of noises are discussed 
in this subsection. In Subsec. Quantum sensing of different noises in the one and two dimensional QWs, we study 
the non-Markovianity of the coin with different decoherence strengths. Our results reveal that by detecting the 
non-Markovianity of the coin, we can conjecture which kinds of noise exists in the system. The calculation details 
associated with the derivation of the populations of coin have been addressed in the Sec. Methods. Later, we pro-
vide our conclusion and discuss the future application of our findings in Sec. Discussion and Conclusion.

Results
The total system of QW contains the coin and the position. In our discussion, the Hilbert space for the coin is 
spanned by |L〉 and |R〉, and the coin operator C is

θ θ
θ θ

=
−

.( )C cos sin
sin cos (1)

Here, the parameter θ in the coin operator C is the rotation angle of the coin, and θ π∈ [0, 2 ]. For one dimen-
sional QW, we assume that the Hilbert space for the position space is spanned by basis along x-direction |x〉, 

∈x  . And for two dimensional QW, the Hilbert space for the position space is spanned by basis along two 
orthogonal directions (x-direction |x〉, ∈x  and y-direction |y〉, ∈y ). In one dimensional QW, the condi-
tional shift operator ′Sx without noises is

∑′ = + + − .
=−∞

∞
S x R x R x L x L1, , 1, ,

(2)x
x

For the description of conditional shift operators in the two dimensional QW, the shift operator Sy is needed 
besides Sx. The two conditional shift operators Sx and Sy without noises are
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The populations of the coin in one and two dimensional QWs with or without noises.  In this 
subsection, we study the populations of the coin in the QWs without noises firstly. Then the two different kinds 
of noises are introduced into the walk, and we present the populations of the coin in the QWs with noises. As 
reported in ref. 51, we can find that in one dimensional QW without noises, the populations of the coin in the 
infinite time limit depend explicitly on the initial state of the coin. In the following, we study the populations of 
the two-level coin in the two dimensional QW without noises.

The state of total two dimensional QW system comprising the coin and position is addressed as

∑ ∑Ψ = + .
=−∞

∞

=−∞

∞
t a t x y R b t x y L( ) ( ) ( )

(4)x y
x y x y, ,

For one step evolution of the two dimensional QW, we assume that we apply the coin operator C firstly to the coin 
space, followed by the conditional shift operator along x-direction Sx; then the coin operator C is applied on the 
coin space again, followed by the conditional shift operator along y-direction Sy. The unitary operator for one step 
evolution in the two dimensional QW is = ⊗ ⊗U S I C S I C( ) ( )y x . Such QW has been demonstrated to recover 
the phenomenon of the traditional two dimensional QW with a four-level coin38, 54–56. Due to the small space of 
the coin, such QW has a large advantage in designing the quantum algorithms54, 56.
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After one step evolution, the coefficients ax,y(t) and bx,y(t) of the state Ψ t( )  at time t + 1 change as
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The population for the state |R〉 of the coin is = ∑ =−∞
∞P t a t( ) ( )R x y x y, ,

2
, and the population for the state |L〉 of the 

coin is = ∑ =−∞
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2
, the time evolutions for PR(t) and PL(t) are
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Here, = …Q i( 1 5)i  is expressed as = ∑ =−∞
∞
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⁎a t b t( ) ( )x y x y x y, 1, 1 1, 1 . Considering the obtained expressions PR(t) and PL(t) for 
the coin in Eq. 6, when time t approaches infinity, we find that the populations of the coin PR(t) and PL(t) are 
affected by the interference term A(t→∞),
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We can find that for one dimensional QW, the contribution to the populations of the coin (PL(t) and PR(t)) is 
related to the interference term which is associated with the coefficients ax and bx

51. From the interference terms 
= …Q i( 1 5)i  in Eq. 7, it is obvious that the interference is not only from the coefficients ax,y and bx,y, but also from 

the coefficients ax+1,y and ax−1,y (bx+1,y and bx−1,y). Furthermore, it is clearly seen that for 2 by 2 matrix in Eq. 6, the 
elements are all positive and the sum over any column or row of this matrix is equal to 1. The transition between 
the states |R〉 and |L〉 from such 2 by 2 matrix can be seen as a Markovian process. While in Eq. 6, another term 
associated with A(t) is added. In this case, the time evolution for the populations of the coin (Eq. 6) cannot be 
interpreted as a simple Markovian process.

Moreover, by applying Fourier transform, we will derive the populations of the coin in the two dimensional 
QW when time approaches infinity. We will compare the results from the Fourier transform method with the 
results aforementioned (Eq. 8a and 8b). In our discussion below, we take the parameter θ of the coin operator C 
as θ = π/4 (that is the Hadamard matrix). After taking the Fourier transform in the position spaces |x〉 and |y〉, 
we can obtain
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By taking such expressions, the shift along x and y-directions can be interpreted as ref. 38
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. The coin state at time t approach-
ing infinity is addressed as
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⁎t b t( ) ( )x y, . The detailed derivation of equations above can be found in Sec. Methods. In Fig. 1, we provide the example 
to show that when the time becomes large, our analytic results about the populations of the coin (Eq. 8a and 8b) 
coincide with the numerical results obtained from the Fourier transform (Eq. 11). We choose the parameter θ = π/4, 
that means the coin is the Hadamard matrix in the derivation of Eqs 6, 8a and 8b. The initial coin state is 
φ = +π π π( )R i L(0) cos exp sin

6 4 6
. Moreover, it clearly shows that when the time t becomes large, the term 

Q5(t) (the magenta solid dotted line in Fig. 1(a,b)) is close to the term Q0 from the Fourier transform method. The 
real part and imaginary part of Q5(t) at t = 30 are 0.1145 and −0.08361, respectively. When substituting γ = π/3 and 
δ = π/4 into Q0, we obtain Q0 = 0.1113 − i · 0.0837. These two values =Q t( 30)5  and Q0 are nearly the same. Besides 
the value of Q5(t) is close to Q0, when the time approaches infinity, the time evolution of A(t) is addressed in Fig. 1(c). 
In our figure, the term A(t) at time t = 30 is equal to 0.08826, then the populations of the coin PR and PL from Eqs 6, 
8a and 8b are 0.5883 and 0.4117, respectively. When we put γ = π/3 and δ = π/4 into Eq. 11, the values for Π′R and Π′L 
from the Fourier transform method are 0.5908 and 0.4092, respectively. It means that our derivation based on the 
step evolution equation (Eqs 6, 8a and 8a) coincides with that method related to the Fourier transform (Eq. 11).

Next, we will study the populations of the coin when the total QW system is affected by the noises. The popu-
lations of the coin with the noises will be compared to that without the noises. Here, two different types of noises 
are discussed. One is the broken line noise, which describes a nonseparable noise in the coin-position system; the 
other is the coin-decoherence, which only emerges in the coin space and is seen as a separable noise. These two 
types of noises are common noises in the QW and have been widely discussed18–38. For one dimensional QW with 
the broken line noise, the populations of the coin when time approaches infinity have been presented as 
ρ → ∞ = +t L L R R( ) 1/2( )c

51. When the coin-decoherence is introduced into the one dimensional QW, 
we present the reduced density matrix of the coin ρc(t) by using the Fourier transform method in Sec. Methods. 
When the time approaches infinity, ρ → ∞ = +t L L R R( ) 1/2( )c .

Moreover, we study the populations of the coin in the two dimensional QWs with noises. Firstly, the broken 
line noise is introduced into the walk. We assume that the broken line noise appears only in the x-direction, and 
four possible evolutions of the two dimensional QW involving decoherence are included38. The explicit form of 
evolution operator k p,  can be found in Sec. Methods. From the calculation in Sec. Methods, we find that no matter 
what the initial coin state is, the density matrix for the coin ρc(t) in the infinite time limit is

ρ → ∞ = .( )t( ) 1
2

1 0
0 1 (12)c

Next, we study the populations of the coin in the two dimensional QW with the introduction of the 
coin-decoherence. In our discussion, we assume that coin-decoherence emerges with the probability f before each 
step of the walk, then the walker moves along the x-direction and y-direction in sequence. The operator k p,  
describing one step evolution of the two dimensional QW with the coin-decoherence has been presented in Sec. 
Methods. Based on the calculation in Sec. Methods, it is clear that no matter what the initial coin state is, when the 
time approaches infinity, the reduced density matrix for the coin ρc(t) is

Figure 1.  The step evolution of = …Q t i( ) ( 1 5)i  and A(t) in Eq. 7. The initial total state for this two 
dimensional QW is taken as 

 + 


π π πR i Lcos exp( )sin 0 0x y6 4 6
. (a) The step evolution of the real part of 

Qi(t); (b) The step evolution of the imaginary part of Qi(t); (c) The step evolution of A(t).
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ρ → ∞ = .( )t( ) 1
2

1 0
0 1 (13)c

Based on the discussion above, we have considered two different kinds of noises in the one or two dimensional 
QWs. One is the broken line noise and the other is the coin-decoherence. Our calculation results have revealed 
that when time t lasts long enough, the state of coin will approach +R R L L( )1

2
, no matter what the initial 

coin state is. While, if we do not consider the effect of the noise, when time approaches infinity, the populations of 
the coin in one or two dimensional QWs depend on the initial coin state φ(0)  explicitly (Eqs 8a, 8b and 11). It 
means that for one or two dimensional QWs, from our obtained populations of the coin, we can conjecture 
whether the total QW system is affected by these two common noises.

Quantum sensing of different noises in the one and two dimensional QWs.  As mentioned above, 
by only detecting the populations of the coin, we can sense the existence of the two common noises in the QW. If 
there is no noise in the walk, the populations of the coin depend explicitly on the initial state of the coin. In con-
trast, when there exists the broken line noise or the coin-decoherence in the walk, the coin approaches the state 

+R R L L( )1
2

 with the step evolution. Considering the importance of discrimination of these two types of 
noises in designing the quantum algorithms9–14, 17, 37, 38, we will propose to sense the noise in the QW by taking the 
coin as the open system and only measuring the non-Markovianity of the coin (the density matrix of coin only has 
2 by 2 elements).

In our proposal, the non-Markovianity of the coin in the QW is detected. Due to the interaction between 
the coin and the position in each step evolution of the walk, the information obtained from the coin can reveal 
the properties of the whole quantum walk system. We find that when the one or two dimensional QW sys-
tem is affected by different types of noises, the non-Markovianity of the coin exhibits different behaviors. In 
the discussion below, two common noises are taken into the walk, one is the broken line noise and the other is 
coin-decoherence. When the evolution of the QW system incorporates one of such two types of noises, we can 
conjecture that which noise is contained in the walk by only detecting the non-Markovianity of the coin.

The non-Markovianity → ∞t( )  for quantum processes in open system is defined as refs 40 and 41

 ∫ σ τ ρ τ→ ∞ =
ρ ρ σ τ> ∈

t d( ) max ( , (0)) ,
(14)t, 0, [0, ] 1,2

1 2

where the rate of change of the trace distance σ ρt( , (0))1,2  is addressed as

σ ρ ρ ρ= − .t d
dt

D t t( , (0)) [ ( ) ( )] (15)1,2 1 2

The expression ρ ρ−D t t[ ( ) ( )]1 2  denotes the trace distance between the two density matrices ρ1(t) and ρ2(t). In 
Eq. 14, the integral is taken when the trace distance between ρ1(t) and ρ2(t) increases with the time, and the max-
imization is performed over all of possible initial states ρ1(0) and ρ2(0). Due to our calculation power, we cannot 
obtain the asymptotic value of t( )  with t→∞ to evaluate the non-Markovian process precisely. Our results 
below associated with t( )  in the finite time can clearly reveal the different non-Markovian behaviors in the walk 
with different kinds of noises. Based on the different features of the non-Markovianity  t( ), we can easily judge 
what kinds of noise emerges in the walk.

The sensing in the one dimensional QW.  For one dimensional QW, as presented before, we have found that when 
the noise is not introduced, the dynamics of the populations for the coin shows the explicit dependence on the 
initial coin state. In comparison, when any one noise is taken into account, the state for coin reaches the asymp-
totic state +R R L L1

2
1
2

 in the infinite time whatever the initial coin state is. Next, the non-Markovianity 
t( )  and the trace distance ρ ρ−D t t[ ( ) ( )]1 2  for one dimensional QWs are presented in Fig. 2. We assume that the 

walker starts at the original point. The simulation has been done with all of possible initial states for the coin, and 
we find that the maximum value in the integral Eq. 14 is obtained with the initial states for the coin being |R〉 and 
|L〉, respectively. So in our simulation, the initial states of the coin for the evaluation of trace distance D are taken 
as ρ = R R(0)1  and ρ = L L(0)2 .

In Fig. 2, the trace distance ρ ρ−D t t[ ( ) ( )]1 2  and the non-Markovianity with different strengths of decoherence 
are addressed. Two different kinds of noises are provided. In Fig. 2(a,b), the broken line noise is introduced into 
the walk; in Fig. 2(c,d), the coin-decoherence emerges in the one dimensional QW. As addressed in Fig. 2(b,d), for 
the one dimensional QW, with the strength of decoherence becoming larger, the non-Markovianity t( )  of the 
open system (coin) becomes smaller. When the strength of the broken line noise is 0.3 (see Fig. 2(b)), the 
non-Markovianity of the coin decreases to a very small value. When the strength of decoherence increases to 
f = 0.5, the dynamics of the coin in the one dimensional QW involving the broken line noise changes to a 
Markovian process. When the coin-decoherence is introduced into the walk (see Fig. 2(d)), we can find that, with 
the strength of decoherence becoming larger, the coin displays less non-Markovian behavior. While, compared 
with the one dimensional walk with broken line noise, even though the strength of decoherence increases to 
f = 0.5, the coin in the one dimensional QW with coin-decoherence still undergoes a non-Markovian process. By 
detecting the non-Markovianity t( )  of the coin, we can conjecture that whether the broken line noise or the 
coin-decoherence emerges in the one dimensional QW.

Later, we analyze the populations of the coin when the decoherence is considered. In Fig. 3, we provide the 
populations of the coin with the step evolution in the walk. Two different kinds of noises are introduced. In 
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Fig. 3(a–c), the broken line noise emerges in the walk. For Fig. 3(d–f), the coin-decoherence appears in the walk. 
Different strengths of noise are addressed. When the strength of decoherence satisfies f = 0 (see Fig. 3(a,d)), which 
means there is no noise in the walk, the populations of coin at the state |R〉 and |L〉 are not same. While, when any 
one noise emerges in the walk (see Fig. 3(b,c,e,f)), with the increase of the step, the populations of the coin at the 
state |R〉 and |L〉 are nearly equal. Such results have been obtained from our aforementioned discussion. 
Furthermore, considering the two initial coin states here (|R〉 and |L〉) are same as that used in the description of 
the non-Markovianity  t( ) (Fig. 2), we find that when the strength of decoherence increases, the amplitudes of 
oscillations for the populations of the coin reduce. For the oscillations of the populations are directly related to the 
increase of trace distance ρ ρ−D t t[ ( ) ( )]1 2 , it means that the smaller value of non-Markovianity t( )  can be found 

Figure 2.  The one dimensional QW with different strengths of decoherence. Blue solid, f = 0; Red dashed, 
f = 0.1; Black dotted, f = 0.3; Magenta dotted dashed, f = 0.5. (a,b) The broken line noise is considered in the 
walk. (a) The step evolution of the trace distance between the coin states ρ1(t) and ρ2(t). The initial coin states 
are chosen as ρ = R R(0)1  and ρ = L L(0)2 . (b) The non-Markovianity  t( ) of the coin with the step 
evolution in the walk. (c,d) The coin-decoherence is introduced into the walk. (c) The trace distance between 
the coin states ρ1(t) and ρ2(t). The initial coin states are chosen as ρ = R R(0)1  and ρ = L L(0)2 . (d) The 
non-Markovianity of the coin with the step evolution in the walk.

Figure 3.  The populations of the coin in the one dimensional QW with different decoherence strengths. Blue 
circles and red solid line describe the populations of the coin at the state |R〉 and |L〉, respectively; the initial coin 
state is ρ = R R(0)1 . Green rectangles and magenta dashed line represent the populations of the coin at the 
state |R〉 and |L〉, respectively; the initial coin state is ρ = L L(0)2 . (a–c) The broken line noise is considered in 
the walk. (d–f) The coin-decoherence emerges in the walk.
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with a larger strength of decoherence, which coincides with the results in Fig. 2. When the noise is introduced 
into the walk, at the same strength of decoherence, the oscillations of the populations of the coin in the QW with 
the broken line noise are weaker than that in the QW with the coin-decoherence (from Fig. 3(b,e), f = 0.1; 
Fig. 3(c,f), f = 0.3). These oscillation behaviors agree with the amplitudes of non-Markovianity of the coin t( )  in 
one dimensional QWs with different kinds of noises (see Fig. 2(b,d)).

The sensing in the two dimensional QW.  In what follows, we study the non-Markovianity of the coin in the two 
dimensional QW. The populations of the coin in the two dimensional QWs with or without noises have been 
discussed above. When the broken line noise or coin-decoherence emerges in the walk, the populations of coin at 
the state |R〉 and |L〉 are close to each other with the step evolution of the walk. In Fig. 4, we present the 
non-Markovianity of the coin  t( ) in the walk with two different kinds of noises. We have numerically demon-
strated that the maximum value for the integral Eq. 14 in the two dimensional QWs can be reached with the two 
initial coin states chosen as |R〉 and |L〉. In comparison with the non-Markovianity for the coin in the one dimen-
sional QWs, the different behaviors of the non-Markovianity for the coin emerge in the two dimensional QWs 
with the decoherence. As shown in Fig. 4(b,d), for the two dimensional QWs, when the broken line noise appears 
in the walk, the value of  t( ) decreases with the increase of the strength of decoherence, while, when there is the 
coin-decoherence in the walk, the value of  t( ) increases with the increase of the strength of decoherence.

To illustrate the different behaviors of the non-Markovianity with the decoherence, we provide the popula-
tions of the coin with step evolution in the two dimensional QWs, see Fig. 5. From Fig. 5(b,c,e,f), we find that 
when there exists one noise in the two dimensional QWs, the populations for the coin at the state |R〉 and |L〉 
approach the same value ρ ρ= = .= = 0 5RR

k
LL
k1,2 1,2 . These numerical results are consistent with the results obtained 

above. For the broken line noise is introduced into the walk (Fig. 5(b,c)), the amplitudes of the oscillations in the 
populations of the coin decrease with the increase of the decoherence strength. Such attenuation in the oscilla-
tions of the populations of the coin reduces the increase of the trace distance between the state ρ1(t) and ρ2(t), and 
leads to the decrease of the non-Markovianity t( )  for the coin. While, when the coin-decoherence emerges in 
the two dimensional QW, we find that with the increase of the decoherence strength, the amplitudes of the oscil-
lations in the populations of the coin increase. Such increases of oscillations lead to the increase of the value of the 
non-Markovianity.

Based on the statements above, we can find that by detecting the populations of the coin, we can judge whether 
there exists the decoherence in the QW. In our study, the two widely discussed noises have been introduced. One 
is the broken line noise, which is the nonseparable noise in the coin and position space; the other is the 
coin-decoherence, which appears only in the coin space. For there exists one of these two common noises in the 
walk, the state of the coin reaches +R R L L1

2
1
2

 when the step of the walk becomes large. Then, when one of 
two common noises appears in the walk, by examining the value of non-Markovianity of the coin t( )  in the 
walk, we can conjecture what kinds of noise exists in the walk. For one dimensional QW, when the strength of 
decoherence increases, the value t( )  of the coin shows a faster decrease in the QW with the broken line noise 

Figure 4.  The two dimensional QW with different strengths of decoherence. Blue solid, f = 0; Red dashed, 
f = 0.1; Black dotted, f = 0.3; Magenta dotted dashed, f = 0.5. (a,b) The broken line noise is considered in the 
walk. (a) The trace distance between the coin states ρ1(t) and ρ2(t). The initial coin states are chosen as 
ρ = R R(0)1  and ρ = L L(0)2 . (b) The non-Markovianity of the coin with the step evolution in the walk. 
(c,d) The coin-decoherence appears in the walk. (c) The trace distance between the coin states ρ1(t) and ρ2(t). 
The initial coin states are chosen as ρ = R R(0)1  and ρ = L L(0)2 . (d) The non-Markovianity of the coin 
with the step evolution in the walk.
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than that in the QW with the coin-decoherence. If the decoherence becomes strong enough (f > 0.3), the quantum 
dynamics of the coin in the QW with the broken line noise changes to a Markovian process; while, the 
non-Markovianity t( )  of the coin in the QW with the coin-decoherence still exhibits a non-zero value when the 
decoherence increases. For two dimensional QW with the broken line noise or coin-decoherence, the behaviors 
of the non-Markovianity for the coin display different features. The value of non-Markovianity for the coin 
decreases when the broken line noise is introduced; while, when the coin-decoherence emerges in the walk, the 
value of non-Markovianity for the coin is higher than that without noises. So by detecting the value of 
non-Markovianity t( )  for the coin, and comparing the obtained  t( ) with that for the coin without noises, we 
can judge which kinds of noise appears in the one and two dimensional QWs.

Discussion and Conclusion
In this paper, we study how to sense the noise in the total QW system by just detecting the coin in the walk. For 
the representation of the coin needs only 2 by 2 matrix, and the infinite dimensional space is required to describe 
the position in the QW system. It is of great value to reveal the features of the total QW system with the observa-
tion of the coin only. In our study, two common widely used noises in the QW are presented. By examining the 
populations of the coin, we can conjecture whether there exists the decoherence in the one or two dimensional 
QWs. Then we discuss the non-Markovianity of the coin in the QWs with different strengths of decoherence. Our 
results indicate that with obtained value of the non-Markovianity of the coin, we can judge whether the broken 
line noise or the coin-decoherence exists in the one and two dimensional QWs.

Although the destructive measurement on the coin is required in our proposed sensing method, our proposal 
of sensing the noise in the QWs is practical. The disturbances from the destructive measurements on the coin can 
be eliminated in some implementations of the QWs57–61. In these realizations, the optical polarization of the light 
is taken as the coin. For the realizations of QWs with the classical light involving optical orbital angular momen-
tum (OAM) modes57, from the fraction of beam transmitted through the beam splitter to the detector, we can 
extract the information of the coin at each step of the walk. For the other realizations of QWs with the position 
space59–61, we can obtain the information of the optical polarization (coin) from the detectors at different posi-
tions. Though in these realizations of QWs using the position space, the QWs are disturbed after the detections, 
we can restart the evolutions of the QWs with different steps and obtain the dynamics of the coin in the walks.

Considering the importance of knowledge about the noise in the QW system, our sensing method provided in 
this work have potential applications in designing the quantum algorithms based on the QW.

Methods
The populations of the coin in two dimensional QWs without noises.  The Fourier transform 
method is applied to derive the populations of the coin. That is ∫=

π

π

π−
−x e kdk ikx

2
, ∫=

π

π

π−
−y e pdp ipy

2
. When 

taking partial trace over the position space, we get the density matrix for the coin at time t as

∑ ∑ρ ρ ρ
π π

φ φ= = = .
=−∞

∞

=−∞

∞

∬t t x y t x y dk dp( ) Tr [ ( )] , ( ) ,
2 2

(0) (0)
(16)

c x y
x y

k p
t

, ,

Figure 5.  The populations of the coin in the two dimensional QW with different decoherence strengths. Blue 
circles and red solid lines stand for the populations of the coin at the state |R〉 and |L〉, respectively; the initial 
state of the coin is ρ = R R(0)1 . Green rectangles and magenta dashed line depict the populations of the coin 
at the states |R〉 and |L〉, respectively; the initial state of the coin is ρ = L L(0)2 . (a–c) The broken line noise is 
considered in the walk. (d–f) The coin-decoherence emerges in the walk.
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The initial state for the coin takes the form as φ = +γ δ γR e L(0) cos sini
2 2

. We introduce one representation 
that transform one 2 by 2 matrix to one 4 by 1 column vector, and the initial state φ(0)  for the coin can be 
described as

φ φ σ σ σ= + + + =













= r I r r r

r
r
r
r

O(0) (0) ,

(17)
x y z0 1 2 3

0

1

2

3

where σx, σy and σz are the Pauli matrices, and I is the 2 by 2 identity matrix. For two dimensional QW, the one 
step evolution for the walk is = ⊗ ⊗U S I C S I C( ) ( )y x , the operator k p,  for this two dimensional QW is

=







−
−







.
p k p k p
p k p p k

k k

1 0 0 0
0 cos2 cos2 sin2 sin2 sin2
0 sin2 cos2 cos2 cos2 sin2
0 0 sin2 cos2 (18)

k p,

Considering the time that we concern goes to infinity, we can obtain the eigenvalues of the operator k p,  and 
neglect the oscillatory terms. After doing the integral, we obtain the density matrix of the coin in the infinite time 
as

∫ ∫ρ
π π

φ φ→ ∞ =

=







.
.

.



















.

π

π

π

π

− −

→∞t dk dp

r
r
r
r

( )
2 2

(0) (0)

1 0 0 0
0 0 36338 0 0
0 0 0 27324 0
0 0 0 0 36338 (19)

c k p
t

,

0

1

2

3



When the initial state of the coin is chosen as φ γ γ= + δR e L(0) cos( /2) sin( /2)i , the coin state at time t 
approaching infinity is addressed as

ρ → ∞ =





Π′

Π′




⁎t

Q
Q

( ) ,
(20)

c
R

L

0

0

with

γ

γ

δ γ δ γ

Π′ = +
.

Π′ = −
.

=
.

− . .Q i

1
2

0 36338
2

cos ,

1
2

0 36338
2

cos ,

0 36338
2

cos sin
2

0 27324sin sin
(21)

R

L

0

Here, Π′ = = ∑
→∞ →∞

=−∞
∞P t a tlim ( ) lim ( )R

t
R

t x y x y, ,
2
,  Π′ = = ∑

→∞ →∞
=−∞

∞P t b tlim ( ) lim ( )L
t

L
t x y x y, ,

2
,  and =

→∞
Q lim

t
0  

∑ =−∞
∞ ⁎a t b t( ) ( )x y x y x y, , , .

The populations of the coin in one dimensional QW with coin-decoherence.  When the 
coin-decoherence is introduced into the one dimensional QW, after one step evolution, the reduced density 
matrix of the coin ρc(t = 1) can be addressed as

∫∑ρ ρ ρ
π

φ φ= = = = = = .
=−∞

∞
t t x t x dk( 1) Tr [ ( 1)] ( 1)

2
(0) (0)

(22)c x
x

k

The state φ(0) is the initial state for the coin. The expression of the operator k  is

=







−
− −

−







.
f k k
f k k

f

1 0 0 0
0 0 (1 )sin2 cos2
0 0 (1 )cos2 sin2
0 1 0 0 (23)

k

Here, we use the representation that transform one 2 by 2 matrix to one 4 by 1 column vector, and the coefficient 
f stands for the strength of the noise. After taking the t steps evolution of QW, the reduced density matrix for the 
coin is

∫ρ
π

φ φ= .t dk( )
2

(0) (0) (24)c k
t

The reduced density matrix for the coin can be interpreted as
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From the derivation above, we find that no matter what the initial state of the coin is, when the coin-decoherence 
is considered, the reduced density matrix for the coin in the infinite time limit is

ρ → ∞ = .( )t( ) 1
2

1 0
0 1 (26)c

The populations of the coin in two dimensional QWs with noises.  Now, we study the populations 
of the coin in the two dimensional QW. Firstly, the broken line noise is introduced into the walk. We assume that 
the broken line noise appears only in the x-direction, and four possible evolutions of the two dimensional QW 
involving decoherence are included. The reduced density matrix for the coin ρc(t) is expressed as

ρ ρ
π π

φ φ= = .∬t t dk dp( ) Tr [ ( )]
2 2

(0) (0) (27)c x y k p
t

, ,

With the operator k p,  in the system evolution ρc(t) as


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Following the approach above, by doing the integral, we obtain the density matrix of the coin in the infinite time 
limit as

∫ ∫ρ
π π

φ φ→ ∞ = =
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It means no matter what the initial coin state is, the density matrix for the coin ρc(t) in the infinite time limit is

ρ → ∞ = .( )t( ) 1
2

1 0
0 1 (30)c

Next, we study the populations of the coin in the two dimensional QW with the introduction of the 
coin-decoherence. In our discussion, we assume that coin-decoherence emerges with the probability f before each 
step of the walk, then the walker moves along the x-direction and y-direction in sequence. The reduced density 
matrix ρc(t) for the coin can be obtained by tracing out the degrees of freedom for the position, which is similar 
as Eq. 27. For this two dimensional QW with coin-decoherence, we can obtain the operator k p,  associated with 
the evolution of the coin ρc(t) as

=


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Considering the calculation for the reduced density matrix ρc(t) above, the reduced density matrix of the coin 
ρc(t) in the infinite time limit can be interpreted as

∫ ∫ρ
π π
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It means no matter what the initial coin state is, when the time approaches infinity, the reduced density matrix 
for the coin ρc(t) is

ρ → ∞ = .( )t( ) 1
2

1 0
0 1 (33)c

References
	 1.	 Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys. 44, 307 (2003).
	 2.	 Venegas-Andraca, S. E. Quantum walks: a comprehensive review. Quantum Inf. Proc. 9, 405 (2012).



www.nature.com/scientificreports/

1 1Scientific Reports | 7: 4962  | DOI:10.1038/s41598-017-04795-2

	 3.	 Farhi, E. & Gutmann, S. Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998).
	 4.	 Aharonov, Y., Davidovich, L. & Zagury, N. Quantum random walks. Phys. Rev. A 48, 1687 (1993).
	 5.	 Mackay, T. D., Bartlett, S. D., Stephenson, L. T. & Sanders, B. C. Quantum walks in higher dimensions. J. Phys. A 35, 2745 (2002).
	 6.	 Childs, A. M. Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009).
	 7.	 Childs, A. M., Gosset, D. & Webb, Z. Universal computation by multiparticle quantum walk. Science 339, 791 (2013).
	 8.	 Childs, A. M., Farhi, E. & Gutmann, S. An Example of the Difference Between Quantum and Classical Random Walks. Quantum Inf. 

Proc. 1, 35 (2002).
	 9.	 Shenvi, N., Kempe, J. & Whaley, K. B. Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003).
	10.	 Childs, A. M. & Goldstone, J. Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004).
	11.	 Ambainis, A., Kempe, J. & Rivosh, A. Coins Make Quantum Walks Faster. Proceedings of the 16th ACM-SIAM SODA, e-print 

arXiv:quant-ph/0402107 (Vancouver, British Columbia, 2005).
	12.	 Tulsi, A. Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 78, 012310 (2008).
	13.	 Potoček, V., Gábris, A., Kiss, T. & Jex, I. Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79, 

012325 (2009).
	14.	 Abal, G., Donangelo, R., Marquezino, F. L. & Portugal, R. Spatial search on a honeycomb network. Math. Struct. Comput. Sci. 20, 999 

(2010).
	15.	 Paparo, G. D. & Martin-Delgado, M. A. Google in a Quantum Network. Sci. Rep. 2, 444 (2012).
	16.	 Paparo, G. D., Müller, M., Comellas, F. & Martin-Delgado, M. A. Quantum Google in a Complex Network. Sci. Rep. 3, 2773 (2013).
	17.	 Chen, T. & Zhang, X. The defect-induced localization in many positions of the quantum random walk. Sci. Rep. 6, 25767 (2016).
	18.	 Brun, T. A., Carteret, H. A. & Ambainis, A. Quantum to classical transition for random walks. Phys. Rev. Lett. 91, 130602 (2003).
	19.	 Brun, T. A., Carteret, H. A. & Ambainis, A. Quantum random walks with decoherent coins. Phys. Rev. A 67, 032304 (2003).
	20.	 Shapira, D., Biham, O., Bracken, A. J. & Hackett, M. One-dimensional quantum walk with unitary noise. Phys. Rev. A 68, 062315 

(2003).
	21.	 Kendon, V. & Tregenna, B. Decoherence can be useful in quantum walks. Phys. Rev. A 67, 042315 (2003).
	22.	 Romanelli, A., Siri, R., Abal, G., Auyuanet, A. & Donangelo, R. Decoherence in the quantum walk on the line. Physica A 347, 137 

(2005).
	23.	 Ermann, L., Paz, J. P. & Saraceno, M. Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin. Phys. 

Rev. A 73, 012302 (2006).
	24.	 Košík, J., Bužek, V. & Hillery, M. Quantum walks with random phase shifts. Phys. Rev. A 74, 022310 (2006).
	25.	 Prokof ’ev, N. V. & Stamp, P. C. E. Decoherence and quantum walks: Anomalous diffusion and ballistic tails. Phys. Rev. A 74, 

020102(R) (2006).
	26.	 Oliveira, A. C., Portugal, R. & Donangelo, R. Decoherence in two-dimensional quantum walks. Phys. Rev. A 74, 012312 (2006).
	27.	 Kendon, V. Decoherence in quantum walks - a review. Math. Struct. Comput. Sci. 17, 1169 (2007).
	28.	 Abal, G., Donangelo, R., Severo, F. & Siri, R. Decoherent quantum walks driven by a generic coin operation. Physica A 387, 335 

(2008).
	29.	 Romanelli, A. Driving quantum-walk spreading with the coin operator. Phys. Rev. A 80, 042332 (2009).
	30.	 Annabestani, M., Akhtarshenas, S. J. & Abolhassani, M. R. Decoherence in a one-dimensional quantum walk. Phys. Rev. A 81, 

032321 (2010).
	31.	 Romanelli, A. Distribution of chirality in the quantum walk: Markov process and entanglement. Phys. Rev. A 81, 062349 (2010).
	32.	 Liu, C. & Petulante, N. Quantum walks on the N-cycle subject to decoherence on the coin degree of freedom. Phys. Rev. E 81, 031113 

(2010).
	33.	 Liu, C. & Petulante, N. Asymptotic evolution of quantum walks on the N-cycle subject to decoherence on both the coin and position 

degrees of freedom. Phys. Rev. A 84, 012317 (2011).
	34.	 Romanelli, A. & Hernández, G. Quantum walks: Decoherence and coin-flipping games. Physica A 390, 1209 (2011).
	35.	 Chandrashekar, C. M. & Busch, T. Decoherence in two-dimensional quantum walks using four- and two-state particles. J. Phys. A 

46, 105306 (2013).
	36.	 Chandrashekar, C. M. & Busch, T. Noise-enhanced quantum transport on a closed loop using quantum walks. Quantum Inf. Proc. 

13, 1313 (2014).
	37.	 Zhang, Y., Bao, W., Wang, X. & Fu, X. Decoherence in optimized quantum random-walk search algorithm. Chin. Phys. B 24, 080307 

(2015).
	38.	 Chen, T. & Zhang, X. Extraordinary behaviors in a two-dimensional decoherent alternative quantum walk. Phys. Rev. A 94, 012316 

(2016).
	39.	 Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (New York, 2002).
	40.	 Breuer, H.-P., Laine, E.-M. & Piilo, J. Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems. 

Phys. Rev. Lett. 103, 210401 (2009).
	41.	 Breuer, H.-P., Laine, E.-M., Piilo, J. & Vacchini, B. Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 

88, 021002 (2016).
	42.	 Smirne, A., Brivio, D., Cialdi, S., Vacchini, B. & Paris, M. G. A. Experimental investigation of initial system-environment correlations 

via trace-distance evolution. Phys. Rev. A 84, 032112 (2011).
	43.	 Li, C., Tang, J., Li, Y. & Guo, G.-C. Experimentally witnessing the initial correlation between an open quantum system and its 

environment. Phys. Rev. A 83, 064102 (2011).
	44.	 Gessner, M. & Breuer, H.-P. Detecting Nonclassical System-Environment Correlations by Local Operations. Phys. Rev. Lett. 107, 

180402 (2011).
	45.	 Laine, E.-M., Breuer, H.-P., Piilo, J., Li, C.-F. & Guo, G.-C. Nonlocal Memory Effects in the Dynamics of Open Quantum Systems. 

Phys. Rev. Lett. 108, 210402 (2012).
	46.	 Smirne, A., Cialdi, S., Anelli, G., Paris, M. G. A. & Vacchini, B. Quantum probes to experimentally assess correlations in a composite 

system. Phys. Rev. A 88, 012108 (2013).
	47.	 Liu, B.-H., Cao, D.-Y., Huang, Y.-F., Li, C.-F., Guo, G.-C., Laine, E.-M., Breuer, H.-P. & Piilo, J. Photonic realization of nonlocal 

memory effects and non-Markovian quantum probes. Sci. Rep. 3, 1781 (2013).
	48.	 Gessner, M., Ramm, M., Pruttivarasin, T., Buchleitner, A., Breuer, H.-P. & Häffner, H. Local detection of quantum correlations with 

a single trapped ion. Nat. Phys. 10, 105 (2014).
	49.	 Ma, T., Chen, Y., Chen, T., Hedemann, S. R. & Yu, T. Crossover between non-Markovian and Markovian dynamics induced by a 

hierarchical environment. Phys. Rev. A 90, 042108 (2014).
	50.	 Bernardes, N. K., Cuevas, A., Orieux, A., Monken, C. H., Mataloni, P., Sciarrino, F. & Santos, M. F. Experimental observation of weak 

non-Markovianity. Sci. Rep. 5, 17520 (2015).
	51.	 Hinarejos, M., Franco, C., Di. Romanelli, A. & Pérez, A. Chirality asymptotic behavior and non-Markovianity in quantum walks on 

a line. Phys. Rev. A 89, 052330 (2014).
	52.	 Luoma, K. & Piilo, J. Discrete dynamics and non-Markovianity. J. Phys. B: At. Mol. Opt. Phys. 49, 125501 (2016).
	53.	 Daz, N., Donangelo, R., Portugal, R. & Romanelli, A. Transient temperature and mixing times of quantum walks on cycles. Phys. Rev. 

A 94, 012305 (2016).



www.nature.com/scientificreports/

1 2Scientific Reports | 7: 4962  | DOI:10.1038/s41598-017-04795-2

	54.	 Franco, C. Di, Mc Gettrick, M. & Busch, Th. Mimicking the probability distribution of a two-dimensional Grover walk with a single-
qubit coin. Phys. Rev. Lett. 106, 080502 (2011).

	55.	 Franco, C. Di, Mc Gettrick, M., Machida, T. & Busch, Th Alternate two-dimensional quantum walk with a single-qubit coin. Phys. 
Rev. A 84, 042337 (2011).

	56.	 Jeong, Y., Franco, C. Di, Lim, H., Kim, M. S. & Kim, Y. Experimental realization of a delayed-choice quantum walk. Nat. Commun. 
4, 2471 (2013).

	57.	 Goyal, S. K., Roux, F. S., Forbes, A. & Konrad, T. Implementing Quantum Walks Using Orbital Angular Momentum of Classical 
Light. Phys. Rev. Lett. 110, 263602 (2013).

	58.	 Goyal, S. K., Roux, F. S., Forbes, A. & Konrad, T. Implementation of multidimensional quantum walks using linear optics and 
classical light. Phys. Rev. A 92, 040302 (2015).

	59.	 Jeong, H., Paternostro, M. & Kim, M. S. Simulation of quantum random walks using the interference of a classical field. Phys. Rev. A 
69, 012310 (2004).

	60.	 Kitagawa, T., Broome, M. A., Fedrizzi, A., Rudner, M. S., Berg, E., Kassal, I., Aspuru-Guzik, A., Demler, E. & White, A. G. 
Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 882 (2012).

	61.	 Xue, P., Zhang, R., Bian, Z., Zhan, X., Qin, H. & Sanders, B. C. Localized state in a two-dimensional quantum walk on a disordered 
lattice. Phys. Rev. A 92, 042316 (2015).

Acknowledgements
We acknowledge the financial support from NSFC Grants No. 11604014 and No. 11574031. We also thank 
the financial support from Young Teachers Academic Starting Plan No. 2015CX04046 of Beijing Institute of 
Technology.

Author Contributions
T.C. and X.Z. proposed the idea. T.C., X.Z. and X.Z. wrote the main manuscript text and T.C. prepared figures. All 
authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Quantum sensing of noises in one and two dimensional quantum walks

	Results

	The populations of the coin in one and two dimensional QWs with or without noises. 
	Quantum sensing of different noises in the one and two dimensional QWs. 
	The sensing in the one dimensional QW. 
	The sensing in the two dimensional QW. 


	Discussion and Conclusion

	Methods

	The populations of the coin in two dimensional QWs without noises. 
	The populations of the coin in one dimensional QW with coin-decoherence. 
	The populations of the coin in two dimensional QWs with noises. 

	Acknowledgements

	Figure 1 The step evolution of and A(t) in Eq.
	Figure 2 The one dimensional QW with different strengths of decoherence.
	Figure 3 The populations of the coin in the one dimensional QW with different decoherence strengths.
	Figure 4 The two dimensional QW with different strengths of decoherence.
	Figure 5 The populations of the coin in the two dimensional QW with different decoherence strengths.




