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Abstract

Target reward influences motor planning strategies through modulation of movement vigor. Considering cur-
rent theories of sensorimotor control suggesting that movement planning consists in selecting a goal-directed
control strategy, we sought to investigate the influence of reward on feedback control. Here, we explored this
question in three human reaching experiments. First, we altered the explicit reward associated with the goal
target and found an overall increase in feedback gains for higher target rewards, highlighted by larger veloc-
ities, feedback responses to external loads, and background muscle activity. Then, we investigated whether
the differences in target rewards across multiple goals impacted rapid motor decisions during movement. We
observed idiosyncratic switching strategies dependent on both target rewards and, surprisingly, the feedback
gains at perturbation onset: the more vigorous movements were less likely to switch to a new goal following
perturbations. To gain further insight into a causal influence of the feedback gains on rapid motor decisions,
we demonstrated that biasing the baseline activity and reflex gains by means of a background load evoked a
larger proportion of target switches in the direction opposite to the background load associated with lower
muscle activity. Together, our results demonstrate an impact of target reward on feedback control and high-
light the competition between movement vigor and flexibility.
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Significance Statement

Humans can modulate their movement vigor based on the expected reward. However, a potential influence
of reward on control strategies has not been documented. Here, we investigated reaching control strategies
in different contexts associated with explicit rewards for one or multiple goals, while exposed to external
perturbations. We report two strategies: reward could either increase feedback gains, or promote flexible
switches between goals. The engagement of peripheral circuits in the modulation of feedback gains was
confirmed by the application of a background load that biased feedback vigor directionally, evoking differ-
ences in switching behavior in the opposite direction. We conclude that feedback vigor and flexible changes
in goal are two competing mechanisms to be selected when interacting with a dynamic environment.

Introduction
From the toddler picking their favorite toys to the foot-

baller selecting the best path through opponents, humans
manifest the exquisite ability to plan and select move-
ments. Movement planning is the process that integrates
many task-related factors to select the best control

strategy for the task (Wong et al., 2015). Amongst these
numerous factors, the reward associated with the task in-
duces a modulation of movement vigor in saccadic eye
movements (Manohar et al., 2015, 2017) and upper limb
reaching movements (Esteves et al., 2016; Summerside
et al., 2018). Moreover, recent studies reported that
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higher reward increases visuomotor responses to distur-
bances (Carroll et al., 2019) and that the increase of vigor
associated with reward is correlated with a reduction of
movement variability and an increase in co-contraction
(Codol et al., 2020). Together, these previous results sug-
gested an influence of reward on movement planning
strategies.
Besides this impact on movement planning, reward

also has an influence on movement selection. Indeed, the
selection of the best alternative between different options
is biased toward movements associated with the highest
reward (Trommershäuser et al., 2003, 2008). Similarly,
when humans have to select a target, their choice is bi-
ased by parameters such as the biomechanical costs in-
curred when reaching to each potential option, resulting
in target selection toward less effortful movements (Cos
et al., 2011; Morel et al., 2017).
The commitment to an action actually results from a

distributed consensus between low level sensorimotor
representations of movement costs (e.g., motor costs)
and high level cognitive representations of their outcomes
(e.g., reward; Cisek, 2012). Here, we explored the impact
of target reward on fast feedback control strategies and
tested the distributed consensus theory in a dynamical
context by probing the effect of movement reward on
feedback control and online motor decisions. Recent
studies have sought to investigate whether and how
much the factors that characterize action selection during
movement planning could also influence movement se-
lection when the hand has already started moving. A first
body of work have shown that dynamical changes in tar-
get selection can be triggered by mechanical (Nashed et
al., 2014) or visual (Kurtzer et al., 2020; Michalski et al.,
2020) perturbations occurring during movement. More re-
cently, some studies demonstrated that cognitive factors,
such as the reward distribution of a redundant target, also
influence online motor decisions (Marti-Marca et al.,
2020; Cos et al., 2021). They revealed that the reward dis-
tribution of a redundant target influences online motor de-
cisions and suggested a link between the state of the limb
(position and speed) at perturbation onset and the out-
come of the decision. However, whether the reward of
competing alternatives or the level of muscle activity
could influence online motor decisions has not been ex-
plored yet.
In the present work, we addressed the relationship be-

tween target reward and feedback control as well as on-
line motor decisions by applying perturbations while
participants performed reaching movements toward one

or several targets that differed explicitly by their associ-
ated rewards. We hypothesized that the influence of re-
ward on movement planning was linked to the selection of
feedback gains, which could impact one’s ability to flexi-
bly change target during movement. In a first experiment,
we investigated the influence of reward on feedback con-
trol strategies. We then investigated the impact of reward
on feedback control when participants had the opportu-
nity to reach to different goals. The goal of the third ex-
periment was to study the competition between feedback
gains and the ability to flexibly change movement goal
during movement.
We first reproduced previous findings of reward-related

increase in velocity toward the target. Importantly, we un-
covered that this modulation was associated with an in-
crease in feedback gains and muscle activity. In a
second experiment, we observed that the difference in
reward between alternative goals could bias online
motor decisions and, interestingly, found out that the
overall increase in movement vigor was negatively cor-
related with the potential selection of a new target. Our
third experiment confirmed that biases in feedback
gains induced experimentally were negatively corre-
lated with the ability to switch goal during movement.
These findings demonstrate that movement reward
modulates both planning and feedback control, and in-
volves the peripheral motor system through modulation
of muscle co-contraction and reflex gains. Moreover,
we highlight that this modulation was detrimental to the
ability to flexibly switch to a new goal during movement.

Materials and Methods
Participants
A total of 53 participants were enrolled in this study and

took part to one of the three experiments. The first group
performed experiment 1 and included 14 right-handed
participants (seven females) ranging in age from 21 to 27.
The second group performed experiment 2 and included
20 right-handed participants (14 females) ranging in age
from 20 to 46. The last group performed experiment 3 and
included 19 right-handed participants (11 females) rang-
ing in age from 18 to 52. Participants were naive to the
purpose of the experiments and had no known neuro-
logic disorder. The ethics committee of the host insti-
tution approved the experimental procedures and
participants provided their written informed consent
before the experiment.

Experiments
For the three experiments, participants sat on an ad-

justable chair in front of a Kinarm end-point robotic device
(KINARM) and grasped the handle of the right robotic arm
with their right hand. The robotic arm allowed movements
in the horizontal plane and direct vision of both the hand
and the robotic arm was blocked. Participants were
seated such that at rest their arm was vertical and their
elbow formed an angle of ;90°. Their arm was uncon-
strained and their forehead rested on a soft cushion at-
tached to the frame of the setup. A virtual reality display
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placed above the handle allowed the participants to inter-
act with virtual targets. A white dot of 0.5-cm radius corre-
sponding to the position of the handle was shown on this
display during the whole experiment.

Experiment 1
In experiment 1 (Fig. 1A, top), participants (N=14) were

instructed to perform reaching movements to a small cir-
cular goal target (1.5-cm radius) located at 25 cm in the
y-direction from the start position, a red disk of 1.5-cm ra-
dius. Participants had first to put the hand-aligned cursor
in the start position, which turned green as they reached
it. After a random time delay (drawn from an uniform dis-
tribution between 1 and 2 s), the goal target appeared as
a red disk containing a number (1, 5, or 10) that corre-
sponded to the reward participants would receive if they
reached and stabilized within the target for a prescribed
time window. Reaction time was not constrained and par-
ticipants could start the movement whenever they wanted
(mean reaction time 518ms). Following the exit of the
start position, participants had up to 600ms to reach the
goal target and keep the cursor inside for at least 500ms.
The goal target turned green at the end of successful
trials, or remained red otherwise. During movements, a
mechanical perturbation load could be applied to partici-
pants’ hand (33% of the trials). This load consisted of a
lateral step force of 69 N, with a 10-ms linear build-up,
aligned with the x-axis. This force was triggered when the
hand-aligned cursor crossed a virtual line located at 8 cm
from the center of the start position (Fig. 1A, bottom).
Unperturbed and perturbed trials as well as trials with

different rewards were randomly interleaved such that
participants could not predict the occurrence or the direc-
tion of the perturbations. Participants started with a 27-
trial training block to become familiar with the task and
the force intensity of perturbation loads. After completing
this training block, they performed six blocks of 72 trials
interleaved with pauses of 3–5 min to prevent muscle fa-
tigue. Each 72-trial block included: 48 unperturbed trials
(16 with each target reward) and 24 trials which contained
mechanical perturbations (leftward or rightward, eight of
each reward condition). Participants performed a total of
432 trials, including 24 for each perturbed condition (di-
rection of the mechanical perturbation and value of the
target reward). A total score corresponding to the cumula-
tive sum of individual movement rewards was projected
next to the goal target. Participants were compensated
for their participation according to a conversion of this
total score. This conversion was calculated such that
each participant received between 10 and 15 euros as an
incentive to score a maximum number of points during
the experiment.

Experiment 2
Experiment 2 was designed to assess the effect of re-

ward on online motor decisions between competing
motor goals. Instead of reaching to a single target, partici-
pants (N=20) were instructed to perform reaching move-
ments to any of three circular targets (1.5-cm radius)
located at 20 cm in the y-direction from the same start po-
sition as in experiment 1 (Fig. 1B, top). As in experiment 1,
the goal targets appeared after participants stabilized the

Figure 1. Task paradigms. A, Representation of the task paradigm of experiment 1. Participants controlled a hand-aligned cursor
represented by the black dot on a virtual reality display. They had to reach for the goal target, represented by the magenta goal tar-
get in front of them. This goal target could have a low, medium, or high reward (1, 5, or 10 points). The bottom part of the panel rep-
resents the load profiles that participants could experience. B, Representation of the task paradigm of experiment 2. Participants
had to reach for any of the three targets presented in front of them. The central target always had a high reward whereas the two
others either had a low or a high reward. The bottom part of the panel represents the load profiles that participants could encounter
during movements. C, Representation of the task paradigm of experiment 3. Participants had to reach for any of the three targets
presented in front of them. During the second half of the trials, a background load force directed leftward was applied prior and dur-
ing the movement (dashed line bottom panel). The bottom part of the panel represents the possible profiles of the total load forces
(perturbation load 1 background load). EMG data from PM and PD were collected during all experiments.
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hand-aligned cursor in the start position. All three goal tar-
gets appeared in each trial, the central one being aligned
along the y-axis with the start position and the other two
equidistant from this central target at 9 cm along the x-
axis. These targets were presented as an inner disk of ra-
dius 0.7 or 1.2 cm inside an outer circle of radius 1.5 cm.
The purpose of the inner disk was to show the reward as-
sociated with the target: the larger the diameter of this
disk, the higher the reward. There were two different con-
ditions of reward: either all the targets had the same large
reward (same values condition) or only the central target
had a large reward while the other two had lower rewards
(different values condition). In a pilot study, we considered
a third reward configuration: the central target had a small
reward while the other two had higher rewards. We ob-
served that, in this third configuration, the behavior in the
absence of perturbation load was biased toward the
lateral targets. We therefore decided to exclude this con-
dition to keep the conditions in which participants sponta-
neously reached for the center target for the largest
proportion of trials in the absence of any perturbation
load. After a random time delay (drawn from a uniform dis-
tribution between 1.5 and 3 s), the inner disks of the goal
targets turned white and participants had to reach any of
these within 400–1000ms to pass the trial. Similar to ex-
periment 1, the reaction time was not constrained (mean
reaction time 311ms). The trial was successfully com-
pleted if participants reached any goal target in the pre-
scribed time window and stabilized the cursor in it for
500ms. The inner disks of the goal targets turned green if
the trial was successful and red otherwise. As in experi-
ment 1, a mechanical perturbation load could be applied
to participant’s hand (50% of the trials, 66 or 610 N,
10-ms build-up aligned with the x-axis; Fig. 1B, bottom).
This perturbation was triggered when the hand-aligned
cursor crossed a virtual line located at 2 cm from the start
position. Unperturbed and perturbed trials as well as trials
with different reward distributions and force intensities
were randomly interleaved. Participants started with a 58-
trial training block followed by six blocks of 80 trials.
Pauses of 3–5 min were introduced between blocks to
prevent muscle fatigue. Each 80-trial block included: 40
unperturbed trials and 40 trials which contained mechani-
cal perturbations. Participants performed a total of 480
trials including 30 trials of each perturbation condition (re-
ward condition and mechanical perturbation condition).
Participants were compensated for their participation
using the same conversion rule as in experiment 1.

Experiment 3
The third experiment was a variant of experiment 2 and

was designed to test the possible impact of muscle ac-
tivity on online motor decisions by applying a background
force orthogonally to the reach path (Fig. 1C, top).
Participants had to perform reaching movements to any
of the three targets, located as in experiment 2. These tar-
gets were identical to the large reward target of experi-
ment 2 and the time course of events in the trial was
similar (mean reaction time 424ms) as well except that a
leftward background mechanical load of 4 N was applied

as participants reached the start position and remained
on throughout the trials. As in the experiment 2, a me-
chanical perturbation load could be applied to partici-
pant’s hand during movement (33% of the trials). This
load consisted of a63 or66 N with a 10-ms build-up trig-
gered when the hand-aligned cursor crossed a line lo-
cated at 2 cm from the start position (Fig. 1C, bottom) and
was added to the background load. Participants first per-
formed a 21-trial training block which did not involve
background load. After completing this training, partici-
pants performed four blocks of 60 trials which did not in-
clude the background load. Each 60-trial block included
40 unperturbed trials and 20 trials with mechanical pertur-
bations and they were interleaved with pauses of 3–5 min.
After these 60-trial blocks, participants performed a sec-
ond 21-trial training block which included the background
load. Once this second training block was completed,
participants performed a second set of four blocks of 60
trials which included the background load. They thus per-
formed a total of 480 trials among which 24 of each condi-
tion (with different perturbation loads and background load
on or off). To motivate participants, a score corresponding to
their number of successful trials was projected next to the
goal targets. Participants were compensated a fixed amount
for their participation.

Data collection and analysis
Raw kinematics data were sampled at 1kHz and low-pass

filtered using a fourth order double-pass Butterworth filter
with cutoff frequency of 20Hz. Hand velocity along the y-axis
was computed from numerical differentiation of the position
data using a fourth order centered finite difference.
Surface EMG electrodes (Bagnoli surface EMG sensor,

Delsys Inc) were used to record muscles activity during
movements. We measured the pectoralis major (PM) and
the posterior deltoid (PD) based on previous studies
(Crevecoeur et al., 2019; De Comite et al., 2021) that
showed that in this configuration they are stretched by the
application of forces opposite to their action, and there-
fore largely recruited by the feedback responses. Before ap-
plying the electrodes, the skin of the participant was cleaned
and abraded with cotton wool and alcohol. Conduction gel
was applied on the electrodes to improve the quality of the
signals. The EMG data were sampled at a frequency of 1kHz
and amplified by a factor of 1000. A reference electrode was
attached to the right ankle of the participant. Raw EMG data
from the PM and PD were bandpass filtered using a fourth
order double-pass Butterworth filter (cut-offs: 20 and 250Hz),
rectified, aligned to force onset and averaged across trials or
time windows as specified in Results. The time windows
selected for the temporal averaging are the short-la-
tency (20–50 ms), the long-latency (50–100 ms), and the
voluntary time epochs (100–180 ms) as proposed in
previous work (Pruszynski et al., 2008; Pruszynski and
Scott, 2012).
EMG data were normalized for each participant to the

average activity collected when participants maintained
postural control at the start position against a constant
force of 9 N. Data from the PM were normalized by the
EMG activity in the same muscle while performing
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postural control against a rightward force whereas data from
the PD were normalized by the EMG activity in the same
muscle while performing postural control against a leftward
force. This calibration procedure was applied after the sec-
ond and the fourth blocks in the first two experiments and
after the first, third, fifth, and seventh blocks in the third ex-
periment. Data processing and parameters extractions were
performed usingMATLAB 2019a.
In experiment 1, we fitted linear mixed models to deter-

mine the effect of the target reward on the kinematics and
EMG activity. These models were fitted using the fitlme
function of MATLAB and the formula used was the
following:

Parameter ¼ b 0 1 b 1 �Reward1ai: (1)

The fixed predictors were the intercept ðb 0Þ and the re-
ward condition ðb 1Þ while the participants were included
as a random offset ðaiÞ. For all linear mixed model analy-
ses that we performed, we reported the estimate for b 1,
the t statistics for this estimate as well as the correspond-
ing p-value and the r2 of the model. One-tailed paired t
tests were used for post hoc analyses where we collapsed
data across trials and participants to compare the differ-
ent conditions. Effect size for these tests were reported
using Cohen’s d defined as the difference between the
means of the two populations divided by the standard de-
viation of the whole sample.
To analyze the data from experiments 2 and 3, we de-

signed a multilinear logistic regression model to infer the
effect of reward distribution and background load on tar-
get choice as the dependent variable, respectively.
Considering that the dependent variable was a discrete
variable (the chosen target), we use the following logistic
regression model:

log
P Lateral targetð Þ
P Central targetð Þ

� �
¼ b 01b 1 �Parameter1

1b 2 �Parameter2; (2)

where the first effect (b 1) was the reward condition (ex-
periment 2) or the presence of a background load (experi-
ment 3) and the second effect ðb 2Þ was the intensity of
the perturbation load. For these logistic regressions, we
reported the estimates for b 1 and b 2, their corresponding
t statistics as well as their p-value. For post hoc analyses
in experiment 2, we used a one-tailed Wilcoxon signed
ranked test for which we reported the ranksum, the z sta-
tistics when provided, the p-value as well as the effect
size given by the Cohen’s d as defined above. In order to
investigate the asymmetry in the parameters b 1 obtained
in experiment 3, we used bootstrap resampling on the in-
dividual data to generate 1000 estimates of the b 1 param-
eter for each condition (leftward perturbation vs rightward
perturbation) using the multilinear logistic regression de-
scribed above. We then assessed the asymmetry of the
effect by investigating whether the 95% confidence inter-
val of the difference between these two b 1 parameters
contains 0 (Efron, 1979).
In order to determine the effect of the background load

on the baseline muscle activity in experiment 3, we fitted

a linear mixed model with interaction terms following this
equation:

EMG ¼ b 1 �Background1 b 2 �Muscle1 b 12 �Muscle

: Background1ai:

(3)

Where the first term ðb 1Þ refers to the background con-
dition, the second (b 2) to the muscle, the third one (b 12)
to the interaction term and the last one (ai) to the random
offset of participants. For all these b , we reported their
estimated value as well as their t statistics, associated p-
value, and the r2 of the model. Significance was consid-
ered at the level of p=0.05 although we decide to exactly
report any p-value that was larger than p=0.005 as previ-
ously proposed (Benjamin et al., 2018). In the figures, we
reported significant differences for the level p,0.05 (*),
p, 0.01 (**), and p,0.005 (***).

Results
Influence of the target reward on feedback
corrections during movement
To determine whether target reward influences feed-

back corrections during movement, participants were in-
structed to perform reaching movements to a goal target
associated with a reward that could change across trials
(see Materials and Methods). During movements, me-
chanical perturbation loads could be applied to reveal
feedback corrections. The occurrence of feedback cor-
rections was assessed by looking at movement kinemat-
ics and EMG responses of the muscles stretched by the
perturbations.
The mean hand path trajectories across participants are

represented in Figure 2A for the different perturbations
and reward conditions. Consistent with previous work
(Shadmehr et al., 2016; Summerside et al., 2018), we ob-
served a significant increase in forward peak velocity with
increasing reward values. Figure 2B shows the differen-
ces in the forward velocities between the high (dash-dot
lines) or medium (full lines) and low reward conditions dur-
ing the unperturbed (top) and perturbed (bottom) trials.
The peak forward velocity (defined as the velocity compo-
nent aligned with the main reaching direction) increased
with increasing reward value both for unperturbed (linear
mixed model: b 1 = 0.013, t=6.51, p, 0.005, r2 = 0.76;
Fig. 2D, top) and perturbed (linear mixed model, right:
b 1 = 0.014, t=3.76, p,0.005, r2 = 0.78, left: b 1 = 0.018,
t=4.68, p, 0.005, r2 = 0.79; Fig. 2D, bottom) trials. Post
hoc comparisons between low and high reward condi-
tions revealed a significant increase of peak velocity with
reward for all perturbation conditions (one-tailed paired t
tests, unperturbed: t= �7.48, p, 0.005, d=0.12, left: t=
�5.37, p,0.005, d=0.16 and right: t= �3.99, p, 0.005,
d=0.13). We did not observe any modulation of the reac-
tion time required to initiate movement with the reward
(linear mixed model p.0.05) since we instructed partici-
pants to initiate movements whenever they wanted (see
Materials and Methods).
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The effect of the mechanical perturbation on the move-
ment kinematics was also dependent on the reward
value. Indeed, the maximum lateral hand deviation in-
duced by the mechanical perturbation (Fig. 2C), com-
puted as the difference between the hand paths in the
perturbed conditions and the mean hand path in the cor-
responding unperturbed reward condition for each partic-
ipant, depended significantly on the reward condition. For
both perturbation directions (Fig. 2E, top for leftward and
bottom for rightward perturbations), we observed a
significant decrease in the maximal hand deviation
along the x-axis with increasing reward value (linear
mixed models, right: b 1 = �0.0025, t = �4.98, p,
0.005, r2 = 0.38 and left: b 1 = �0.0009, t = �2.25,
p = 0.024, r2 = 0.35). Post hoc comparisons between
low and high reward conditions revealed a significant
decrease for both perturbation directions (one-tailed
paired t tests, right: t = 5.31, p,0.005, d = 0.14 and
left: t = 2.34, p = 0.009, d = 0.3).
Based on these kinematics analyses and previous stud-

ies showing that faster movements and smaller hand de-
viations induced by perturbations are correlated with high
EMG activity (Crevecoeur et al., 2019), we hypothesized
that the EMG activity in PM and PD during movement

scaled with increasing reward. We investigated this effect
both for baseline activity measured during unperturbed
trials and for feedback responses to perturbation loads.
We observed a positive correlation between the EMG

activity during unperturbed trials and the value of the
target reward. Figure 3A represents the mean EMG activ-
ity collapsed across muscles and participants for un-
perturbed trials while the differences between these
collapsed EMG activities in the high (dash-dot line) or me-
dium (full line) and the low reward condition are repre-
sented in Figure 3B. We binned the EMG activity of each
trial in a time bin ranging from 0 to 200ms after perturba-
tion onset (Fig. 3A,B, gray rectangle) and fitted a linear
mixed model (see Materials and Methods) on these
binned values to determine whether reward had an influ-
ence on the EMG activity (deviations from the mean
binned EMG activity in the different reward conditions are
represented in Fig. 3C,D for PM and PD, respectively). We
observed an increase in EMG activity with the reward
in both muscles (PM: b 1 = 0.028, t=4.603, p, 0.005,
r2 ¼ 0:68, PD: b 1= 0.053, t=5.98, p, 0.005, r2 = 0.66).
Post hoc analyses performed on individual data showed
that EMG activity was larger in the high reward condition
than in the small one for both muscles (one-tailed paired t

Figure 2. Experiment 1, kinematics. A, Mean hand path across participants for the different conditions of the first experiment. The
magenta, green, and blue traces, respectively, correspond to the low, medium and high reward conditions. The dashed line repre-
sents the onset of the mechanical perturbation. B, Mean difference in forward velocity between the high and low (dash-dot line) and
medium and low (full line) for the unperturbed (top) and perturbed (bottom) trials. The time axis is aligned on the force onset. C,
Mean hand deviation across participants for the perturbed trials. The hand deviation has been obtained by subtracting the mean
hand path to the perturbed hand path in the same reward condition for every subjects. The top part of the graph represents the tri-
als perturbed to the right whereas the bottom part of the graph represents the trials perturbed to the left. D, Group mean (black)
and individual means (gray) of the differential forward peak velocity for the unperturbed trials (top) and perturbed trials (bottom) as a
function of the reward condition with respect to average forward peak velocity. E, Group mean (black) and individual means (gray)
of the difference in hand deviation with respect to the mean hand deviation for leftward (top) and rightward (bottom) perturbation in
the three reward conditions with respect to the average hand deviation; p, 0.05 (*), p, 0.01 (**), p, 0.005 (***).
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tests: pectoralis, t=4.14, p,0.005, d = �0.118 and del-
toid, t=�2.92, p=0.0059, d=0.1653).
The EMG response to mechanical perturbation in the

agonist muscles was also modulated by the reward value.
Indeed, linear mixed model analyses performed on the re-
sponses measured in PM and PD, when, respectively, a
rightward or leftward perturbation occurred, showed a
significant increase of EMG activity with increasing re-
ward in the long-latency epochs (50–100ms). We re-
ported the EMG activities collapsed across muscles and
participants in Figure 3E as well as the difference in these
activities between the high (dash-dot line) or medium (full
line) and the low reward condition in Figure 3F. For each
perturbation direction, we binned the EMG activity of the
stretched muscle in the long latency (LL 50–100ms after
force onset) and voluntary (VOL 100–180ms after force
onset) epochs. Figure 3G,H, respectively, represents the
deviation from the mean binned EMG activity in these two
time bins (LL top and VOL bottom) for PM and PD in the
different reward conditions. In PM, we observed a signifi-
cant increase in the LL window (mixed model: b 1 =
0.0615, t=2.89, p,0.005, r2 = 0.64), but although a posi-
tive tendency emerged in the VOL window, no significant
increase was observed (mixed model: b 1 = 0.036, t=
1.616, p=0.106, r2 = 0.69). Individual pairwise post hoc
comparisons between low and high conditions confirmed

these findings (one-tailed paired t tests: LL, t= �2.48,
p=0.0137, d=0.1592 and VOL, t= �1.18, p=0.128,
d=0.08). The same holds for PD in which we found a sig-
nificant increase of EMG activity in LL window with the re-
ward (mixed model: b 1 = 0.216, t=2.12, p=0.034, r2 =
0.63) but no significant effect in the VOL window (mixed
model: b 1 = 0.181, t=1.887, p=0.059, r2 = 0.77). In this
case, however, the individual pairwise comparisons between
low and high conditions revealed a significant increase in
both time windows (one-tailed paired t tests: LL, t= �3.68,
p, 0.005, d=0.11 and VOL, t=�2.57, p,0.01, d=0.07).
An interesting question is whether the effect of target

reward reported here could only be attributable to higher
movement speed. In other words, could it be that the im-
pact of a higher reward is an increase in movement speed
that would therefore modulate the behavior. To answer that
question, we compared the lateral hand deviation observed
in trials that have similar peak velocity and investigated
whether, in these trials, the reward condition modulates the
lateral hand deviation. We performed a linear mixed model
analysis on the absolute values of these lateral hand devia-
tions and reported an effect of the reward condition: smaller
deviations for higher reward value (b 1 = �0.0011, t= �2.61,
and p=0.009). This result confirms that reward does not only
modulate movement vigor but also the feedback responses
tomechanical perturbations.

Figure 3. Experiment 1, EMG activity. A, Mean EMG activity collapsed across muscles and participants for unperturbed trials. The
time axis is aligned on force onset. B, Mean differences in EMG activity collapsed across muscles and participants between high
and low (dash-dot line) and medium and low (full line) reward conditions for unperturbed trials. C, Group mean (black) and individual
means (gray) PM EMG activity binned between 0 and 200ms after force onset for unperturbed trials. D, Group mean (black) and in-
dividual means (gray) PD EMG activity binned between 0 and 200ms after force onset for unperturbed trials. E, Group mean EMG
activity in PM (top) and PD (bottom) when they were stretched (full lines) or shortened (dashed lines) by mechanical perturbations.
F, Mean differences in EMG activity collapsed across muscles and participants between high and low (dash-dot line) and medium
and low (full line) reward conditions for agonist muscles in presence of perturbation load. G, Group mean (black) and individual
means (gray) differential EMG activity in PM binned in the long latency (50–100ms, top) and voluntary epochs (100–180ms, bottom)
as a function of the reward condition. H, Group mean (black) and individual means (gray) of the differential EMG activity in PD
binned in the long latency (50–100ms, top) and voluntary epochs (100–180ms, bottom) as a function of the reward condition;
p, 0.05 (*), p, 0.01 (**), p, 0.005 (***).
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Therefore, the results of experiment 1 revealed that the
value of the target reward influenced both the movement
kinematics and the EMG activity recorded during move-
ment. Indeed, we showed that the hand deviation induced
by mechanical perturbations decreased with increasing re-
ward value for both rightward and leftward perturbations.
Moreover, the forward peak velocity of reaching movement
increased with increasing reward value. Finally, EMG activity
in both PM and PD increased with increasing reward value
for unperturbed trials and in the long-latency response win-
dow for perturbed movement when the muscles were
stretched by the perturbation. The modulation of forward
hand velocity and baseline EMG activity which also produced
increases in feedback responses to perturbation loads was
consistent with an increase in control gains previously ob-
served in uncertain dynamical contexts, which was inter-
preted as a robust control strategy (Crevecoeur et al., 2019).

Influence of the reward of the different options on
online motor decisions
In experiment 1, we showed that reward of the goal tar-

get had an influence on the way humans perform reaching
movements to this target similarly to other task parame-
ters such as target shape, presence of obstacles, etc.
Moreover, previous studies have shown that these task
parameters that modify the control strategies could also
influence online motor decisions (Nashed et al., 2014). We
therefore designed a second experiment to determine
whether reward could also influence online motor deci-
sions. In this second experiment, participants had to
reach to any of three potential targets aligned orthogo-
nally to the main reaching direction (see Materials and
Methods). The central target always had a large reward
while the two lateral targets could either have lower re-
ward or a reward equal to that of the central target. We
assessed the effect of the difference between central
and lateral rewards on online motor decisions by investi-
gating the frequencies of reaching for the lateral targets.
Mechanical perturbations that could occur during move-
ment were used to evoke changes in goal target. Because
perturbations were unpredictable, a change in reaching
frequency for the lateral targets dependent on the pertur-
bation load was indicative of a perturbation-mediated
change in goal that occurred during movement. The bio-
mechanical and EMG states at perturbation onset in the
same condition were also investigated to determine
whether they had an influence on the future decision.
First, we observed that the reward of the lateral targets

had a clear effect on the frequency of trials that ended on
these targets. Figure 4A represents the hand paths of a
typical participant toward the different targets in various
conditions. In general, in the absence of perturbation,
subjects tend to reach to the central target except for
some trials (,1% in the different values condition and 8%
in the same values condition). In all cases, the frequency
of lateral target increased with the magnitude of the per-
turbation (Fig. 4A, top and bottom for same and different
values conditions, respectively). In addition, there was
a significant effect of the lateral targets reward on the
frequency of lateral target reach: lower frequencies for

different rewards. In order to determine the signifi-
cance of these effects, we identified for each trial the
target that was reached at the end of the movement
and fitted a multilinear logistic regression on these
data to determine whether the reward condition and
the force had an influence on the target reached (see
Materials and Methods). We observed a significant effect of
the reward for both the left (b 1 ¼ 1:103; t ¼ 10:84;p,0:005)
and right (b 1 ¼ 1:666; t ¼ 18:45;p,0:005) targets versus
the central one. These positive values indicate that the reach
proportion to the lateral targets is larger in the same than in
the different condition (see Fig. 4B,C for the same values and
different values conditions, respectively). The intensity of the
perturbation loads also had a significant effect for both lateral
targets versus the central one (left: b 1 = �1.33, t= �26.82,
p, 0.005 and right: b 1 = 1.25, t=29.07; p, 0.005).
Because of the sign of the force in the regression model, in
both cases the frequency of lateral target reach increased
with the forcemagnitude in absolute value.Post hoc analyses
performed at fixed force levels showed a significant effect of
the reward condition on the reaching proportion for all the
perturbed conditions. We observed a smaller reach propor-
tion to the left target in the different values condition com-
pared with the same values condition for both perturbation
directions [one tailedWilcoxon signed-rank test: ranksum=
3, p, 0.005, d=0.61 (Fig. 4D) and ranksum=1, p,0.005,
d=0.49 (Fig. 4E) for loads of �10 and �6 N, respectively].
The mirror effect was observed for the right target: a de-
crease in the reach proportion in the different values condi-
tion for both perturbation directions [one-tailed Wilcoxon
signed-rank test: ranksum=0, p, 0.005, d=0.74 (Fig. 4F)
and ranksum=3, p, 0.005, d=0.78 (Fig. 4G) for loads of 6
and 10 N, respectively].
These results showed that participants took the reward

distribution of the options offered by the three targets into
account while deciding which target they should reach.
The next question that we will address is whether any pa-
rameters linked to the current state of the limb could mod-
ify the decision between the different motor outcomes.
Interestingly, we observed a link between the state

of the limb at perturbation onset (kinematics and EMG ac-
tivity) and the outcome of the motor decision. Figure 5A
represents the mean EMG activity recorded in PM (top)
and PD (bottom) in presence of mechanical perturbations
(rightward, first column and leftward second column)
across participants for the different targets (magenta, left;
blue, center; green, right) in the same values condition.
No significant differences were observed in PM before
force onset (�150 to 0ms; Fig. 5A, gray rectangle) be-
tween the trials that reached the center target and the
ones that reached the lateral targets (Fig. 5B, top) for both
force directions (left: linear mixed model b 1 = �0.019, t=
�1.76, p=0.0782, r2 = 0.62 and right: linear mixed model
b 1 = 0.0054, t=0.89, p=0.3758, r2 = 0.64). However, we
observed an increase in the EMG activity of PD before
perturbation onset for the trials that reached the center
target compared with the ones that reached the lateral
targets for both force directions (Fig. 5B, bottom, left, line-
ar mixed model b 1 ¼ 0:022, t=3.78, p, 0.005, r2 = 0.68;
right, b 1 = �0.051, t= �4.804, p, 0.005, r2 = 0.60). This
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increase in EMG activity for trials that ended at the central
target was correlated with larger forward velocities at
force onset. We reported in Figure 5C the differences in
forward velocities between the center and the lateral trials
for both perturbation directions. In presence of a leftward
perturbation (Fig. 5C,D, right panels), we observed a
larger forward velocity at force onset for trials that end up
at the center target compared with those that reached the
lateral target (linear mixed model: b 1 = �0.013, t=
�3.347, p,0.005, r2 = 0.54). The same holds for trials
with rightward perturbations (linear mixed model: b 1 =
0.040, t=9.476, p, 0.005, r2 = 0.57; Fig. 5C,D, left pan-
els). Similar observations were reported in the different
values conditions. Indeed, we observed an increase in
EMG activities in both muscles for the trials that ended up
at the center target compared with those that reached the
lateral target (PM linear mixed model: b 1 = �0.051, t=
�4.81, p,0.005, r2 = 0.60 and PD linear mixed model:
b 1 = 0.022, t=3.78, p, 0.005, r2= 0.68). Moreover, some
tendencies were observed in the forward speed for trials
with rightward (b 1= �0.011, t= �2.019, p=0.0436, r2 =
0.52) and leftward (linear mixed model b 1 = 0.012,
t=1.95, p=0.0505, r2 = 0.57). These results collected in
the different values conditions have to be analyzed with
caution because of the low number of trials that ended up

at one of the two lateral targets (7.5% in the different val-
ues and 23.5% in the same values condition).
We also tested whether the reward condition (i.e., same

values and different values) modified movement vigor by
comparing the forward velocities and muscle activities at
force onset between both reward conditions. We did not
observe any difference in forward velocities between both
reward conditions at perturbation onset as reported
by mixed effect models (t=0.60, p=0.54, r2 = 0.03).
Similarly, we did not observe any differences in EMG ac-
tivities averaged during the 50ms preceding perturbation
onset as revealed by mixed model analyses (PM: t=
�0.3962, p=0.69, r2 = 0.28 and PD: t=0.07, p=0.93, r2 =
0.06). The same observation holds for reaction times that
did not show any modulation with the reward condition
(linear mixed model, p. 0.05). This absence of correlation
between the reward condition and movement vigor was
interesting as it confirmed that we did not introduce any
experimentally induced modulation of vigor in our para-
digm. The differences in switching frequencies observed
between the same and different values conditions are
therefore attributable to the reward distribution and to
vigor variability within both reward conditions.
This second experiment showed that humans take the

rewards of the competing options into account to respond

Figure 4. Experiment 2, kinematics. A, Representation of hand path of individual trials for a representative subject in the same con-
dition on top (all the targets had the same reward) and in the different condition on bottom (the central target had a higher reward
than the other two). The different columns represent the different force levels (from right to left, large leftward perturbation to large
rightward perturbation). Magenta, blue, and green paths, respectively, represent the paths that reached the left, central, and right
targets. B, Group mean (black) and individual means (gray) of the switch proportion (i.e., fraction of trials that reached either
the left or right targets) as a function of the applied load for the same condition. C, Group mean (black) and individual means
(gray) of the switch proportion (i.e., fraction of trials that reached either the left or right targets) as a function of the applied
load for the different condition. D–G, Comparison of the switch proportion for the same (left) and different (right) conditions
for the trials with large leftward force, small leftward force, small rightward force and large rightward force, respectively;
p, 0.05 (*), p, 0.01 (**), p, 0.005 (***).
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to perturbations and potentially change target goal during
movement. More specifically, participants will tend to re-
duce their frequency of reaching toward targets that have
a lower reward. We also showed that the state of the limb
at perturbation onset modulated participants’ behavior.
Indeed, higher feedbacks gains at perturbation onset
were correlated with a higher probability to potentially
change target goal during movement, conditioned by the
occurrence of mechanical load that would push the limb
toward lateral target.

Effect of the preactivation of muscle on themotor
decision
An outstanding question is when was the decision

made to switch target. Did participants decide to change
after the perturbation, or did they plan to change before
movement? On the one hand, in this experiment as in pre-
vious reports (Nashed et al., 2014), changes in goal target
depend on the occurrence and magnitude of the force so
it is at least partially determined by sensory information
collected during movement. On the other hand, the obser-
vation that the switch also depended on the baseline ac-
tivity suggests that there could be an influence of the
state of the limb from the beginning of the movement on
the decision. We wanted to investigate this possibility in
experiment 3. This experiment was specifically designed

to investigate whether the preactivation of PD before
movement onset could bias the frequency of target
switches. Participants had to reach any of the three tar-
gets located at the same position as in experiment 2. All
targets had the same reward in this experiment. During
movement, mechanical perturbation loads could push
participant’s hand orthogonally to the main reaching deci-
sion. During half of the trials, a leftward background load
was applied to participant’s hand throughout movement
evoking a background activation to counter the back-
ground load (see Materials and Methods). We assessed
the effect of preactivation of PD by investigating the reach
proportions to the lateral targets as a function of force in-
tensity and background condition.
The application of a leftward background force induced

an increase in both PM and PD baseline EMG activity (Fig.
6C). We found a significant effect of the background load
in both muscles (main effect of the linear mixed model on
both muscles: b 1 = �0.11, t= �6.73, p, 0.005, r2 = 0.91)
as represented in Figure 6D. Moreover, we also observed
an interaction effect between the background load and
the muscle: baseline activity in PD increased more than
PM activity (b 12= 0.20, t=19.067, p, 0.005, r2 = 0.91).
We found that the leftward background load modified

the reach proportion to the left target for all kind of online
mechanical loads. Figure 6A represents the reach propor-
tions to the left and right targets (respectively, left and

Figure 5. Experiment 2, EMG activity. A, Mean EMG activity in PM (top) while responding to rightward (first column) and leftward
perturbations (second column) and in PD (bottom) while responding to rightward (first column) and leftward (second column) pertur-
bations in the second experiment. The magenta, blue, and green traces represent the mean EMG activity measured when partici-
pants reached the left, center or right target, respectively. B, Binned EMG activity before force onset in PM (top) and PD (bottom)
for the leftward and rightward perturbation loads, for the trials that reached the central (left bin) and lateral (right bin) targets. C,
Group mean and SEM of the differences in forward velocities across participants between the center and lateral trials for trials
with rightward (left) and leftward (right) perturbations. D, Comparison of the forward velocity at force onset for the trials that reached
the central (blue) and lateral (green or magenta) targets with a rightward or leftward perturbation load; p, 0.05 (*), p, 0.01 (**),
p, 0.005 (***).
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right column) as a function of the intensity of the perturba-
tion load for the trial with (bottom) or without (top) back-
ground. In order to show the effect of the background
load on the reach proportion to the lateral targets, we fit-
ted a multilinear logistic regression (see Materials and
Methods) that inferred the effect of perturbation and
background load on the reached target. This multilinear
logistic regression revealed a significant effect of the
background and perturbations loads on both the left and
right targets reaching proportion. Concerning the pertur-
bation load, we observed an increase of the reach propor-
tion to the left target with increasing leftward force (b 1=
�0.9223, t= �22.16, p, 0.005) and the mirror effect for
the right target (b 1 = 1.0204, t=23.86, p, 0.005). The
background load also had a significant effect on the reach
proportion for these two targets. The reach proportion to
the left target decreased when the background load was
applied (b 1 = �0.4611, t= �6.1759 and p, 0.005; Fig.
6B, left panel). Intuitively, an increase in force toward a
target could bias the choice for that target but it was not
the case. A slight decrease in reach proportion for the
right target was also revealed by this regression (b 1 =
�0.1544, t= �1.9972, p=0.0458; Fig. 6B, right panel).
The intensity of this effect on the two lateral targets was
compared using bootstrap resampling: this effect was
larger for the left than for the right target. We generated
1000 bootstrap datasets from the original dataset used
to fit the multilinear logistic regression and fitted the multi-
linear regression on each of these bootstrap datasets
(generating that way estimates of b 1 for each resampled
dataset). We extracted bootstrap estimates of the main
effect of background on the target reached for both lateral

targets and computed the difference between the left and
right estimates. The mean value of this difference was
0.280 and the 95% confidence interval obtained from
bootstrap resampling was [0.072, 0.503], which therefore
indicates a non-zero difference. This result suggests a di-
rectional bias in the effect of the background load on the
switching strategies: the application of a leftward back-
ground load hindered switches to the left target more than
those to the right one.
Post hoc analyses performed on the individual reach

proportion to lateral targets confirmed this asymmetry be-
tween left and right target (see Fig. 6B). We observed a
significant decrease of the individual reach proportion to
the left target induced by the background load across
participants and force levels (one tailed Wilcoxon signed-
rank test: z=2.83, ranksum=999.5, p, 0.005, d=0.21).
No similar effect was observed for the right target
(Wilcoxon signed-rank test: z = 1.23, ranksum = 1015,
p = 0.2154, d = 0.03).
An interesting question is whether this background

force also modulated forward velocity. We address
this question by using a linear mixed model to compare
forward speed at force onset in the conditions with
and without background load. No modulation of move-
ment speed between these conditions was observed
(linear mixed model b 1 = �0.00960.007, t = �1.2528,
p = 0.210, r2 = 0.44). This result is important as it dis-
cards the eventuality that the modulation of flexibility
to switch to a new target goal was induced by move-
ment velocity. Similarly, the reaction time was not
modulated by the presence of the background force
(linear mixed model, p. 0.05).

Figure 6. Experiment 3. A, Group mean (full line) and individual means (dashed lines) of the reach proportion to the left and right tar-
gets for the conditions without (top row, black) and with (bottom row, gray) the leftward background load as a function of perturba-
tion load. B, Comparison of the reach proportion of the left and right targets (left and right columns, respectively) with (gray boxes)
and without (black boxes) the leftward background force. C, Group mean of the EMG activity in PM (left) and PD (right) before
movement onset for trials without (black) and with (gray) a background load. The time axis is aligned with the perturbation load
onset. D, Comparison of the binned EMG activity between 500 and 300ms (corresponding to the gray box in panel C) before force
onset in PM and PD for the conditions with and without background; p,0.05 (*), p, 0.01 (**), p,0.005 (***).
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The results of this last experiment showed that the
tendency to switch observed in experiment 2 depended
on the biomechanical state of the limb. Importantly, the
application of a background load in a direction reduces
the tendency to switch in this direction in a larger amount
than the tendency to switch in the opposite direction.

Discussion
We conducted a series of experiments to investigate

the impact of reward on feedback control strategies and
rapid motor decisions by probing the impact of explicit
target reward. In experiment 1, we demonstrated that tar-
get reward does not only increase movement vigor as re-
ported in previous studies (Summerside et al., 2018; Yoon
et al., 2018), but it also increases feedback responses and
muscle activity. We observed that perturbation-related
lateral hand deviations were smaller when participants
reached toward a target associated with higher reward.
Moreover, we also observed an increase in the baseline
EMG activity as well as an increase in the EMG responses
to perturbation loads with increasing reward. Altogether,
these results suggest that the feedback gains used to per-
form movements scale with the value of the reward. In the
second experiment, we reported that the reward distri-
bution across the competing options has an influence
on rapid motor decisions: participants were less prone
to switch to a nearby target if it was associated with
lower reward. In addition, an increase in feedback gains
was detrimental to the ability to switch target during
movement as we observed in experiments 2 and 3 that
participants were also less likely to switch target during
movement when the muscle activity was higher. The
modulation in muscle activity introduced experimentally
in experiment 3 induced a directional bias in the ability
to switch target online, demonstrating a causal influ-
ence of muscle activity.
The increase in movement vigor and feedback gains

associated with reward that we observed in experiment
1 was coherent with the selection of a robust control
strategy (Crevecoeur et al., 2019; Bian et al., 2020). A ro-
bust controller consists in an alternative to stochastic
optimal control (Todorov and Jordan, 2002) that has the
property to consider unmodelled disturbances (Basar
and Bernhard, 1991), which results in better responses
to mechanical perturbations during movements. Reward
is known to invigorate movements as revealed in sacca-
dic eye movements where faster movements were ob-
served toward higher monetary rewards (Manohar et al.,
2015, 2017) or toward targets associated with higher im-
plicit rewards (Xu-Wilson et al., 2009). Similar observa-
tions were made for upper limb reaching movements
that exhibited higher peak velocities toward more re-
warding targets (Sackaloo et al., 2015; Esteves et al.,
2016; Summerside et al., 2018; Yoon et al., 2018). This
was taken as evidence for reward-dependent selection
of movement time (Shadmehr et al., 2010; Haith et al.,
2012). It has recently been demonstrated that this in-
crease in movement vigor was associated with higher
muscle activity in presence of reward (Codol et al., 2020)
which could be interpreted as a mechanism used to

increase internal feedback gains to improve reward-re-
lated endpoint accuracy (Manohar et al., 2019). Here, we
postulate that another mechanism is also at play: a high-
er reward produced a more robust strategy that revealed
participants’ will to render their movements less sensi-
tive to perturbations, thereby reducing the risk to miss
the goal. In this framework the reduction in movement
time results from the robustness of the control that im-
pacts movement velocity through larger goal directed
control gains.
In this framework, the modulation of the robustness of

control has a clear limitation that we were able to estab-
lish empirically: a robust control strategy is meant to reject
disturbances indistinguishably, thus in principle, it is clear
that this strategy is not compatible with a flexible change
in movement goal online, which requires a reduction in
feedback response to let the perturbation redirect one’s
hand toward the new goal.
Besides the property of the robust model to predict

larger feedback gains, we measured here as in previous
work that this strategy was associated with an increase
in baseline co-activation (Crevecoeur et al., 2019)
which potentially influences the gains of short-latency
and long-latency responses to mechanical perturba-
tions (Marsden et al., 1976; Bedingham and Tatton,
1984; Verrier, 1985; Matthews, 1986; Stein et al., 1995;
Pruszynski et al., 2009). Considering this, the competi-
tion between robust control and flexible online deci-
sions in the human motor system may depend in part of
the fact that the robust controller recruits the peripheral
motor apparatus (i.e., muscle state and reflex gains) to
increase the overall feedback gains, thereby creating a
competition between peripheral mechanisms engaged
in control and more central decisional processes.
Moreover, our results demonstrate that the model

based on distributed consensus of decision-making
(Cisek, 2012) also applies to online motor decisions. This
framework posits that decisions occur through an com-
petition between the different options by integrating the
motor costs incurred to each action (Cos et al., 2011;
Shadmehr et al., 2016; Morel et al., 2017) and their re-
spective outcome (Trommershäuser et al., 2003, 2008).
We documented a concomitant influence of both the re-
ward distribution across competing options and load
magnitudes which highlights that these two factors are
taken into consideration during online motor decision. In
addition, we add to these factors that the state of the pe-
ripheral motor system, influenced by the selected control
strategy and feedback gains, had an effect on online
decision-making. Our findings are in line with previous
work reporting an impact of the cost of each action
(Nashed et al., 2014; Kurtzer et al., 2020; Michalski et al.,
2020) and their associated outcome (Marti-Marca et al.,
2020; Cos et al., 2021). These observations support that
online motor decisions must result from distributed con-
sensus between control strategies, feedback responses
and rewards. Importantly, the present study investigated
participants’ decision to switch to alternative targets during
movement, all of which leading to successful movements,
there were no good or bad choices as it is the case in a go-
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before-you-know paradigm (Chapman et al., 2010; Gallivan
et al., 2016, 2017; Enachescu et al., 2021).
To conclude, our study highlights that multiple mecha-

nisms underlie reward-dependent planning and control of
movement. One the one hand, we suggest that there is a
robust control strategy that involves peripheral circuits by
means of increases in baseline activity and gain scaling of
the feedback responses. This strategy associated with ro-
bust control is likely selected to reject perturbations and
reduces the risk of missing the reward suggesting that
there could be a cost incurred to reward. On the other
hand, there exists a more flexible control strategy able to
switch target during movement. It is conceivable that this
second strategy, which requires some inhibition of muscle
activity and response, is mediated by higher level inhibi-
tory circuits and response modulation (Shadmehr and
Krakauer, 2008; Scott, 2016). Both strategies integrate
explicit target rewards and depend on the state of periph-
eral control loops.
An interesting open question is whether and how much

individuals can modulate their strategy or whether the dif-
ferences in strategy reflect individual traits. Indeed, indi-
vidual differences have been shown in movement vigor
(Reppert et al., 2018), and their possible effect on the
modulation of feedback control is an exciting open ques-
tion. Such ability is potentially central to understand plan-
ning and control in complex environments.
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