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ABSTRACT

To understand the molecular pathogenesis of hu-
man disease, precision analyses to define alterations
within and between disease-associated cell popula-
tions are desperately needed. Single-cell genomics
represents an ideal platform to enable the identifi-
cation and comparison of normal and diseased tran-
scriptional cell populations. We created cellHarmony,
an integrated solution for the unsupervised analy-
sis, classification, and comparison of cell types from
diverse single-cell RNA-Seq datasets. cellHarmony
efficiently and accurately matches single-cell tran-
scriptomes using a community-clustering and align-
ment strategy to compute differences in cell-type
specific gene expression over potentially dozens of
cell populations. Such transcriptional differences are
used to automatically identify distinct and shared
gene programs among cell-types and identify im-
pacted pathways and transcriptional regulatory net-
works to understand the impact of perturbations at
a systems level. cellHarmony is implemented as a
python package and as an integrated workflow within
the software AltAnalyze. We demonstrate that cell-
Harmony has improved or equivalent performance
to alternative label projection methods, is able to
identify the likely cellular origins of malignant states,
stratify patients into clinical disease subtypes from
identified gene programs, resolve discrete disease
networks impacting specific cell-types, and illumi-

nate therapeutic mechanisms. Thus, this approach
holds tremendous promise in revealing the molecu-
lar and cellular origins of complex disease.

INTRODUCTION

Single-cell RNA-sequencing (scRNA-Seq) provides the
unique ability to profile transcripts from diverse cell popu-
lations along a continuum of related or disparate cell types
(1). In addition to defining known and novel cell popula-
tions, single-cell technologies can identify disease-related
gene regulatory programs which underlie molecular and
cellular dysfunction. While diverse single-cell experimental
platforms exist to facilitate such analyses, there is an ur-
gent need for integrated and easy-to-use computational ap-
proaches to identify discrete differences between compara-
ble diseased and healthy cells. Given that most scRNA-Seq
analyses will potentially identify dozens of cell populations,
such an exercise becomes non-trivial, as distinct cell popu-
lations will have different transcriptional, cellular, pathway
and gene regulatory network impacts. Furthermore, cellu-
lar and molecular differences can occur in either a cell type-
specific manner or across a spectrum of related cell popu-
lations, requiring new holistic analysis solutions. Given the
complexity of the analyses required to achieve these goals,
automated solutions that can be applied by both experi-
enced bioinformaticians and conventional laboratory biol-
ogists are ultimately required.

The development of workflows to provide disease-level
insights requires reproducible mapping and comparison of
single-cell transcriptomes across one or more samples. Two
principal classes of algorithms are designed to align and
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compare scRNA-Seq datasets: (i) label projection and (ii)
joint alignment. Label projection methods consider a ref-
erence scRNA-Seq dataset with already defined clusters as
the basis for assigning those cell type annotations to new
datasets. In the case of disease, the objective of such algo-
rithms is to annotate perturbed cell states according to their
most closely related normal equivalents, without consider-
ing novel cell populations observed uniquely in disease. A
number of algorithms have been recently developed to per-
form this objective including scmap, Seurat3, conos, Gar-
nett, CHETAH and SingleCellNet (see Table 1 for a com-
parison of features and methods) (2–6). Notable among
these tools are conos and Seurat, which enable the down-
stream comparison of cell-populations using differential ex-
pression analyses. A potential limitation of this analysis for
conos is that two individual datasets cannot be compared
by this method, as it requires biological replicate scRNA-
Seq experiments for analysis with DESeq2. While Seurat
enables the direct comparison of cells within the same pop-
ulation across conditions (differential expression analysis),
it currently provides no means to integrate these results over
potentially dozens of cell populations or prioritize impacts
within specific cell types to obtain systems-level insights.

In contrast to label projection, joint-alignment methods
simultaneously align similar cells into to common or dis-
tinct clusters independent of batch, donor, or other tech-
nical effects. Such tools include conos and Seurat 3 (which
perform both label projection and joint-alignment), Biscuit,
LIGER, Scanorama, scMerge, scVI and Harmony (Table 1)
(7–12). As such, these tools can identify similar cell popula-
tions that occur in independent datasets, highly distinct cell
populations that are unique to one dataset or cell type which
potentially represent divergent lineage programs. While in
principle such methods would appear to be a more appro-
priate for comparing healthy and disease states, there are a
number of important caveats that can potentially limit the
use of joint-alignment methods over those for label pro-
jection. Firstly, label projection methods are designed to
explicitly align disease cell types to appropriately similar
healthy states, whereas joint-clustering methods will often
produce overly specialized clusters in which separate dis-
ease and healthy clusters are obtained for the same cell type
(13–15). In such cases, no direct correspondence to diseased
cell states and normal will be provided, hindering their di-
rect comparison. Second, healthy references can include cu-
rated cell states or clusters, in which cell types have been ini-
tially defined, rather than redefining such cell populations
through joint clustering. Indeed, it is most appropriate to
annotate cell populations in healthy rather than disease, in
which known cell type gene expression programs are have
already been defined. Thirdly, for studies in which new sam-
ples such as diseased tissues are accrued over time, it is chal-
lenging to continuously re-annotate datasets with the addi-
tion of new samples using joint-alignment, which inherently
rederives clusters in each new analysis. Although label pro-
jection remains a potentially powerful approach to compare
scRNA-Seq datasets using unperturbed references, several
challenges remain. First, it is unclear whether disease cell
states contain core cell-type identity programs to enable ac-
curate alignment to healthy references. Once aligned, accu-
rate means for automated gene expression comparison are

needed. Finally, no existing single-cell approaches organize
and order gene expression changes to highlight differences
that are unique to one cell type or shared across multiple
related or dissimilar cell types.

Herein, we describe a new approach called cellHar-
mony, which provides the unique ability to obtain a uni-
fied systems-level view of molecular, cellular, pathway, and
network-level differences between all aligned query and ref-
erence cell populations in an automated manner. This work-
flow performs three essential steps: (i) label projection of
one scRNA-Seq dataset onto another, (ii) pairwise molec-
ular and cellular comparisons of all aligned cell types and
(iii) systems-level functional and regulatory analyses (Fig-
ure 1). This program is implemented as stand-alone align-
ment python package and is integrated into the software Al-
tAnalyze for more streamlined scRNA-Seq analysis (1,16).
We observe that in comparable disease and normal datasets,
the cellular-identity programs (core genes) are retained,
providing an appropriate reference for secondary compar-
ison analyses. For label projection, cellHarmony creates a
k-nearest neighbor graph of each sample to match similar
sample communities (Louvain clustering) and then directly
matches the cells within those communities. This strategy
enables the fast alignment of similar small communities
without biasing the alignment to outliers. When compared
to other label projection approaches, cellHarmony results
in improved alignment accuracy. Once aligned, clusters or
cell-type names from one dataset can be mapped onto an-
other and placed within a continuum of differentiation.
These data are integrated and jointly visualized in multiple
formats. To identify the precise impact of genetic, chem-
ical, disease, or other perturbation, cellHarmony extracts
cell type-specific differences (cell frequency and gene ex-
pression), finds, organizes, and visualizes co-regulated cell
populations, examines the pathway-level impact on distinct
gene modules, and produces putative gene-regulatory net-
works based on prior knowledge. Through seamless inte-
gration within AltAnalyze, users can jointly perform the un-
supervised analysis of extremely large scRNA-Seq datasets
using the algorithm Iterative Clustering and Guide-gene Se-
lection (ICGS, version 2) prior to alignment, with little to
no required bioinformatics expertise (17). Automation be-
comes a necessary step in these analyses, where dozens of
cell populations are likely present in large single-cell RNA-
seq datasets. Using this approach, we are able to effec-
tively recapitulate previously observed disease genetic and
cellular observations from models of cardiac ischemia and
Acute Myeloid Leukemia (AML), determine the develop-
mental origins of malignancy, identify novel prognostic dis-
ease biomarkers in AML, determine the cellular specificity
of previously described drug targets and propose novel gene
regulatory networks in these diseases.

MATERIALS AND METHODS

Algorithm description

Implementation and requirements. cellHarmony is
compatible with Python 2.7 and is distributed as dedi-
cated python source code for the community clustering
alignment algorithm (https://github.com/AltAnalyze/
cellHarmony-Align) and as a component of the software

https://github.com/AltAnalyze/cellHarmony-Align
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Table 1. Comparison of features present in label projection and joint-alignment programs

AltAnalyze (https://github.com/nsalomonis/altanalyze).
AltAnalyze is an easy-to-use data analysis toolkit that
provides both automated workflows (e.g. RNA-Seq raw
data processing, alternative splicing, scRNA-Seq unsu-
pervised analysis, microarray analysis) and separate à la
cart analyses through the command-line and a dedicated
graphical-user-interface. This code is supported for Linux,
Mac, and Windows, using computers with a minimum
of 8GB of RAM (16GB+ recommended). Additional
documentation, optional R pre-processing scripts (for
Seurat input references), and tutorial videos are available
from: http://www.altanalyze.org/cellHarmony. When run
through AltAnalyze, cellHarmony works seamlessly with
the embedded unsupervised analysis software, Iterative
Clustering and Guide-gene Selection (ICGS) version 2 as
input (1,17). To run cellHarmony through the AltAnalyze
graphical user-interface, the user must start the program,
select the appropriate species, select the Additional Analy-
ses Menu and then Cell Classification Menu. Pre-compiled
graphical user-interface distributions are provided from
http://altanalyze.org and the command-line version from
GitHub or via installation from PyPI. Details regarding
required and optional input files and additional informa-
tion regarding the use of cellHarmony on a computational
cluster are provided in Supplemental Information.

Cell-alignment from community clustering. To identify
equivalent cell-types or cell-states from two independent
scRNA-Seq datasets, cellHarmony employs a community
clustering strategy to produce a network graph and define
communities in both the reference and query dataset. In

short, this approach initially matches communities of cells
across samples and then selects the closest matching refer-
ence cell for each query cell, where a single reference cell
can match to multiple query cells. This function performs
the following steps:

1) Define communities (partitions) within each of the
datasets: Prior to defining communities, each dataset is
restricted to the cell-population specific marker genes
previously defined for the reference. When using ICGS
version 2 unsupervised results (default), these markers
are the top 50 cluster-specific marker genes for each
cluster. The query and reference files are imported as
Cell Ranger (10× Genomics, version 1.0–3.0 supported)
sparse matrices (h5 or mtx) or as tabular input files
(counts or scaled). By default, cellHarmony uses the
ICGS-NMF produced output heatmap tab-delimited
text file as its reference with log2 barcode normalized
counts data (Supplemental Information – Input Data).
Utilization of each of these inputs produces equivalent
downstream results. From this sparse matrix data, the
program identifies the k-nearest neighbors (k =10 by de-
fault) for each cell using the python package Annoy (18)
and creates a graph of these neighborhoods using the net-
workx python package. Once created, Louvain clustering
is performed with the lowest possible resolution to find
maximal partitions (r = 0). We denote the resulting com-
munities of reference sample cells by {Cr1, Cr2, . . . , Crs}
and {Cq1, Cq2, . . . , Cqt} for the query sample communi-
ties.

https://github.com/nsalomonis/altanalyze
http://www.altanalyze.org/cellHarmony
http://altanalyze.org
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Figure 1. Integrated and automated holistic discovery of cell population-specific perturbations. Illustrated automated workflow of the cellHarmony anal-
ysis pipeline. (A) Small and large (>100k cell) scRNA-Seq datasets can be pre-processed in the parent software AltAnalyze (expression scaling, outlier
exclusion) for the query and reference dataset. Raw data can be input from multiple file formats (Methods). Both query and reference can be individual
samples or combined collections (joined and analyzed or merged post unsupervised analysis with the cellHarmonyMerge function). The default unsuper-
vised clustering population prediction method in AltAnalyze is ICGS version 2.0 (ICGS-NMF output), which provides different input options (population
marker genes or guide-gene correlated results). (B) Alignment of individual cells from the query to the reference is accomplished through community clus-
tering of each dataset, following the creation of a k-nearest neighbor graph in each dataset. Prior to matching cells, Louvain partitions (cluster centroids) are
matched between datasets to define the nearest neighborhoods (Pearson coefficient). Labels provided for the reference clusters (stem cell, macrophage. . . )
can be provided as alternatives to cluster labels (c1,c2,c3. . . ), based on the ICGS cluster cell-type predictions (curated by the user). (C) Query cells that
meet a minimum correlation threshold (Pearson coefficient > 0.4, default) are placed adjacent to their aligned reference cell in the ICGS heatmap and
projected into a common UMAP coordinate space to determine the mixing of cells and qualitative transcriptomic differences. (D) Quantitative transcrip-
tome differences between query and reference cells are computed using a multi-step differential expression analysis between matched cell clusters and (E)
population proportion differences reported (Fishers Exact test). (F) Gene-level statistical differences are used to identify the most similar impacted cell
clusters (co-regulated), defined by comparing the frequency of genes similar patterns of regulation from a binarized P-value and fold-change matrix. Genes
with expression best described by global regulation (impacted across all cell populations), co-regulated clusters (regional) or that are most restricted in
their differences to specific cell clusters (local) are ordered statistically in a combined heatmap (left). Integrated with this heatmap are statistically enriched
pathways and transcription-factor targets to determine the perturbation-specific impacts along a continuum of related and distinct cell populations. Pu-
tative transcriptional regulatory and curated protein-protein interaction networks are derived from each cell population or co-regulated comparison to
identify likely regulators and their targets among these impacted populations (right).

2) Find the closest matching communities between the query
and reference: For each community in the reference sam-
ple (Cri), a centroid mCri is calculated from the con-
stituent cells using a simple mean for each gene and like-
wise for each query sample community (mCqi). All pair-
wise similarities rij (numpy corrcoef function) between
query (mCqi) and reference (mCri) community centroids
are computed and the most highly correlated (Pearson
coefficient) reference community for each query commu-

nity is identified. We represent the result of this matching
process for query communities as {Cqj:Cri; ∀j, i:max(rij)}.

3) Find the closest matching reference cell for each query cell
and propagate the label: The gene expression of each cell
within the query community of a pairing {Cqj:Cri} is
compared (Pearson correlation coefficient) to each cell
in the matched reference community Cri to find the clos-
est match. The original cluster label (i.e. user-supplied la-
bel or ICGS/Seurat cluster number) assigned to the clos-
est matching reference cell is then projected to the query
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cell. A new heatmap is created wherein every query cell
is placed adjacent to its closest matching reference cell,
reference cells being grouped by the original clustering
(see Input Data). However, query cells with a Pearson
alignment correlation coefficient lower than the user de-
fined threshold (default = 0.4) are excluded from down-
stream combined data visualizations, differential expres-
sion, and system level prediction analyses. The result is
a set of aligned cell populations wherein each cell popu-
lation consists of all reference cells with a common label
and any query cells with that label. We denote the set of
aligned cell populations by {Ak, k = 1, . . . , K} where K is
the number of ‘original’ clusters in the reference dataset.
The relative frequency distribution of the (aligned) pop-
ulations within the reference and query samples is com-
pared using a series of K Fisher’s exact tests. Alternative
options for running these functions and performance are
described in the Supplemental Information.

Differential expression analysis. To identify impacted
genes, networks, and cellular processes across cell-
populations, cellHarmony performs a differential ex-
pression (DE) analysis between each aligned query and
reference cell population {Ak, k = 1, . . . , K}. Differential
expression is performed using an empirical Bayes moder-
ated t-test with Benjamini–Hochberg (BH) false discovery
rate (FDR) correction applied separately within each
cell-type population. An overall moderated t-test for each
gene comparing the pooled query cells to pooled reference
cells is also performed, with the BH correction applied. We
denote the adjusted P-values from these analyses by {p1, p2,
. . . , pK} and pO for the overall test. The default threshold
for differential expression is fold >1.5 and P < 0.05 (FDR
corrected). Users can modify these thresholds within
the graphical user interface or from the command-line
(Supplemental Information). This process is automated for
cell populations in the two compared datasets that share
the same provided or assigned labels between the reference
and query, respectively. The K pairwise query-to-reference
comparisons are performed for cell populations in which at
least 20 cells are present from both the query and reference
datasets. For datasets with fewer than 200 total cells (i.e.
Fluidigm C1), this requirement is relaxed to 4 cells in
each aligned cluster. The results are saved to tab-delimited
text files with summary statistics and basic annotations,
along with summary graphical outputs, and are used for
downstream systems-level analyses.

Systems-level predictions. In comparisons where a molec-
ular, genetic, or chemical perturbation results in abnormal
cell biology, cellHarmony can be used to identify which
cell populations are principally impacted in both cell fre-
quency and gene expression. By examining the differences
that are shared among different cell clusters and those that
are unique to a specific cell clusters, cellHarmony enables
the determination of holistic pathway and gene regula-
tory network impacts. Specifically, cellHarmony determines
whether gene expression differences across cell clusters are
global (impacted in most cell populations), local (i.e. cell
cluster-specific), or co-regulated/regional (i.e. specific to a
subset of cell clusters). Note that although some clusters can

be excluded from the differential expression analysis due to
insufficient cell population size (see above), we continue us-
ing the notation for the full set of aligned clusters {Ak: k =
1, . . . , K}.

To assess global gene up- and down-regulation, the dif-
ferential expression analysis is repeated for all query cells
compared to all reference cells, regardless of the cluster to
which they are aligned. Only genes for which pO < 0.05 and
pi < 0.05 for at least 2 {i:1, . . . , K}, with consistent direction
of fold change, are considered as candidates for the globally
up-regulated or globally down-regulated group, depending
on the direction of the fold change. Genes that meet the DE
criteria stated above for only one cell population form the
local DE groups (i.e. pi < 0.05 for only one {i:1, . . . , K})
and represent cell cluster-specific profiles. To define addi-
tional predominant patterns of co-regulation (common ef-
fect among multiple but not all clusters) for each gene, the
cell cluster-specific P-values comparing each query to ref-
erence cluster (Ak) are collected into a vector of length K.
The vector is recoded to entries of 1, –1 or 0 as follows: 1 if
P < 0.10 & sgn(logfc) = 1, –1 if P < 0.10 & sgn(logfc) = –1,
0 otherwise to indicate up-regulation (1), down-regulation
(–1), or no significant alteration (0). The P-value threshold
of 0.10 was chosen to provide increased sensitivity in clus-
ters with small numbers of cells. For example, a gene with
pattern [0,1,0,1] would represent co-regulated DE for clus-
ters 2 and 4. The four most frequently occurring patterns
of co-regulation (excluding global and cell cluster-specific
patterns) are selected for an additional round of differen-
tial gene expression analyses, comparing query to reference
cells in the resulting aggregated cells clusters. For example,
if the top pattern is [1,1,0,0], a test of pooled clusters 1 &
2 in the query will be compared to clusters 1 & 2 in the
reference scRNA-Seq dataset, yielding P(co-reg). Each gene
from the cell cluster-specific comparisons (local), is then
assigned to the specific comparison group (global, local,
or co-regulated) in which they are most altered, based on
the smallest P-value of all comparisons, i.e. among {pi: i =
1, . . . , k, pO, p(co-reg)}. The final genes are limited to signif-
icant genes in the first cell cluster differential analysis, ex-
cluding new genes identified in the global or regional anal-
ysis, to prevent bias due to cell-type frequency variation in
the query and reference (e.g. more B-cells in query versus
reference, highlighting B-cell upregulated gene expression).

To produce a unified representation of these differences,
which can consist of dozens of differential expression com-
parisons, cellHarmony creates a combined heatmap with
genes assigned to specific comparison groups. The cells
in the heatmap are ordered by the original cell popu-
lations, with the genes ordered according to global, co-
regulated, and local categorizations (p-value ranked), with
up-regulated and down-regulated genes displayed as adja-
cent clusters. A gene set enrichment analysis is performed
on the resultant gene clusters with the Pathway Commons
database (human and mouse) or Gene Ontology (other
species) (19,20). Putative gene regulatory relationships in
these gene modules are predicted using a second gene
set enrichment analysis with the TRRUST, PAZAR and
Amadeus databases combined to identify likely upstream
transcriptional regulators and highlight clustered embed-
ded transcription factors (21,22). Finally, these gene reg-
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ulatory networks are further visualized using the ‘igraph’
pathway library and these same transcription factor target
databases for each comparison.

Statistical methods for comparative analyses

To evaluate the agreement in label assignments for different
label projection methods, we used the Adjusted Rand Index
(ARI) as proposed by Hubert and Arabie (23) using the R
package ‘clues’ (24). Accuracy is assessed as the proportion
of correct assigned labels for a given alignment algorithm,
where perfect accuracy is defined as matching aligned and
author assigned labels. To evaluate methods for differen-
tial expression analysis, we used type I error probability and
false discovery rate (FDR), each assessed at a nominal error
rate of 0.05 (5%), and statistical power (see Supplemental
Information for definitions).

Evaluation datasets

See the Supplemental Information for details regarding the
software inputs and outputs, heart scRNA-Seq produced
in these studies, external validation datasets used, external
software evaluation, data processing and analysis parame-
ters, along with user guidelines for cellHarmony parameter
tuning.

RESULTS

The cellHarmony pipeline was created to rapidly and ac-
curately align comparable scRNA-Seq datasets to identify
the global, regional, and local molecular impacts of diverse
perturbations. For this purpose, cellHarmony uses a graph-
based strategy to produce disjoint networks from a clus-
tered single or combined reference against an un-clustered
query (Figure 1A and B). Alignment through community
clustering provides three important advantages in the align-
ment of different scRNA-Seq datasets. First, individual
cells can be quickly matched between large scRNA-Seq
datasets by finding the most similar communities between
datasets prior to matching individual cells in those parti-
tions. Second, the produced alignments will be more stable
than individual cell alignments which are inherently biased
towards outlier cells. Finally, the alignment to cell centroids
is highly reliant on the final cluster definitions, in which
sub-clusters may be present or clusters inappropriately ag-
gregated. Cell populations and cluster labels (e.g. cell-type
names optionally provided by the user) in the reference
can be automatically assigned using the embedded unsu-
pervised algorithm Iterative Clustering and Guide-gene Se-
lection (ICGS) (17), which has been consistently shown
to identify transitional cell states and exceedingly rare cell
types from large scRNA-Seq datasets (ICGS-NMF output)
(1,17,25–29). While reference cell alignment is an impor-
tant independent objective in many studies (i.e. develop-
mental ordering of cells, cell-type identification), cellHar-
mony’s primary innovation is the creation of systems-level
models of cellular and transcriptional differences in discrete
and co-regulated cell populations. The result is a global
view of molecular perturbations across cell types to de-
termine which cell-populations, associated pathways, and

transcriptional networks are impacted. To achieve this aim,
the software implements a unique comparison and aggre-
gation approach to identify impacted gene and regulatory
programs that may be restricted to individual cell clusters,
shared more broadly between specific cell clusters, or that
are common to all populations (Figure 1C–F). Visualiza-
tion of these organized gene modules allows for the deter-
minations of which pathways and gene networks are playing
important roles in which cell populations.

Label projection performance

To specifically evaluate the performance of cellHarmony
relative to alternative label projection methods, we applied
cellHarmony, conos, Seurat3, scmap, CHETAH and Sin-
gleCellNet to a large mouse cell atlas (MCA) dataset (Tab-
ula Muris) with previously defined Cell Ontology classifi-
cations (n=46). This dataset includes 12 matched tissues
profiled using two complementary scRNA-Seq technolo-
gies (10x Genomics and SMART-Seq2) and capture meth-
ods (unbiased versus Flow Cytometry). As such, cell-type
definitions are considered highly rigorous, although addi-
tional undefined cell clusters are expected. It should be
noted that another label projection method, Garnett, could
not be evaluated as it requires unique genes for all evalu-
ated cell populations, which is not the case for the 46 MCA
cell-types (i.e. B-cells from different tissues) (Supplemen-
tal Information). Similarly, the algorithms RCA (30) and
MNN (31) do not explicitly perform label projection and
hence were also excluded (see Table 1, Supplemental Infor-
mation). Although the two scRNA-Seq datasets generated
by the Tabula Muris consortium were produced using in-
dependent single-cell methodologies, UMAP and heatmap
projections of cellHarmony-aligned datasets indicate highly
overlapping cell type projections for the major cell pop-
ulations (Figure 2A and Supplementary Figure S1A, B).
Using the Adjusted Rand Index (ARI) for alignment of
the 10× Genomics query to the SMART-Seq2 reference
to quantify similarity, community-based alignment in cell-
Harmony had improved similarity to the author-defined
ground truth (ARI = 0.85) with high accuracy (83%), rel-
ative to conos (ARI = 0.81, accuracy = 81%), Seurat3
(ARI = 0.84, accuracy = 73%), scmap (ARI = 0.64, accu-
racy = 71%), CHETAH (ARI = 0.65, accuracy = 60%), and
scNet (ARI = 0.66, accuracy = 70%) (Figure 2B). While
cellHarmony was evaluated using markers selected from an
unsupervised analysis (ICGS version 2), near identical re-
sults were obtained using MCA Ontology cell-population
marker genes (Supplementary Figure S1C). We find that
mis-classifications from cellHarmony could largely be ex-
plained by alignment of cells with same or highly related
cell-types across tissues (e.g. Muscle Macrophage as Tra-
chea blood cell) (Supplementary Figure S1D). To deter-
mine the thresholds at which cellHarmony predictions fail
to be accurate, we excluded two tissue-restricted cell pop-
ulations that clearly separated out from other cell-types in
the UMAP graph, liver hepatocyte and kidney collecting
duct, and classified those cells back into the filtered refer-
ence dataset. These data indicate that cellHarmony is more
likely to produce true positive alignments above a Pearson
correlation >0.3 (default cutoff >0.4), with alignments be-
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Figure 2. cellHarmony produces accurate alignments across technologies. (A) cellHarmony produced UMAP projection of cells from 12 Tabula Muris
tissues profiled using two different single-cell methods, SMART-Seq2 (reference, left) and 10x Genomics (query, right). 10x Genomics cell population labels
were transferred from the SMART-Seq2 through community-alignment. Cells were restricted in both sets to those with common assigned Cell Ontology
annotations by the study authors to allow for evaluation of the alignment agreements. (B) Comparison of the cell-label assignment by six independent
algorithms (cellHarmony, Seurat3 reference label transfer, conos label projection, scmap, singleCellNet and CHETAH) using the cells and labels from
panel C. Results from cellHarmony are reported using variable genes derived from an unsupervised analysis of all SMARTSeq2 cells (ICGS version 2),
whereas marker genes for all other applications were derived within those tools. Adjusted Rand Index is reported as the overall measure of agreement to the
author provided Cell Ontology labels with confidence intervals for ARI computed using the normal approximation. (C) Evaluation of excluded cell types
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Evaluation of differential gene expression sensitivity using the empirical Bayes method. (D) Statistical power curves for simulated RNA-Seq data indicate
the proportion of tests (features) with FDR-adjusted p-values ≤ 0.05 over a range of log2 fold-change values. Simulated data was generated using the R
package ‘splatter’ with 50 cells for each of the two groups (composite of 5 simulated datasets). (E) Overlap of differentially expressed genes (DEGs) from
T-cells versus B-cells profiled either by bulk RNA-Seq (benchmark data) or scRNA-Seq predicted using the MAST testing procedure or empirical Bayes
t-test (eBayes) (see Supplemental Information).

low that range indicating likely false positive associations
for cells from the same technological platform (Figure 2C).
Hence, cellHarmony is accurate across technological plat-
forms to yield high precision cell population alignments
for the downstream identification of cell population-specific
impacts.

Cell population comparison of differential expression

To obtain higher order insights, cellHarmony requires an
effective method to determine gene expression differences

when comparing query cells to reference cell clusters. For
such comparisons, it is expected that the end-user iden-
tifies any possible batch-effects and corrects for them as
needed prior to performing cellHarmony. For differen-
tial expression analysis, cellHarmony applies an empirical
Bayes (eBayes) moderated t-test method (32). We speculated
that this computationally efficient method would be appro-
priate for scRNA-Seq datasets in which a high degree of
missing values is present, as it moderates the standard er-
ror towards a common value. To verify the performance of
this method with scRNA-Seq, we compared eBayes to three
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algorithms frequently applied for scRNA-Seq differential
expression analysis (MAST, SCDE and Wilcoxon) using
simulated data (splatter package) in addition to matched
single-cell and bulk RNA-Seq data (Figure 2D and Sup-
plementary Figure S2A, Supplemental Information). Com-
pared to alternative algorithms, we find eBayes can accu-
rately identify cell-type-specific differences in gene expres-
sion in scRNA-Seq data with statistical power comparable
to state-of-the art algorithms (e.g. MAST), while providing
Type I and FDR error control at a nominal 5% levels (mean
observed Type I error rate across the five replicates of 0.039
and 0.44 for 50 and 100 cells per group, respectively, and
likewise 0.025 and 0.034 for FDR). Application of eBayes
to scRNA-Seq with matched bulk RNA-Seq (B-cells ver-
sus T-cells), identified a nearly identical proportion of bulk
RNA-Seq verified differentially expressed genes as MAST
and SCDE (Figure 2E and Supplementary Figure S2B).

Using cellHarmony to identify disease gene networks

To evaluate the ability of cellHarmony to discover known
and novel cell-population impacts, we applied this tool
to four scRNA-Seq collections, spanning three technolo-
gies (Fluidigm, DropSeq, 10× Genomics) and two diseases
(myocardial infarction and Acute Myeloid Leukemia). For
both diseases, we selected datasets with comparable bulk
RNA-Seq data as a means to validate the observed gene ex-
pression differences. Notably, many well-defined drug tar-
gets and key driver gene expression changes are already
known for both diseases.

Myocardial infarction (MI), commonly known as a heart
attack, is the leading cause of death in developed coun-
tries. While decades of transcriptomic analyses have re-
vealed the global impact on cardiac tissue, little is known
about the specific impacts to individual cell populations. We
performed Drop-Seq on a mouse model of MI and age-
matched controls with sham surgery. MI is known to re-
sult in large global gene expression changes associated with
cell death, cellular infiltration, and injury induced cellu-
lar remodeling that make its comparison to controls com-
plex (33). Applying cellHarmony to Seurat clustering of
the Sham references finds that, while all cell populations
present in the healthy heart are present in the diseased, MI
results in gene expression changes that shift the location of
cell populations within the combined UMAP graph (Fig-
ure 3A and B). Specifically, visualization of the aligned MI
cells within the cellHarmony heatmap shows that fibrob-
lasts adopts a weak combined smooth muscle, epicardial,
and endothelial gene expression program (Supplementary
Figure S3A). Further, MI results in a loss of endothelial
cells and gain in infiltrating macrophages (Figure 3C). It
should be noted that joint-alignment using Seurat (version
3) dataset integration finds cell clusters that are restricted
to Sham (endothelial) or MI (fibroblasts) that represent dis-
tinct cell populations (Supplementary Figure S3B and C).
While biologically informative, the occurrence of such sep-
arate clusters hinders the direct-automated comparison of
these populations between MI and Sham.

In MI, cellHarmony gene expression differences across
all cell populations indicate consistent upregulation within
each specific and clustered cell population (Figure 3D).

While little gene downregulation is denoted in the com-
bined heatmap representation of this data, we find regu-
lation of diverse pathways with increased cell population-
specific gene expression. These changes are broadly re-
flected in comparable bulk RNA-Seq data from an inde-
pendent study (33), indicating that differential expression
is likely valid rather than a technical artifact (Figure 3E).
Moreover, examination of the predicted transcriptional reg-
ulatory networks for each specific cell population compar-
ison identifies well defined MI-associated gene expression
differences in human Fibroblasts (up-regulation of Col1a1,
Col1a2, Col3a1, Col4a2, Col5a1, Col5a2 [Collagen scar]
Fn1, Thbs1, Mmp14) along with novel implicated regulators
which agree with prior literature (Figure 3F) (34–37). While
the two central transcriptional nodes in this network, Hif1a
and Runx1, have been previously implicated in MI and even
as possible targets for therapy, these markers have not been
explicitly associated with the MI fibroblasts (38–40). While
another central node in this fibroblast network, Egr1 was
down-regulated, we note that in the Epicardial network,
Egr1 was also central but up-regulated, in combination with
other immediate-early central node genes Jun and Fos (Fig-
ure 3G). This observation is important, as Egr1 is a well
described transcriptional regulator and target for therapy
in MI and is likely playing very different roles in these two
different cell types (41–43). Hence, automated cellHarmony
analysis is able to identify the likely cell populations that un-
derlie therapeutic responses and well-defined cell-type spe-
cific mediators of disease.

Identifying clonal cell origins in cancer

Cancers of the blood, such AML, can derive from diverse
progenitor populations to gain self-renewal potential. While
AML results from myeloid progenitors, genomic variants
and disease subtypes are likely to derive from distinct stem
or progenitor populations, most of which remain largely un-
known. The comparison of scRNA-Seq datasets provides
a means to determine which cancer clones associate with
known healthy progenitor cell types. To understand the di-
versity of such cancer cell origins and response to therapy,
we applied cellHarmony to three AML scRNA-Seq collec-
tions: (i) a murine model of cytogenetically normal (CN)
AML, (ii) an erythro-leukemia patient with patient matched
control and (iii) a time-course of AML therapy.

In the murine model of CN-AML, mice carrying both
Flt3-ITD and Dnmt3a mutations (44) were compared to
healthy bone marrow hematopoietic progenitors (BM) (1)
which include well-defined and experimentally validated
transition cell states. Here, cellHarmony primarily aligned
AML cells to wild-type dendritic cells, monocyte progen-
itors and a newly described population of bi-potential
monocytic or granulocytic progenitors (IG2) cells (Fig-
ure 4A and B). As IG2s are considered short-lived cel-
lular intermediates, their role in both normal and abnor-
mal hematopoiesis is unknown. While hundreds of genes
were differentially expressed between matched AML and
healthy BM, the cellHarmony integrated visualization indi-
cates that these genes largely segregate those shared among
discrete lineage transitions, including those with apparent
monocytic restricted potential, and those specifically im-
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Figure 3. Identification of cell-type specific regulatory networks in cardiac ischemia. (A) cellHarmony UMAP projection of mouse heart scRNA-Seq, com-
paring myocardial infarction (MI) to non-diseased hearts (Sham surgery). Cell cluster labels and colors were assigned by cellHarmony (MI) or from the
Seurat analysis (Sham). (B) Separation of the combined UMAP projections for reference Seurat Sham clusters and aligned MI clusters. Differences in the
projected population locations in the MI are attributed to disease-associated transcriptomic changes. (C) Cell population percentages for cells from Sham
and MI. (D) Number of differentially expressed genes for each cell cluster (local), global (all AML cells versus all wild-type) and regional (coregulated cell
clusters) comparisons for MI versus Sham (fold>1.5, empirical Bayes moderated t-test P < 0.05 (FDR adjusted)). (E) Ordered gene expression changes
(upregulation and downregulation) for each global, regional and the cell population-specific comparison, based on relative gene expression P-value rank-
ings, along with associated statistically enriched pathways and enrichment P-values (blue text) (left panel). The same genes are shown in the right panel for
comparable bulk RNA-Seq of MI versus Sham, from a prior study (GSE96561). (F, G) cellHarmony produced gene network displaying putative regulatory
interactions (red arrows) among up-regulated (red notes) and down-regulated genes (blue nodes), separately for fibroblast (F) and epicardial (G) MI versus
Sham comparisons.

pacted in distinct cell types (e.g., dendritic cells), with spe-
cific pathway and gene-regulatory impacts (Figure 4C and
D). For example, genes consistently up-regulated in the
transition to monocytes are characterized by activation of
C-MYC and NF-kB, whereas down-regulated genes in both
monocyte and dendritic cell progenitors show an exit from
cell-cycle. This analysis further highlights hematopoietic
stem progenitor (HSCP) programs (Gfi1b, Meis1, Gata3,

Ikzf2) are active in later progenitor populations (AML IG2
and monocytic), where they should normally be down-
regulated (1). These genes were previously shown to be aber-
rantly expressed in human AML (45–48). Notably these cell
type-specific differences were reflected in in bulk RNA-Seq
from these same cells (Figure 4E).

To see whether cellHarmony is effective at identify-
ing cell population-level genomic differences relevant in
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Figure 4. Cell population-specific impacts in transitioning progenitors and AML. (A) cellHarmony alignment of previously profiled splenic c-kit-positive
AML cells relative to ICGS results from all captured normal mouse bone marrow hematopoietic progenitors (reference sample, Olsson et al. 2016). (B) AML
cells were aligned most frequently to annotated dendritic cells (DC), monocyte progenitors (Mono), and previously described bipotential hematopoietic
progenitors (IG2, Olsson et al. 2016). The AML DCs were high enriched relative to wild-type DCs by cellHarmony Fisher Exact test (P = 4.8E–24). C)
Number of differentially expressed genes (DEG) by cell cluster (upregulated and down-regulated) for AML versus wild-type cell populations (fold > 2,
P < 0.05, FDR adjusted). Negative numbers on the x-axis indicate downregulation (i.e. ‘-100’ means ‘100 downregulated genes’). (D) Heatmap of AML
versus wild-type fold changes for all significant differentially regulated genes from panel C. Genes are grouped as global, regional, and local transcriptomic
differences (DEG p-value ranked), with DEGs demonstrating global regulation shown at the top of the heatmap, co-regulated cluster impacts in the middle,
and cell population-specific impacts at the bottom. The regional or co-regulated clusters indicate shared patterns of gene expression across multiple cell
populations (e.g. HSCP-1 + HSCP-2 + IG2 + Mono). For each pattern, a separate up-regulated and down-regulated cluster is shown. Known transcription
factors are displayed to the right of the heatmap where present by cellHarmony and enriched Pathway Commons gene-sets (blue) and transcription factor
target sets (red) are displayed on the left next to each cluster in ranked order of significance (bottom to top). (E) Corresponding gene expression differences
from bulk RNA-Seq of the AML model compared to wild-type bone marrow controls as an independent verification. Red lines = upregulated genes
(fold >1.5, empirical Bayes moderated t-test P < 0.05 (FDR adjusted)), Blue lines = downregulated genes (fold < –1.5, empirical Bayes moderated t-test
P < 0.05 (FDR adjusted)).

diseased patient samples, we analyzed human leukemia
scRNA-Seq datasets before, during, or following therapy.
To minimize potential batch and donor effects for dif-
ferential analyses, we selected scRNA-Seq from a pre-
transplantation leukemia bone marrow biopsy relative to a
post-transplantation biopsy on the same patient, although
the donor genetics will differ from the recipient (49). Align-
ment of the diagnostic query to the post-transplantation
sample reference found an expected decrease in cellular di-
versity in the leukemia diagnostic sample and significant

expansion of erythroblast compartment in the leukemia
by UMAP visualization (Figure 5A–C and Supplementary
Figure S4A). Consistent with this observation, this patient
was diagnosed with erythro-leukemia, which is character-
ized by proliferation of erythroblastic precursors (49). In-
terestingly, the most divergent gene expression differences
in pre- versus post-transplant are found in Erythroblasts,
which were characterized predominantly by gene down-
regulation, where as other cell-types were principally char-
acterized by up-regulation (Figure 5D and E). To deter-
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Figure 5. Assessing temporal changes in cell population-specific gene regulatory programs in Acute Myeloid Leukemia. (A) UMAP projection of ICGS-
NMF scRNA-Seq clusters from bone marrow mononuclear cells from a single-patient (AML027) after bone marrow transplantation and a cellHarmony
aligned diagnosis AML sample. (B) Separation of the combined UMAP projections for reference post-transplantation clusters and aligned AML clusters.
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and downregulation) for each global, regional and the cell cluster-specific comparison, with transcription factor target gene-sets displayed on the left
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mine whether such signatures were diagnostic for leukemia
type, we analyzed bulk-RNA-Seq in a large un-annotated
adult AML cohort consisting of 438 patients (Leuce-
gene) and 16 donor CD34+CD45RA- cord-blood samples
for the same gene modules (50). Comparison of patients
with the high-GATA1 signature (and low inflammatory)
to the high inflammatory (and low-GATA1) yields genes
with expected enrichment in previously described erythro-
leukemia and inflammatory/autoimmune disorder disease
ontology terms, respectively, providing evidence that these
signatures are indeed diagnostic (Figure 5F).

As a final evaluation, we considered a recent AML treat-
ment scRNA-Seq time-course (Days 0, 2 and 4) with a
combinatorial drug therapy to induce durable remission.
The study authors use this data to demonstrate a loss
in blood leukemic stem cell populations during therapy
and metabolic disruption. Similarly, cellHarmony automat-
ically indicates the same gradual loss in stem cell blood
populations during treatment and enriched gene expres-
sion changes in analogous metabolic pathways (Figure 5G–
I, Supplementary Figure S4B, Supplementary Table S1).
However, our analysis also implicates time and cell-type
dependent transcriptional regulatory networks, which sug-
gest that the major population gene expression impacts hap-
pen at Day 2 of therapy (global and cell population specific
up-regulation) (Figure 5J). Among the gene expression dif-
ferences most pronounced at Day 2 were those restricted
to the two Leukemia stem cell-like populations. Examina-
tion of these changes reveals dozens of highly significant
impacted pathways, notably syndecan-1, IL5, TGF-beta,
EGFR, IFN-gamma, IGF-1, ErbB1, integrin and mTOR
mediated signaling pathways (Supplementary Table S1).
These impacted pathways have well-described regulatory
roles in proliferative signaling, which is enriched among up-
regulated genes (Mitotic G1-G1/S phases) in concert (Fig-
ure 5J). These differences were further exemplified by the
cellHarmony predicted gene-regulatory network for differ-
entiating HSCs, which highlight a core stem cell and pro-
liferative regulatory program orchestrated by up-regulation
of RUNX1, JUN and HDAC1 (Figure 5K). Such transcrip-
tional differences represent new potential biomarkers for
intermediate response to therapy as well as novel possible
therapeutic targets.

DISCUSSION

Single-cell RNA-Seq continues to enable exciting in-
sights from healthy and diseased tissues. Standardized

and efficient workflows to explore such diversity benefit
the research community by highlighting global and cell
population-specific programs that can otherwise remain
hidden. cellHarmony provides such reproducibility through
the fast alignment of independent scRNA-Seq graphs using
a community alignment approach. As such, the approach
remains scalable to large datasets, due to its low memory
footprint, and will be less sensitive to outlier effects through
the use of neighborhood matching. To maximize the use of
this application, both a stand-alone python implementation
of this tool is provided along with an integrated workflow
with a graphical user-interface. While this method can ac-
curately align diverse cells from different tissues and across
different single-cell technologies, its principle power is in
the determination of global, regional, and local differences
among cell clusters at the transcriptional, pathway, and
regulatory-network level. As demonstrated, such insights
include the localization of critical disease transcriptional
changes to specific cell types, improved understanding of
the specificity of drug targets to specific cell types in disease,
improved diagnostic biomarkers, and novel regulatory and
signaling networks that can inform therapy. Importantly, we
are unaware of any other scRNA-Seq pipelines that can per-
form these integrated tasks (see Table 1).

While cellHarmony is able to yield exciting new insights
from disease scRNA-Seq datasets, a number of important
challenges still remain. These challenges include the com-
parison of large single-cell patient cohorts, with variable
cell numbers per sample, confounded by batch, genetics,
and other effects and the explicit integrated analysis of
multi-time-point datasets. Further, cellHarmony reported
gene expression differences will inherently be less confident
when comparing aligned clusters with highly varying sizes
(e.g. dozens of cells versus thousands). Likewise, there is al-
ways the chance that similar, but not exact cell types will
be inappropriately labeled in different datasets. As such,
this approach should be considered along with those for
joint-alignment to identify additional cellular granularity
not clear from the reference alone. Although new special-
ized and integrated approaches are needed to address these
goals, our approach provides an important starting frame-
work for more complex study designs involving scRNA-Seq
through community alignment. With increasing use and de-
creasing expense of scRNA-Seq technologies, we anticipate
approaches such as cellHarmony to become necessary to
derive higher order insights into the investigation of phar-
macological and disease heterogeneity.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(red) and pathways (blue) to the left of the heatmap with corresponding enrichment p-value (left panel). The same genes are shown in the right panel
for comparable bulk RNA-Seq from the Leucegene AML RNA-Seq cohort with 438 patients and 16 donor CD34+CD45RA- cord-blood samples (row
median normalized). Samples indicated as AML Eryth are those with a matching GATA1 transcription factor target enrichment in the left panel heatmap
and those denoted as inflammatory correspond to gene clusters with an enrichment in interferon-gamma and TLR gene set enrichments. (F) Disease
Ontology gene-set enrichment with the program ToppGene of the two Leucegene patient groups high GATA1 and low inflammatory gene expression
versus the converse sample sets. Red bars indicate statistical enrichment of upregulated (GATA1 high) gene sets and blue, downregulation associated genes
(inflammatory). (G, H) Analogous plots to those shown in panels A and B, respectively, for two scRNA-Seq timepoints of a single-patient’s blood at Day
0 and Day 4 of chemotherapy. (I) Cell population percentages for Day 2 and Day 4 cells aligned to Day 0 ICGS-NMF clusters. No cells were aligned for
HSC cells at Day 4 and only 11 cells for HSC-Differentiating at Day 4 (too few for differential expression analysis of those clusters). (J) Ordered AML
time-course heatmap, in which ordered genes for both Day 2 and Day 4 versus Day 0 were combined. Differentials for Day 2 are shown on the left panel
and Day 4 on the right, with red tick marks denoting genes significantly differentially expressed in Day 4 versus Day 0. (K) The cellHarmony gene network
for the differentiating HSC cluster at Day 2 versus Day 0.
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DATA AVAILABILITY

All reported datasets used in this paper are publicly
available with the associated accession numbers provided
below. Tabula Muris mouse cell atlas scRNA-Seq data
(Figure 2) was obtained from GSE109774; mouse bone
marrow scRNA-Seq from GSE70245 and GSE77849;
myocardial infarction and sham surgery mouse scRNA-
Seq deposited to GSE136088; human Acute Myeloid
Leukemia (AML) datasets from the 10x Genomics
website (https://support.10xgenomics.com/single-cell-
gene-expression/datasets/1.1.0/aml027 pre transplant,
https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/aml027 post transplant); AML
scRNA-Seq time-course from GSE116481; human
bulk AML RNA-Seq data (GSE49642, GSE52656,
GSE62190, GSE67040) and control cord-blood samples
(GSE48846); Human HEK293T scRNA-Seq from the
10X Genomics website (http://support.10xgenomics.com/
single-cell-gene-expression/datasets/2.1.0/hgmm 12k);
bulk RNA-Seq from T-cells and B-cells (GSE51984);
single-cell RNA-Seq from human peripheral blood
mononuclear cells from the 10x Genomics website (https:
//support.10xgenomics.com/single-cell-vdj/datasets). cell-
Harmony and AltAnalyze are open-source and provided in
Github according to the Apache License 2.0.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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